research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[(N,N-di­ethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide-κN1)silver(I)]-μ-nitrato-κ3O,O′:O]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea, and bPhotodynamic Therapy Research Institute, School of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Republic of Korea
*Correspondence e-mail: yoonil71@inje.ac.kr, jekim@gnu.ac.kr

Edited by A. Van der Lee, Université de Montpellier II, France (Received 21 September 2016; accepted 18 October 2016; online 21 October 2016)

The reaction of silver nitrate and cafenstrole (N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide), a triazole herbicide, leads to the title coordination polymer, [Ag(NO3)(C16H22N4O3S)]n, whose asymmetric unit comprises one cafenstrole ligand mol­ecule, one AgI atom and one nitrate ion. The AgI atom, with a distorted trigonal–pyramidal environment, is coordinated by one nitro­gen atom of a triazole ring, two oxygen atoms of a nitrate ion and one oxygen atom of a neighboring nitrate ion. The coordination bonds between silver and oxygen atoms give rise to a one-dimensional (1D) coordination polymer structure along [001]. The dihedral angle between the planes of the triazole and benzene rings is 87.13 (11)°. In the crystal, the coordination polymer is stabilized by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, resulting in a three-dimensional architecture.

1. Chemical context

Recently, we have reported the crystal structure of the ligand cafenstrole (L; Kang et al., 2015[Kang, G., Kim, J., Park, H. & Kim, T. H. (2015). Acta Cryst. E71, o614.]). Cafenstrole is a triazole herbicide and has been used for rice cultivation as an inhibitor of the germination of grass weeds (Takahashi et al., 2001[Takahashi, H., Ohki, A., Kanzaki, M., Tanaka, A., Sato, Y., Matthes, B., Böger, P. & Wakabayashi, K. (2001). J. Biosci. 56, 781-786.]). Triazole derivatives have been investigated intensively over the years for pharmaceutical and agricultural purposes (Kumar et al., 2013[Kumar, R., Yar, M. S., Chaturvedi, S. & Srivastava, A. (2013). Int. J. PharmTech Res. 5, 1844-1869.]; Zhang et al., 2014[Zhang, H.-Z., Damu, G. L. V., Cai, G.-X. & Zhou, C.-H. (2014). Curr. Org. Chem. 18, 359-406.]). It is very likely that triazole–metal inter­actions play a major role in the biological actions of triazole-containing drugs and agricultural chemicals. 1,2,4-Triazole and its derivatives have gained great attention as ligands to transition metals (Haasnoot, 2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]). To understand the inter­actions of triazoles with metals, further research on the structures of triazole–metal compounds is of great necessity. Thus, our attention will be focused on the diversity of the coordination geometries of 1,2,4-triazole complexes with transition metal ions. Herein, we report the reaction of silver nitrate and cafenstrole to produce the title compound, which is a 1D silver(I) coordination polymer.

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. It contains one L ligand and one silver nitrate ion. Reaction between silver nitrate and L afforded a 1D coordination polymer, in which the AgI atom has a distorted trigonal–pyramidal environment with one nitro­gen atom (N1) [Ag1—N1 = 2.250 (3) Å] and three oxygen atoms (O4, O5, O5i) [Ag1—O4 = 2.708 (3), Ag1—O5 = 2.450 (3) and Ag1—O5i = 2.396 (3) Å; symmetry code: (i) −x + 1, −y + 1, z − [{1\over 2}]], as shown in Fig. 2[link].

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2]
Figure 2
The coordination environment of the AgI atom in the title compound. [Symmetry codes: (i) −x + 1, −y + 1, z − [{1\over 2}]; (ii) −x + 1, −y + 1, z + [{1\over 2}].]

Atom Ag1 lies almost in the plane constituted by atoms O5, N1, and O5i [deviation = 0.0436 (12) Å]. The Ag1, O5, N1, and O5i atoms form a slightly distorted triangular basal plane with bond angles O5—Ag1—O5i = 106.52 (5), O5—Ag1—N1 = 118.75 (11) and O5i—Ag1—N1 = 134.63 (11)°. The apex atom, O4, deviates considerably from the normal to the basal plane, as indicated by the O4—Ag1—N1 bond angle of 149.66 (10)°. Other bond angles are 48.93 (10) and 67.18 (10)° for O4—Ag1—O5 and O4—Ag1—O5i, respectively. One oxygen atom of the nitrate ion (O6) is not bound to the AgI ion, whereas the other two oxygen atoms of the nitrate ion (O4 and O5) are bound to the AgI ion. One of the bound O atoms (O5) links neighbouring AgI ion ions, thus forming a 1D polymer along [001]. The triazole plane is rotated about the S1–C10 axis in the opposite direction in comparison with free cafenstrol (Kang et al., 2015[Kang, G., Kim, J., Park, H. & Kim, T. H. (2015). Acta Cryst. E71, o614.]). Thus, the diethyl amino group is located above the phenyl ring in the title compound, while that of free cafenstrol is placed outside the phenyl ring.

3. Supra­molecular features

The O5 atom is bound to both Ag1 and neighboring Ag1ii [symmetry code: (ii) −x + 1, −y + 1, z + [{1\over 2}]], where the neighbouring asymmetric unit is related to the asymmetric unit by 21 symmetry, resulting in a 1D chain along [001] (Fig. 3[link]). C—H⋯O hydrogen bonds between the 1D chains (yellow dashed lines) lead to the formation of layers parallel to (100). The layers are packed in an ABAB pattern along [010] (Fig. 4[link]). Weak inter­molecular C—H⋯π inter­actions (black dashed lines) between the A and B layers generate a three-dimensional network structure (Fig. 4[link]). Thus the structure of the AgI coordination polymer is stabilized by C13—H13B⋯O2 and C16—H16B⋯O2 hydrogen bonds and weak inter­molecular C8—H8CCg1 (Cg1 is the centroid of the C1–C6 ring) inter­actions (Fig. 4[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8CCg1i 0.98 2.66 3.614 (5) 166
C13—H13B⋯O2ii 0.99 2.58 3.395 (4) 140
C16—H16B⋯O2iii 0.98 2.52 3.412 (6) 152
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) x+1, y, z; (iii) x+1, y, z+1.
[Figure 3]
Figure 3
The packing of the title compound showing chains along [001].
[Figure 4]
Figure 4
The packing diagram showing the three-dimensional network structure formed by C—H⋯O hydrogen bonds and C—H⋯π inter­actions (shown as yellow and black dashed lines, respectively).

4. Database survey

The crystal structure of cafenstrole has been reported (Kang et al., 2015[Kang, G., Kim, J., Park, H. & Kim, T. H. (2015). Acta Cryst. E71, o614.]). The crystal structure of a 1,2,3-thia­diazole compound containing a 1,2,4-triazole moiety, C15H14FN5O2S2, has been determined by Min et al. (2014[Min, L.-J., Tan, C.-X., Weng, J.-Q. & Liu, X.-H. (2014). Phosphorus Sulfur Silicon, 189, 379-386.]) whereas the structure of a similar triazole herbicide, methyl 2-(1-di­ethyl­carb­amoyl-1,2,4-triazole-3-ylsulfon­yl)acetate, has been reported by Ohkata et al. (2002[Ohkata, K., Yano, T., Kojima, S., Hiraga, Y., Yoshii, T. & Hori, M. (2002). Bull. Chem. Soc. Jpn, 75, 567-574.]). The structure of 5-{4-cyclo­propyl-5-[(3-fluoro­benz­yl)sulfin­yl]-4H-1,2,4-triazol-3-yl}-4-methyl-1,2,3-thia­diazole (C15H14FN5OS2), was determined by Min et al. (2015[Min, L.-J., Yang, M.-Y., Mu, J.-X., Sun, Z.-H., Tan, C.-X., Weng, J.-Q., Liu, X.-H. & Zhang, Y.-G. (2015). Phosphorus Sulfur Silicon, 190, 1884-1892.]) and the crystal structure of 1-(mesityl-2-sulfon­yl)-3-nitro-1,2,4-triazole has been determined by Kuroda et al. (1982[Kuroda, R., Sanderson, M. R., Neidle, S. & Reese, C. B. (1982). J. Chem. Soc. Perkin Trans. 2. pp. 617-620.]). The complex, [Pr(C7H5O3)2(NO3)(C12H8N2)]·2C12H8N2, has a polymeric chain structure, where nitrate ions show similar coordination bonds compared to those in the title compound, but with AgI ions replaced by with PrIII atoms (Wang et al., 2012[Wang, P., Xu, D. & Wang, X. (2012). Acta Cryst. E68, m1148.]).

5. Synthesis and crystallization

The title compound was prepared from a mixed solution of the cafenstrole ligand (0.05 g, 0.14 mmol) in acetone (5 mL) and Ag(NO3) (0.06 g, 0.35 mmol) in methanol (5 mL). The ligand was purchased from the Dr Ehrenstorfer GmbH Company. Single crystals suitable for X-ray crystallography were obtained by slow evaporation of the solvent at room temperature after one week.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl group, d(C—H) = 0.99 Å, Uiso(H) = 1.2Ueq(C) for Csp3—H and d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for aromatic C—H.

Table 2
Experimental details

Crystal data
Chemical formula [Ag(NO3)(C16H22N4O3S)]
Mr 520.31
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 173
a, b, c (Å) 9.0947 (2), 31.0133 (6), 7.1934 (1)
V3) 2028.95 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.14
Crystal size (mm) 0.48 × 0.10 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.579, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17454, 4760, 4259
Rint 0.042
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.053, 0.98
No. of reflections 4760
No. of parameters 267
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.39
Absolute structure Flack x determined using 1577 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.003 (14)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

catena-Poly[[(N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide-κN1)silver(I)]-µ-nitrato-κ3O,O':O] top
Crystal data top
[Ag(C16H22N4O3S)(NO3)]Dx = 1.703 Mg m3
Mr = 520.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 7087 reflections
a = 9.0947 (2) Åθ = 2.3–27.1°
b = 31.0133 (6) ŵ = 1.14 mm1
c = 7.1934 (1) ÅT = 173 K
V = 2028.95 (7) Å3Plate, colourless
Z = 40.48 × 0.10 × 0.02 mm
F(000) = 1056
Data collection top
Bruker APEXII CCD
diffractometer
4259 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 2.3°
Tmin = 0.579, Tmax = 0.746h = 1211
17454 measured reflectionsk = 3941
4760 independent reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0179P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.002
S = 0.98Δρmax = 0.65 e Å3
4760 reflectionsΔρmin = 0.39 e Å3
267 parametersAbsolute structure: Flack x determined using 1577 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.003 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.62392 (3)0.52477 (2)0.76161 (6)0.03314 (9)
S10.73402 (9)0.64406 (3)0.83512 (13)0.01964 (19)
O10.6829 (3)0.66757 (8)0.9943 (4)0.0300 (7)
O20.6265 (2)0.62494 (9)0.7166 (4)0.0309 (8)
O31.1685 (2)0.53847 (7)1.2570 (5)0.0290 (5)
O40.3336 (4)0.51667 (11)0.6854 (5)0.0486 (9)
O50.4227 (3)0.49348 (10)0.9434 (4)0.0382 (7)
O60.1895 (3)0.48605 (10)0.8835 (5)0.0424 (8)
N10.8072 (3)0.55871 (9)0.9126 (4)0.0206 (7)
N20.9749 (3)0.60970 (9)0.9892 (4)0.0187 (6)
N31.0242 (3)0.56942 (9)1.0338 (4)0.0183 (6)
N41.2736 (3)0.58767 (9)1.0626 (4)0.0206 (7)
N50.3120 (4)0.49853 (10)0.8351 (5)0.0266 (8)
C10.8614 (3)0.67468 (11)0.7068 (5)0.0205 (9)
C20.9148 (3)0.71461 (10)0.7730 (7)0.0218 (7)
C31.0110 (4)0.73701 (13)0.6569 (6)0.0286 (9)
H31.04650.76420.69730.034*
C41.0571 (4)0.72185 (14)0.4873 (6)0.0300 (9)
C51.0073 (4)0.68155 (14)0.4304 (6)0.0303 (10)
H51.04120.67030.31520.036*
C60.9102 (4)0.65722 (12)0.5352 (5)0.0232 (8)
C70.8791 (4)0.73432 (14)0.9579 (6)0.0353 (10)
H7A0.94500.75870.98110.053*
H7B0.89190.71271.05590.053*
H7C0.77690.74440.95760.053*
C81.1603 (5)0.74778 (18)0.3669 (7)0.0526 (14)
H8A1.10320.76770.28960.079*
H8B1.21660.72830.28680.079*
H8C1.22790.76420.44590.079*
C90.8679 (5)0.61345 (14)0.4610 (6)0.0391 (11)
H9A0.76970.61500.40540.059*
H9B0.86730.59250.56300.059*
H9C0.93910.60440.36650.059*
C100.8450 (3)0.60100 (11)0.9190 (5)0.0177 (8)
C110.9224 (4)0.53946 (12)0.9906 (5)0.0216 (8)
H110.93150.50941.01240.026*
C121.1648 (4)0.56330 (12)1.1294 (5)0.0193 (8)
C131.2803 (4)0.60769 (12)0.8765 (6)0.0254 (9)
H13A1.19390.59830.80310.030*
H13B1.36970.59740.81160.030*
C141.2828 (4)0.65612 (13)0.8847 (7)0.0365 (11)
H14A1.19100.66660.94000.055*
H14B1.29290.66780.75870.055*
H14C1.36610.66560.96080.055*
C151.4092 (4)0.58914 (14)1.1768 (6)0.0319 (10)
H15A1.48900.60261.10350.038*
H15B1.43980.55931.20730.038*
C161.3886 (5)0.6139 (2)1.3531 (8)0.0642 (17)
H16A1.35710.64331.32380.096*
H16B1.48160.61481.42170.096*
H16C1.31340.59981.42940.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01833 (12)0.03174 (15)0.04934 (19)0.00517 (11)0.00399 (18)0.01117 (19)
S10.0136 (4)0.0221 (4)0.0232 (5)0.0013 (3)0.0017 (4)0.0027 (4)
O10.0276 (14)0.0292 (15)0.0333 (18)0.0050 (11)0.0131 (13)0.0002 (13)
O20.0178 (11)0.0376 (15)0.037 (2)0.0045 (10)0.0073 (12)0.0054 (13)
O30.0248 (12)0.0308 (13)0.0315 (14)0.0015 (9)0.0036 (18)0.0114 (18)
O40.064 (2)0.044 (2)0.037 (2)0.0106 (17)0.0084 (16)0.0004 (17)
O50.0227 (13)0.057 (2)0.0346 (19)0.0013 (14)0.0001 (14)0.0022 (16)
O60.0200 (14)0.053 (2)0.054 (2)0.0094 (13)0.0092 (14)0.0063 (16)
N10.0154 (14)0.0192 (16)0.0272 (19)0.0024 (12)0.0000 (13)0.0001 (14)
N20.0189 (14)0.0181 (15)0.0192 (17)0.0011 (11)0.0022 (13)0.0017 (13)
N30.0164 (14)0.0183 (16)0.0203 (17)0.0009 (11)0.0002 (13)0.0040 (14)
N40.0152 (14)0.0212 (16)0.0253 (19)0.0034 (12)0.0062 (13)0.0060 (14)
N50.0290 (18)0.0226 (18)0.028 (2)0.0009 (14)0.0059 (16)0.0059 (16)
C10.0175 (16)0.0221 (18)0.022 (2)0.0025 (13)0.0002 (15)0.0049 (14)
C20.0220 (15)0.0231 (16)0.0204 (19)0.0025 (12)0.006 (2)0.003 (2)
C30.029 (2)0.028 (2)0.029 (2)0.0089 (17)0.0079 (18)0.0088 (19)
C40.0210 (19)0.045 (3)0.024 (2)0.0072 (17)0.0035 (18)0.013 (2)
C50.026 (2)0.045 (3)0.019 (2)0.0022 (18)0.0054 (18)0.0061 (19)
C60.0224 (18)0.026 (2)0.021 (2)0.0042 (15)0.0016 (16)0.0023 (17)
C70.044 (2)0.025 (2)0.037 (3)0.0028 (18)0.001 (2)0.0045 (19)
C80.043 (3)0.078 (4)0.037 (3)0.026 (3)0.002 (2)0.019 (3)
C90.059 (3)0.031 (2)0.027 (3)0.004 (2)0.008 (2)0.008 (2)
C100.0126 (16)0.0185 (18)0.022 (2)0.0003 (13)0.0030 (15)0.0006 (16)
C110.0222 (18)0.0211 (18)0.021 (2)0.0047 (14)0.0032 (17)0.0029 (16)
C120.0166 (17)0.0185 (19)0.023 (2)0.0010 (13)0.0000 (16)0.0005 (16)
C130.0181 (17)0.031 (2)0.027 (2)0.0019 (15)0.0039 (16)0.0053 (17)
C140.030 (2)0.027 (2)0.052 (3)0.0036 (17)0.000 (2)0.016 (2)
C150.0199 (19)0.033 (2)0.042 (3)0.0039 (17)0.0091 (18)0.007 (2)
C160.045 (3)0.095 (5)0.053 (3)0.001 (3)0.026 (3)0.025 (3)
Geometric parameters (Å, º) top
Ag1—N12.250 (3)C4—C51.391 (6)
Ag1—O5i2.396 (3)C4—C81.509 (5)
Ag1—O52.450 (3)C5—C61.385 (5)
S1—O21.426 (3)C5—H50.9500
S1—O11.435 (3)C6—C91.509 (5)
S1—C11.760 (4)C7—H7A0.9800
S1—C101.779 (3)C7—H7B0.9800
O3—C121.198 (5)C7—H7C0.9800
O4—N51.231 (4)C8—H8A0.9800
O5—N51.282 (4)C8—H8B0.9800
O5—Ag1ii2.396 (3)C8—H8C0.9800
O6—N51.230 (4)C9—H9A0.9800
N1—C111.330 (5)C9—H9B0.9800
N1—C101.357 (4)C9—H9C0.9800
N2—C101.313 (4)C11—H110.9500
N2—N31.365 (4)C13—C141.503 (5)
N3—C111.348 (4)C13—H13A0.9900
N3—C121.465 (4)C13—H13B0.9900
N4—C121.334 (4)C14—H14A0.9800
N4—C131.477 (5)C14—H14B0.9800
N4—C151.483 (5)C14—H14C0.9800
C1—C21.413 (5)C15—C161.494 (6)
C1—C61.419 (5)C15—H15A0.9900
C2—C31.395 (5)C15—H15B0.9900
C2—C71.499 (7)C16—H16A0.9800
C3—C41.373 (6)C16—H16B0.9800
C3—H30.9500C16—H16C0.9800
N1—Ag1—O5i134.63 (11)H7A—C7—H7C109.5
N1—Ag1—O5118.75 (11)H7B—C7—H7C109.5
O5i—Ag1—O5106.52 (5)C4—C8—H8A109.5
O2—S1—O1117.78 (16)C4—C8—H8B109.5
O2—S1—C1111.23 (17)H8A—C8—H8B109.5
O1—S1—C1110.96 (16)C4—C8—H8C109.5
O2—S1—C10106.22 (17)H8A—C8—H8C109.5
O1—S1—C10107.14 (17)H8B—C8—H8C109.5
C1—S1—C10102.10 (16)C6—C9—H9A109.5
N5—O5—Ag1ii118.1 (2)C6—C9—H9B109.5
N5—O5—Ag1102.3 (2)H9A—C9—H9B109.5
Ag1ii—O5—Ag1137.37 (12)C6—C9—H9C109.5
C11—N1—C10102.7 (3)H9A—C9—H9C109.5
C11—N1—Ag1125.2 (2)H9B—C9—H9C109.5
C10—N1—Ag1131.0 (2)N2—C10—N1116.1 (3)
C10—N2—N3101.4 (3)N2—C10—S1119.1 (3)
C11—N3—N2110.5 (3)N1—C10—S1124.8 (3)
C11—N3—C12128.2 (3)N1—C11—N3109.2 (3)
N2—N3—C12121.0 (3)N1—C11—H11125.4
C12—N4—C13126.5 (3)N3—C11—H11125.4
C12—N4—C15115.7 (3)O3—C12—N4128.3 (3)
C13—N4—C15117.1 (3)O3—C12—N3117.9 (3)
O6—N5—O4122.4 (4)N4—C12—N3113.9 (3)
O6—N5—O5120.0 (4)N4—C13—C14112.6 (3)
O4—N5—O5117.6 (4)N4—C13—H13A109.1
C2—C1—C6121.3 (3)C14—C13—H13A109.1
C2—C1—S1121.5 (3)N4—C13—H13B109.1
C6—C1—S1117.2 (3)C14—C13—H13B109.1
C3—C2—C1116.8 (4)H13A—C13—H13B107.8
C3—C2—C7117.6 (3)C13—C14—H14A109.5
C1—C2—C7125.6 (3)C13—C14—H14B109.5
C4—C3—C2123.6 (4)H14A—C14—H14B109.5
C4—C3—H3118.2C13—C14—H14C109.5
C2—C3—H3118.2H14A—C14—H14C109.5
C3—C4—C5118.0 (4)H14B—C14—H14C109.5
C3—C4—C8121.2 (4)N4—C15—C16112.4 (4)
C5—C4—C8120.8 (4)N4—C15—H15A109.1
C6—C5—C4122.5 (4)C16—C15—H15A109.1
C6—C5—H5118.8N4—C15—H15B109.1
C4—C5—H5118.8C16—C15—H15B109.1
C5—C6—C1117.7 (4)H15A—C15—H15B107.9
C5—C6—C9117.4 (4)C15—C16—H16A109.5
C1—C6—C9124.8 (3)C15—C16—H16B109.5
C2—C7—H7A109.5H16A—C16—H16B109.5
C2—C7—H7B109.5C15—C16—H16C109.5
H7A—C7—H7B109.5H16A—C16—H16C109.5
C2—C7—H7C109.5H16B—C16—H16C109.5
C10—N2—N3—C110.7 (4)N3—N2—C10—N10.7 (4)
C10—N2—N3—C12176.0 (3)N3—N2—C10—S1179.2 (2)
Ag1ii—O5—N5—O614.1 (4)C11—N1—C10—N21.8 (4)
Ag1—O5—N5—O6179.9 (3)Ag1—N1—C10—N2166.7 (3)
Ag1ii—O5—N5—O4164.7 (3)C11—N1—C10—S1179.8 (3)
Ag1—O5—N5—O41.3 (4)Ag1—N1—C10—S111.7 (5)
O2—S1—C1—C2140.4 (3)O2—S1—C10—N2161.7 (3)
O1—S1—C1—C27.2 (3)O1—S1—C10—N271.6 (3)
C10—S1—C1—C2106.7 (3)C1—S1—C10—N245.1 (3)
O2—S1—C1—C640.6 (3)O2—S1—C10—N116.7 (4)
O1—S1—C1—C6173.8 (3)O1—S1—C10—N1110.0 (3)
C10—S1—C1—C672.3 (3)C1—S1—C10—N1133.3 (3)
C6—C1—C2—C33.5 (5)C10—N1—C11—N32.1 (4)
S1—C1—C2—C3177.6 (3)Ag1—N1—C11—N3167.3 (2)
C6—C1—C2—C7175.3 (3)N2—N3—C11—N11.9 (4)
S1—C1—C2—C73.6 (5)C12—N3—C11—N1176.8 (3)
C1—C2—C3—C41.4 (5)C13—N4—C12—O3160.4 (4)
C7—C2—C3—C4177.5 (4)C15—N4—C12—O310.0 (6)
C2—C3—C4—C51.3 (6)C13—N4—C12—N321.2 (5)
C2—C3—C4—C8179.4 (4)C15—N4—C12—N3168.4 (3)
C3—C4—C5—C62.1 (6)C11—N3—C12—O339.4 (5)
C8—C4—C5—C6178.6 (4)N2—N3—C12—O3135.0 (4)
C4—C5—C6—C10.1 (6)C11—N3—C12—N4142.0 (4)
C4—C5—C6—C9178.3 (4)N2—N3—C12—N443.6 (4)
C2—C1—C6—C52.8 (5)C12—N4—C13—C14116.8 (4)
S1—C1—C6—C5178.2 (3)C15—N4—C13—C1473.0 (4)
C2—C1—C6—C9175.2 (4)C12—N4—C15—C1670.8 (5)
S1—C1—C6—C93.8 (5)C13—N4—C15—C16117.9 (4)
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8C···Cg1iii0.982.663.614 (5)166
C13—H13B···O2iv0.992.583.395 (4)140
C16—H16B···O2v0.982.523.412 (6)152
Symmetry codes: (iii) x+1/2, y+3/2, z; (iv) x+1, y, z; (v) x+1, y, z+1.
 

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea, Grant funded by the Ministry of Education, Science and Technology (2014R1A1A4A01008346 and 2014R1A1A4A01009105).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationKang, G., Kim, J., Park, H. & Kim, T. H. (2015). Acta Cryst. E71, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R., Yar, M. S., Chaturvedi, S. & Srivastava, A. (2013). Int. J. PharmTech Res. 5, 1844–1869.  CAS Google Scholar
First citationKuroda, R., Sanderson, M. R., Neidle, S. & Reese, C. B. (1982). J. Chem. Soc. Perkin Trans. 2. pp. 617–620.  CSD CrossRef Google Scholar
First citationMin, L.-J., Tan, C.-X., Weng, J.-Q. & Liu, X.-H. (2014). Phosphorus Sulfur Silicon, 189, 379–386.  CSD CrossRef CAS Google Scholar
First citationMin, L.-J., Yang, M.-Y., Mu, J.-X., Sun, Z.-H., Tan, C.-X., Weng, J.-Q., Liu, X.-H. & Zhang, Y.-G. (2015). Phosphorus Sulfur Silicon, 190, 1884–1892.  CSD CrossRef CAS Google Scholar
First citationOhkata, K., Yano, T., Kojima, S., Hiraga, Y., Yoshii, T. & Hori, M. (2002). Bull. Chem. Soc. Jpn, 75, 567–574.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakahashi, H., Ohki, A., Kanzaki, M., Tanaka, A., Sato, Y., Matthes, B., Böger, P. & Wakabayashi, K. (2001). J. Biosci. 56, 781–786.  CAS Google Scholar
First citationWang, P., Xu, D. & Wang, X. (2012). Acta Cryst. E68, m1148.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H.-Z., Damu, G. L. V., Cai, G.-X. & Zhou, C.-H. (2014). Curr. Org. Chem. 18, 359–406.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds