

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 19 September 2016 Accepted 11 October 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; trigonal-bipyramidal coordination; Cu complex; phenanthroline ligand.

CCDC reference: 885877

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Crystal structure of (nitrato- κ O)bis(1,10'-phenanthroline- $\kappa^2 N, N'$)copper(II) nitrate gallic acid monosolvate monohydrate

Fwu Ming Shen^a and Shie Fu Lush^b*

^aDepartment of Biotechnology, Yuanpei University, No.306, Yuanpei St., HsinChu, 30015, Taiwan, and ^bDepartment of Medical Laboratory Science and Biotechnology, Yuanpei University, HsinChu, 30015, Taiwan. *Correspondence e-mail: lush@mail.ypu.edu.tw

The title compound, $[Cu(NO_3)(C_{12}H_8N_2)_2]NO_3 \cdot C_7H_6O_5 \cdot H_2O$, consists of a mononuclear complex cation with the central Cu^{II} atom in a distorted trigonalbipyramidal coordination sphere. Two N atoms of two 1,10-phenanthroline ligands occupy the axial sites, and the remaining N atoms of the two ligands, as well as one nitrate O atom the equatorial positions. One molecule each of gallic acid and water are present in the crystal as solvent molecules that do not coordinate to the Cu^{II} cation, just as the nitrate counter-anion. In the crystal, intermolecular $O-H \cdot \cdot \cdot O$ hydrogen bonds, as well as $C-H \cdot \cdot \cdot O$ interactions and $\pi - \pi$ ring stacking between benzene and pyridine rings [centroid-to-centroid distances = 3.471 (2), 3.559 (2) and 3.790 (2) Å], link the molecules into a three-dimensional network structure.

1. Chemical context

Numerous metal complexes with polypyridine-containing ligands have been reported. One such ligand is 1,10'-phenanthroline (phen). For transition metal complexes of phen, excellent photoelectrical capabilities have been reported (Dumur *et al.*, 2009). Moreover, [Cu(phen)] complexes are applied in breaking the DNA chain (Selvakumar *et al.*, 2006).

The nitrate ligand shows a great variation in its coordination behaviour. A number of coordination modes have been observed upon interaction with a metal ion (Wyllie *et al.*, 2007). For compounds with [Cu(phen)NO₃] moieties, nonbridging coordination modes of nitrate ligands range from monodentate (κ^1) (Seidel *et al.*, 2011), asymmetric bidentate (κ^2) (Chen *et al.*, 2005) to symmetric bidentate (κ^2) (Ovens *et al.*, 2010).

In a project to combine phen and nitrate ligands with gallic acid as an additional co-ligand for coordination to a Cu^{II} atom, we obtained the title compound, $[Cu(NO_3)(C_{12}H_8N_2)_2]NO_3$.·· $C_7H_6O_5$ ·H₂O. However, as revealed by single crystal X-ray

diffraction analysis, gallic acid does not coordinate to the metal but is incorporated as a solvent molecule.

2. Structural commentary

The coordination sphere around copper in the complex cation, $[Cu(NO_3)(C_{12}H_8N_2)_2]^+$, comprises one oxygen atom (O1) of one nitrate anion and four nitrogen atoms (N1, N2, N3, N4) of two N,N'-chelating phen ligands (Fig. 1, Table 1). The conformation of the resulting N4O coordination set is distorted trigonal-bipyramidal, as revealed by the structural parameter τ_5 (Addison *et al.*, 1984), which is defined as $\tau =$ $(\beta - \alpha)$ /60 where β and α are the two greatest angles of the coordinated atom. For a perfect square-pyramidal coordination, τ is 0, and for perfect trigonal–bipyramidal coordination, τ becomes 1.0. In the title compound, the largest angles are $\beta =$ 178.59 (10)° for N1–Cu–N3, and $\alpha = 132.61$ (9) ° for O1– Cu-N2. Thus, τ is 0.76, indicating a considerable distortion. Each phen ligand provides an equatorial (N2, N4) and an axial (N1, N3) nitrogen donor atom, forming five-membered chelate rings. The fifth coordination site is occupied by an equatorial oxygen atom (O1) from one of the nitrate anions.

Figure 1

The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Table 1	
Selected geometric parameters (Å,	°).

e	1 ()	,	
Cu-O1	2.114 (2)	Cu-N2	2.082 (3)
Cu-O2	2.782 (2)	Cu-N3	1.980 (3)
Cu-N1	1.974 (3)	Cu-N4	2.086 (2)
O1-Cu-O2	50.52 (8)	N2-Cu-N4	121.57 (10)
O1-Cu-N1	86.42 (10)	N3-Cu-N4	81.84 (10)
O1-Cu-N2	132.61 (9)	Cu-O1-N5	109.30 (19)
O1-Cu-N3	93.74 (10)	Cu-O2-N5	78.26 (15)
O1-Cu-N4	105.34 (9)	Cu-N1-C1	127.4 (2)
O2-Cu-N1	93.06 (8)	Cu-N1-C12	114.0 (2)
O2-Cu-N2	84.29 (8)	Cu-N2-C11	110.5 (2)
O2-Cu-N3	88.12 (8)	Cu-N2-C10	132.0 (2)
O2-Cu-N4	153.32 (9)	Cu-N3-C24	113.6 (2)
N1-Cu-N2	82.09 (11)	Cu-N3-C13	127.7 (2)
N1-Cu-N3	178.59 (10)	Cu-N4-C22	131.2 (2)
N1-Cu-N4	96.77 (10)	Cu-N4-C23	110.3 (2)
N2-Cu-N3	98.81 (11)		

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg9 is the centroid of the C16-C19/C23/C24 ring.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O4-H4A\cdots O12^{i}$	0.82	1.92	2.730 (3)	167
O5−H5B···O6	0.82	2.13	2.624 (3)	119
$O5-H5B\cdots O3^{ii}$	0.82	2.16	2.859 (3)	143
O6−H6B···O12	0.82	1.94	2.682 (3)	150
$O7-H7A\cdots O8^{iii}$	0.82	1.84	2.648 (3)	170
$O12-H12A\cdots O2^{iv}$	0.82	2.55	2.960 (3)	112
O12−H12B···O10	0.82	2.13	2.708 (4)	128
$C1-H1A\cdots O9$	0.95	2.56	3.338 (4)	139
$C3-H3A\cdots O10^{i}$	0.95	2.48	3.395 (4)	161
$C8-H8A\cdots O5^{v}$	0.95	2.56	3.482 (4)	165
$C9-H9A\cdots O9^{vi}$	0.95	2.52	3.166 (4)	125
C13-H13A···O2	0.95	2.59	3.254 (4)	128
$C15-H15A\cdots O10^{vii}$	0.95	2.56	3.457 (4)	158
$C17 - H17A \cdots O9^{vii}$	0.95	2.49	3.340 (5)	150
C18-H18A···O3 ^{viii}	0.95	2.55	3.363 (4)	144
$C20-H20A\cdots O3^{viii}$	0.95	2.44	3.282 (4)	148
$C20-H20A\cdots O5^{ix}$	0.95	2.55	3.346 (4)	141
$C25-H25A\cdots Cg9^{iii}$	0.95	2.95	3.680 (3)	135

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) -x, -y + 1, -z; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x + \frac{1}{2}, y - \frac{1}{2}, -z - \frac{1}{2}$; (vi) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (vii) -x, -y + 1, -z + 1; (viii) x - 1, y, z; (ix) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

The axial distances are shorter than the equatorial distances; relevant bond lengths and angles are collated in Table 1. The dihedral angle between two phen planes around the metal cation is 64.45 (7)°.

There is an additional interaction of the copper cation with atom O2 of the nitrate ligand. This interaction is rather weak [2.782 (2) Å], and the result of a bond-valence-sum calculation (Brown & Altermatt, 1985) reveals a valence unit of 0.047 for O2, which is lower than the limit of 0.06 for a cation–donor contact to be considered as a weak bonding interaction (Liebau, 2000).

3. Supramolecular features

As already noted in Section 1, gallic acid does not coordinate to the metal but is involved in numerous hydrogen-bonding interactions, including one intramolecular hydrogen bond

Figure 2

Parts of the crystal structure of the title compound sustained by $O-H\cdots O$ hydrogen bonds (dotted lines).

between one of the hydroxy groups (O5) and neighbouring O6. In the crystal, intermolecular $O-H\cdots O$ bonds between the other OH functions of gallic acid as well as of the water solvent molecule are present. The latter also is hydrogen-bonded to O2 of the coordinating nitrate group and to O10 of the non-coordinating nitrate counter-anion (Table 2), establishing a three-dimensional network that is consolidated by further $C-H\cdots O$ hydrogen-bonding interactions (Table 2,

Figure 3

Intermolecular $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (dotted lines), as well as $C-H\cdots \pi$ interactions in the crystal structure of the title compound.

Crystal data	
Chemical formula	$[Cu(NO_3)(C_{12}H_8N_4)_2]NO_3$
	$C_7H_6O_5 \cdot H_2O$
$M_{ m r}$	736.11
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	110
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.0235 (4), 20.5399 (9), 12.9222 (5)
β (°)	93.250 (3)
$V(A^3)$	2921.2 (2)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.83
Crystal size (mm)	$0.48 \times 0.42 \times 0.17$
Data collection	
Diffractometer	Oxford Diffraction Gemini-S CCD detector
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.513, 1.000
No. of measured, independent and	11305, 5136, 4223
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.060
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.137, 1.10
No. of reflections	5136
No. of parameters	451
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.03, -0.70

Table 3

Experimental details.

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) PLATON (Spek, 2009).

Figs. 2 and 3). In addition to these classical and non-classical hydrogen-bonding interactions, $\pi - \pi$ ring stacking between benzene and pyridine rings with centroid-to-centroid distances in the range 3.471 (2)–3.992 (2)Å is observed, the shortest distance being between Cg8(C4-C7/C11-C12) and its symmetry-related counterpart [symmetry code: 1 - x, 1 - y, -z]. Finally, $C-H \cdots \pi$ interactions (Table 2, Fig. 3) are also present.

4. Synthesis and crystallization

The reagents Cu(NO₃)₂·6H₂O, gallic acid and phen were used as commercially received. A warm solution of phen (0.180 g, 1 mmol) and gallic acid (0.170 g, 1mmol) in a ethanol/water mixture (20 ml) was added to a solution of Cu(NO₃)₂·6H₂O (0.296 g, 1 mmol) in the same solvent (20 ml). The mixture was refluxed for 1 h and the green solution filtered. Upon slow evaporation of the solvent at room temperature, a green crystalline solid appeared several weeks later and was separated by filtration. Elemental analysis: calculated (%) $C_{31}H_{24}CuN_6O_{12}$: C 50.58, H 3.29, N 11.42; found C 50.62, H 3.39, N 11.50.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were positioned geometrically with C-H = 0.95 Å and were refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ All O-bound H atoms were located in a difference Fourier map and were refined with distances constraints of O-H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.

Chen, Z. M., Li, W., Yang, Y. Q., Kuang, D. Z., Feng, Y. I., Wang, J. Q. & Zhang, F. X. (2005). J. Nat. Sci. Hunan Normal Univ. 28, 54–58.

- Dumur, F., Mayer, C. R., Hoang-Thi, K., Ledoux-Rak, I., Miomandre, F., Clavier, G., Dumas, E., Méallet-Renault, R., Frigoli, M., Zyss, J. & Sécheresse, F. (2009). *Inorg. Chem.* 48, 8120–8133.
- Liebau, F. (2000). Z. Kristallogr. 215, 381-383.
- Ovens, J. S., Geisheimer, A. R., Bokov, A. A., Ye, Z. G. & Leznoff, D. B. (2010). *Inorg. Chem.* **49**, 9609–9616.
- Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Seidel, R. W., Goddard, R., Hoch, C. & Oppel, I. M. (2011). Z. Anorg. Allg. Chem. 637, 1545–1554.
- Selvakumar, B., Rajendiran, V., Maheswari, P. U., Stoeckli-Evans, H. & Palaniandavar, M. (2006). *J. Inorg. Biochem.* **100**, 316–330.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wyllie, G. R. A., Munro, O. Q., Schulz, C. E. & Scheidt, W. R. (2007). Polyhedron, 26, 4664–4672.

supporting information

Acta Cryst. (2016). E72, 1577-1580 [https://doi.org/10.1107/S2056989016016066]

Crystal structure of (nitrato- κO)bis(1,10'-phenanthroline- $\kappa^2 N, N'$)copper(II) nitrate gallic acid monosolvate monohydrate

Fwu Ming Shen and Shie Fu Lush

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009).

(Nitrato- κO)bis(1,10'-phenanthroline- $\kappa^2 N, N'$)copper(II) nitrate gallic acid monosolvate monohydrate

Crystal data

$[Cu(NO_3)(C_{12}H_8N_4)_2]NO_3 \cdot C_7H_6O_5 \cdot H_2O$ $M_r = 736.11$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.0235 (4) Å b = 20.5399 (9) Å c = 12.9222 (5) Å	$F(000) =$ $D_x = 1.67$ Mo Ka ra Cell paran $\theta = 3.0-2$ $\mu = 0.83$ n T = 110 k
$\beta = 93.250 (3)^{\circ}$ $V = 2921.2 (2) \text{ Å}^{3}$ Z = 4	Parallelep 0.48×0.4
Data collection	
Oxford Diffraction Gemini-S CCD detector diffractometer ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009) $T_{min} = 0.513, T_{max} = 1.000$ 11305 measured reflections	5136 inde 4223 refu $R_{int} = 0.06$ $\theta_{max} = 25$. $h = -12 - k = -24 - l = -10 \rightarrow 0$
Refinement	
D ofinament on E^2	Sacardan

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.137$ S = 1.105136 reflections 451 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1508 $D_x = 1.674 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3946 reflections $\theta = 3.0-29.2^{\circ}$ $\mu = 0.83 \text{ mm}^{-1}$ T = 110 KParallelepiped, green $0.48 \times 0.42 \times 0.17 \text{ mm}$

5136 independent reflections 4223 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -12 \rightarrow 13$ $k = -24 \rightarrow 22$ $l = -10 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.070P)^2 + 0.842P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.03$ e Å⁻³ $\Delta\rho_{min} = -0.70$ e Å⁻³

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Ζ v 0.0175(1) Cu 0.24268(3)0.49115 (2) 0.26191 (3) **O**1 0.36408 (19) 0.53000 (12) 0.37852 (18) 0.0248(8)O2 0.4785(2)0.45309(12) 0.32175 (19) 0.0294(8)O3 0.55944 (19) 0.40721 (19) 0.0259 (8) 0.53508 (12) N1 0.2982(2)0.56158 (13) 0.1721(2)0.0178 (8) N2 0.2690(2)0.43530(13) 0.1306(2)0.0181 (8) N3 0.1835 (2) 0.42183 (13) 0.3528(2)0.0179 (8) N4 0.0738(2)0.53148 (13) 0.2892(2)0.0163 (8) N5 0.4694(2)0.50542 (14) 0.3699(2)0.0202(9)C1 0.3180(3)0.62347 (16) 0.1976(3)0.0197(10)C2 0.3603 (3) 0.66881 (17) 0.1278 (3) 0.0242 (11) C3 0.3816(3)0.64980 (16) 0.0288(3)0.0228(11)C4 -0.0009(3)0.3626 (3) 0.58449(17)0.0213(10)C5 0.0227 (10) 0.3880(3)0.55843 (18) -0.1007(3)0.0236 (10) C6 0.3723(3)0.49417 (17) -0.1218(3)C7 0.3316(3)0.44980 (17) -0.0461(3)0.0203 (10) C8 0.3203(3)0.38203 (16) -0.0619(3)0.0223 (10) C9 0.2854(3)0.34349(17)0.0174 (3) 0.0230(11)C10 0.2595(3)0.37185 (16) 0.1129(3)0.0204(10)C11 0.3053(3)0.47373 (16) 0.0517(2)0.0179 (10) C12 0.3211(3)0.54177 (16) 0.0172(9)0.0736(2)C13 0.2448(3)0.37017 (16) 0.3906(3)0.0211 (10) C14 0.1916 (3) 0.32439 (16) 0.4533(3)0.0213 (10) C15 0.0723 (3) 0.33119 (16) 0.4773 (2) 0.0207 (10) C16 0.0063 (3) 0.38625 (16) 0.4397 (2) 0.0189 (10) C17 -0.1173(3)0.39922 (17) 0.4628(3)0.0207(10)C18 -0.1745(3)0.45470 (16) 0.4287 (3) 0.0214 (10) C19 -0.1132(3)0.50163 (16) 0.3676(3)0.0199 (10) -0.1650(3)C20 0.56087 (16) 0.3325(3)0.0214(10)C21 -0.0978(3)0.60333 (16) 0.2783(3)0.0208(10)C22 0.0183(9)0.0222(3)0.58736(16) 0.2575(2)C23 0.0076(3)0.0170(9)0.48935 (16) 0.3434(2)C24 0.3790(2)0.0171 (9) 0.0661(3)0.43054 (16) 04 0.1791 (2) 0.74367 (11) -0.30357(18)0.0274 (8) 05 0.0913(2)0.84202 (11) -0.19158(18)0.0219(7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

O6	-0.0195 (2)	0.82192 (11)	-0.02000 (19)	0.0292 (8)
07	0.07418 (19)	0.53917 (11)	-0.10861 (17)	0.0210 (7)
08	-0.0154 (2)	0.57532 (11)	0.03158 (18)	0.0237 (7)
C25	0.1118 (3)	0.66503 (16)	-0.1797 (2)	0.0185 (10)
C26	0.1243 (3)	0.72826 (16)	-0.2142 (2)	0.0178 (10)
C27	0.0777 (3)	0.77938 (16)	-0.1584 (2)	0.0189 (10)
C28	0.0202 (3)	0.76750 (16)	-0.0667 (3)	0.0196 (10)
C29	0.0087 (3)	0.70440 (16)	-0.0309 (3)	0.0185 (10)
C30	0.0536 (3)	0.65305 (16)	-0.0874 (2)	0.0180 (10)
C31	0.0348 (3)	0.58604 (16)	-0.0499 (2)	0.0174 (9)
09	0.1588 (2)	0.71367 (13)	0.3566 (2)	0.0379 (9)
O10	-0.0026 (2)	0.77280 (13)	0.3243 (2)	0.0345 (8)
011	0.1125 (2)	0.74807 (13)	0.2005 (2)	0.0373 (9)
N6	0.0913 (3)	0.74467 (14)	0.2930 (3)	0.0298 (10)
012	-0.1235 (2)	0.83188 (13)	0.16200 (19)	0.0307 (8)
H1A	0.30290	0.63730	0.26580	0.0240*
H2A	0.37430	0.71260	0.14870	0.0290*
H3A	0.40910	0.68060	-0.01950	0.0270*
H5A	0.41600	0.58660	-0.15260	0.0270*
H6A	0.38890	0.47830	-0.18860	0.0280*
H8A	0.33680	0.36340	-0.12690	0.0270*
H9A	0.27870	0.29770	0.00810	0.0280*
H10A	0.23430	0.34440	0.16690	0.0250*
H13A	0.32710	0.36450	0.37420	0.0250*
H14A	0.23780	0.28840	0.47960	0.0260*
H15A	0.03490	0.29950	0.51850	0.0250*
H17A	-0.15980	0.36870	0.50250	0.0250*
H18A	-0.25600	0.46250	0.44560	0.0260*
H20A	-0.24640	0.57120	0.34660	0.0260*
H21A	-0.13200	0.64350	0.25480	0.0250*
H22A	0.06820	0.61730	0.21960	0.0220*
H4A	0.23120	0.71620	-0.31320	0.0410*
H5B	0.06220	0.86560	-0.14830	0.0330*
H6B	-0.04560	0.81060	0.03540	0.0440*
H7A	0.04780	0.50450	-0.08780	0.0320*
H25A	0.14240	0.62980	-0.21820	0.0220*
H29A	-0.02960	0.69630	0.03180	0.0220*
H12A	-0.14580	0.86860	0.14490	0.0460*
H12B	-0.08230	0.84000	0.21530	0.0460*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cu	0.0172 (2)	0.0165 (3)	0.0193 (2)	-0.0003 (2)	0.0049 (2)	0.0015 (2)
01	0.0177 (12)	0.0316 (14)	0.0253 (13)	0.0014 (10)	0.0025 (10)	0.0024 (11)
02	0.0326 (13)	0.0278 (15)	0.0287 (14)	-0.0032 (11)	0.0110 (11)	-0.0052 (12)
03	0.0158 (11)	0.0293 (14)	0.0327 (14)	-0.0052 (10)	0.0011 (10)	0.0024 (11)
N1	0.0161 (13)	0.0159 (15)	0.0218 (14)	0.0007 (10)	0.0050 (11)	-0.0011 (12)

supporting information

ND	0.0107 (10)	0.0100(15)	0.0220 (1.4)	0.0011 (10)	0.0000 (11)	0.0002 (12)
NZ	0.0127(12)	0.0189 (15)	0.0228 (14)	-0.0011(10)	0.0008 (11)	0.0003 (12)
N3	0.0164 (13)	0.0162 (15)	0.0216 (14)	0.0008 (11)	0.0043 (11)	-0.0025(12)
N4	0.0173 (13)	0.0160 (15)	0.0158 (13)	-0.0020 (11)	0.0028 (11)	-0.0006 (11)
N5	0.0192 (15)	0.0237 (17)	0.0184 (14)	-0.0013 (12)	0.0071 (12)	0.0038 (13)
CI	0.0190 (16)	0.0207 (19)	0.0197 (17)	0.0029 (13)	0.0029 (13)	-0.0019 (14)
C2	0.0231 (17)	0.0176 (19)	0.032 (2)	-0.0002 (14)	0.0013 (15)	-0.0006 (16)
C3	0.0222 (17)	0.0176 (19)	0.0292 (19)	-0.0009 (13)	0.0073 (14)	0.0064 (15)
C4	0.0140 (15)	0.027 (2)	0.0230 (18)	0.0010 (13)	0.0015 (13)	0.0049 (15)
C5	0.0174 (16)	0.031 (2)	0.0202 (17)	0.0012 (14)	0.0056 (13)	0.0045 (16)
C6	0.0181 (17)	0.034 (2)	0.0189 (17)	0.0018 (14)	0.0032 (14)	-0.0011 (15)
C7	0.0132 (15)	0.027 (2)	0.0208 (17)	0.0019 (13)	0.0024 (13)	-0.0027 (15)
C8	0.0193 (16)	0.024 (2)	0.0239 (18)	0.0012 (13)	0.0033 (14)	-0.0054 (15)
C9	0.0197 (16)	0.0184 (19)	0.031 (2)	0.0009 (13)	0.0024 (14)	-0.0064 (15)
C10	0.0179 (16)	0.0173 (18)	0.0263 (19)	0.0005 (13)	0.0030 (14)	0.0004 (14)
C11	0.0124 (15)	0.0226 (19)	0.0188 (16)	0.0002 (13)	0.0023 (12)	0.0010 (14)
C12	0.0106 (14)	0.0193 (18)	0.0220 (17)	0.0026 (12)	0.0027 (13)	0.0004 (14)
C13	0.0200 (16)	0.0176 (18)	0.0256 (18)	-0.0008 (13)	0.0012 (14)	0.0006 (14)
C14	0.0264 (18)	0.0151 (18)	0.0223 (17)	0.0008 (14)	0.0002 (14)	0.0039 (14)
C15	0.0257 (17)	0.0188 (18)	0.0179 (17)	-0.0056 (13)	0.0034 (13)	-0.0005 (14)
C16	0.0200 (16)	0.0200 (18)	0.0168 (16)	-0.0042 (13)	0.0020 (13)	-0.0029 (14)
C17	0.0212 (17)	0.0212 (19)	0.0206 (17)	-0.0029 (13)	0.0087 (14)	-0.0009 (15)
C18	0.0183 (16)	0.025 (2)	0.0217 (18)	-0.0031 (13)	0.0077 (13)	-0.0046 (15)
C19	0.0172 (16)	0.0228 (19)	0.0197 (17)	0.0000 (13)	0.0021 (13)	-0.0081 (14)
C20	0.0146 (15)	0.0243 (19)	0.0257 (18)	0.0052 (13)	0.0035 (13)	-0.0055 (15)
C21	0.0202 (16)	0.0187 (18)	0.0231 (17)	0.0024 (13)	-0.0023 (14)	-0.0014 (15)
C22	0.0214 (16)	0.0158 (17)	0.0176 (16)	-0.0023 (13)	0.0004 (13)	-0.0013 (14)
C23	0.0173 (16)	0.0182 (17)	0.0156 (16)	-0.0026 (13)	0.0019 (13)	-0.0023 (13)
C24	0.0164 (15)	0.0213 (18)	0.0137 (16)	-0.0026 (13)	0.0028 (12)	-0.0029 (13)
04	0.0331 (14)	0.0233 (14)	0.0275 (13)	0.0057 (10)	0.0175 (11)	0.0065 (11)
05	0.0275 (12)	0.0140 (13)	0.0250 (13)	-0.0003 (9)	0.0090 (10)	0.0021 (10)
06	0.0421 (15)	0.0190 (14)	0.0285 (14)	0.0000 (11)	0.0208 (11)	-0.0010 (11)
07	0.0268 (12)	0.0139 (12)	0.0234 (12)	-0.0010 (9)	0.0104 (10)	0.0009 (10)
08	0.0330 (13)	0.0185 (13)	0.0206 (12)	-0.0011 (10)	0.0095 (10)	0.0014 (10)
C25	0.0177 (16)	0.0173 (18)	0.0208 (17)	0.0025 (13)	0.0034 (13)	-0.0038 (14)
C26	0.0178 (16)	0.0185 (18)	0.0175 (16)	-0.0006 (13)	0.0058 (13)	0.0031 (14)
C27	0.0169 (15)	0.0177 (18)	0.0219 (17)	-0.0010 (13)	0.0003 (13)	0.0034 (14)
C28	0.0187 (16)	0.0200 (19)	0.0205 (17)	-0.0007 (13)	0.0037 (13)	-0.0018 (14)
C29	0.0165 (16)	0.0218 (19)	0.0176 (16)	-0.0022 (13)	0.0050 (13)	-0.0001 (14)
C30	0.0174 (16)	0.0180 (18)	0.0187 (17)	-0.0022 (13)	0.0010 (13)	0.0010 (14)
C31	0.0150 (15)	0.0194 (18)	0.0177 (16)	-0.0018 (13)	0.0006 (13)	0.0007 (14)
09	0.0461 (16)	0.0310 (16)	0.0361 (16)	0.0069 (12)	-0.0028 (13)	0.0026 (13)
O10	0.0349 (14)	0.0389 (16)	0.0306 (14)	0.0126 (12)	0.0102 (11)	-0.0004 (12)
011	0.0422 (16)	0.0483 (18)	0.0229 (14)	0.0073 (12)	0.0142 (12)	0.0090 (12)
N6	0.0336 (17)	0.0225 (17)	0.0338 (18)	-0.0058 (13)	0.0053 (15)	-0.0007 (14)
O12	0.0327 (14)	0.0323 (15)	0.0280 (14)	-0.0030 (11)	0.0095 (11)	-0.0004 (12)

Geometric parameters (Å, °)

Cu—01	2.114 (2)	С8—С9	1.367 (5)	
Cu—O2	2.782 (2)	C9—C10	1.408 (5)	
Cu—N1	1.974 (3)	C11—C12	1.435 (5)	
Cu—N2	2.082 (3)	C13—C14	1.392 (5)	
Cu—N3	1.980 (3)	C14—C15	1.375 (5)	
Cu—N4	2.086 (2)	C15—C16	1.416 (5)	
01—N5	1.277 (3)	C16—C17	1.436 (5)	
O2—N5	1.249 (4)	C16—C24	1.391 (4)	
O3—N5	1.239 (3)	C17—C18	1.363 (5)	
O4—C26	1.370 (4)	C18—C19	1.439 (5)	
O5—C27	1.367 (4)	C19—C20	1.408 (5)	
O6—C28	1.355 (4)	C19—C23	1.408 (5)	
O7—C31	1.315 (4)	C20—C21	1.363 (5)	
O8—C31	1.237 (4)	C21—C22	1.404 (5)	
O4—H4A	0.8200	C23—C24	1.433 (5)	
O5—H5B	0.8200	C1—H1A	0.9500	
O6—H6B	0.8200	C2—H2A	0.9500	
O7—H7A	0.8200	С3—НЗА	0.9500	
O9—N6	1.251 (4)	C5—H5A	0.9500	
O10—N6	1.271 (4)	С6—Н6А	0.9500	
011—N6	1.233 (5)	C8—H8A	0.9500	
O12—H12A	0.8200	С9—Н9А	0.9500	
O12—H12B	0.8200	C10—H10A	0.9500	
N1—C1	1.328 (4)	C13—H13A	0.9500	
N1-C12	1.373 (4)	C14—H14A	0.9500	
N2-C11	1.367 (4)	C15—H15A	0.9500	
N2-C10	1.326 (4)	C17—H17A	0.9500	
N3—C13	1.336 (4)	C18—H18A	0.9500	
N3—C24	1.368 (4)	C20—H20A	0.9500	
N4—C23	1.353 (4)	C21—H21A	0.9500	
N4—C22	1.335 (4)	C22—H22A	0.9500	
C1—C2	1.395 (5)	C25—C30	1.408 (4)	
C2—C3	1.371 (5)	C25—C26	1.383 (5)	
C3—C4	1.408 (5)	C26—C27	1.389 (4)	
C4—C12	1.399 (5)	C27—C28	1.397 (5)	
C4—C5	1.438 (5)	C28—C29	1.384 (5)	
C5—C6	1.357 (5)	C29—C30	1.390 (5)	
C6—C7	1.428 (5)	C30—C31	1.478 (5)	
С7—С8	1.411 (5)	C25—H25A	0.9500	
C7—C11	1.402 (5)	С29—Н29А	0.9500	
Cu…O2	2.782 (2)	C9…O10 ⁱⁱⁱ	3.387 (4)	
01…02	2.175 (3)	C10C29 ^x	3.459 (5)	
01…N1	2.801 (3)	C10C30 ^x	3.486 (5)	
O1…N3	2.989 (3)	C10C31 ^x	3.411 (5)	
01…C1	3.046 (4)	C10O8 ^x	3.367 (4)	

supporting information

O1…O3 ⁱ	3.146 (3)	C10…O9 ⁱⁱⁱ	3.389 (4)
O1…C18 ⁱⁱ	3.356 (4)	C10…N6 ⁱⁱⁱ	3.283 (5)
O2…O12 ⁱⁱⁱ	2.960 (3)	C11C5 ^{iv}	3.468 (5)
O2····C5 ^{iv}	3.295 (4)	C12…C6 ^{iv}	3.481 (5)
O2…O1	2.175 (3)	C12…C31	3.573 (4)
O2…C13	3.254 (4)	C13…O11 ⁱⁱⁱ	3.219 (4)
O2····C6 ^{iv}	3.322 (4)	C14…C2 ⁱⁱⁱ	3.401 (5)
O3…O5 ^v	2.859 (3)	C14…O11 ⁱⁱⁱ	3.400 (4)
O3…C20 ^{vi}	3.282 (4)	C15…C21 ⁱⁱ	3.430 (5)
O3…O3 ⁱ	3.147 (3)	C15…C20 ⁱⁱ	3.423 (5)
03…01 ⁱ	3.146 (3)	C16C20 ⁱⁱ	3.510 (5)
03…06 ^v	3.219 (3)	C16…C19 ⁱⁱ	3.544 (5)
03····N5 ⁱ	3,032,(4)	C17···C23 ⁱⁱ	3 554 (5)
03…C18 ^{vi}	3 363 (4)	$C17O9^{ii}$	3340(5)
0405	2 696 (3)	$C18O1^{ii}$	3,356(4)
04C8 ^{vii}	3332(4)	$C18 \cdots C24^{ii}$	3.581(5)
04012^{viii}	2,730(3)	$C18 \cdots O3^{xiv}$	3.363(4)
$05 \cdots C20^{\text{viii}}$	2.750(5) 3.346(4)	$C18 \cdot C3^{ii}$	3.505(+) 3.573(5)
$05 \cdot C20$	3.340(4)	$C10 \cdot C25$	3.575(5)
O5····C1	3.338(4)		3.544(3)
0504	2.505(4)	C_{19} C_{24}	3.309(3)
0502ix	2.090(3)	C20O5	3.262(4)
0506	2.039(3)	C20C15ii	3.340(4)
06 012	2.024(3)	C20C15"	3.423(3)
06012	2.682 (3)	C20C16"	3.510(5)
	2.624 (3)		3.413 (4)
	3.219 (3)	C21C15"	3.430 (5)
07C22*	3.369 (4)	C22···N6	3.345 (4)
0/08x	2.648 (3)	C2207*	3.369 (4)
07C23 ^x	3.170 (3)	C22···C1	3.474 (5)
O7…N4 ^x	3.128 (3)	C22···O9	3.228 (4)
O8…O8 ^x	3.223 (3)	C22···O8	2.936 (3)
O8…C22	2.936 (3)	C23···C17 ⁱⁱ	3.554 (5)
O8…C21	3.413 (4)	C23…O7 ^x	3.170 (3)
O8…C31 ^x	3.331 (4)	C23…C18 ⁱⁱ	3.573 (5)
O8…C10 ^x	3.367 (4)	C24…C18 ⁱⁱ	3.581 (5)
O8…O7 ^x	2.648 (3)	C24…C19 ⁱⁱ	3.569 (5)
O9…C10 ^{xi}	3.389 (4)	C29…O11	3.266 (5)
O9…C1	3.338 (4)	C29…C10 ^x	3.459 (5)
O9…C17 ⁱⁱ	3.340 (5)	C29C9 ^x	3.402 (5)
O9…C22	3.228 (4)	C30…C10 ^x	3.486 (5)
O9····C9 ^{xi}	3.166 (4)	C31…C10 ^x	3.411 (5)
O10····C3 ^{xii}	3.395 (4)	C31…C12	3.573 (4)
O10…O12	2.708 (4)	C31…O8 ^x	3.331 (4)
O10…C9 ^{xi}	3.387 (4)	C1···H22A	2.7900
O11C13 ^{xi}	3.219 (4)	C2…H14A ^{xi}	2.9900
O11…C1	3.419 (4)	C9···H29A ^x	2.9700
O11…C2	3.359 (4)	C13…H10A	2.9300
011…012	3.136 (3)	C14···H2A ⁱⁱⁱ	2.7300

O11···C14 ^{xi}	3.400 (4)	C15···H2A ⁱⁱⁱ	3.0100
O11…C29	3.266 (5)	C17···H12A ^{xv}	2.9600
O12···O10	2.708 (4)	C18····H12A ^{xv}	2.7800
O12···O11	3.136 (3)	C22···H7A ^x	2.9600
O12…O2 ^{xi}	2.960 (3)	C27····H14A ^{xi}	3.0000
012····04 ^{xii}	2.730 (3)	C28…H14A ^{xi}	2.8700
01206	2.682 (3)	C31···H7A ^x	2.7600
01···H18A ⁱⁱ	2 6300	H1A····O1	2 7100
O1···H1A	2,7100	H1A····O9	2.5600
$O2 \cdots H6A^{iv}$	2 7100	H2A····C15 ^{xi}	3 0100
$O2 \cdots H5A^{iv}$	2.6600	$H2A\cdots C14^{xi}$	2 7300
O2 H3A	2.6500	$H2\Delta \cdots H1\Delta\Delta^{xi}$	2.7300
O2 III2D	2.0500		2.5400
O2H12A	2.5500		2.5200
	2.3900		2.3900
03···H20A··	2.4400		2.4800
	2.1600		2.4000
	2.5500		1.9200
	2.6200	H4A···H12A ^{viii}	2.2900
O5····H8A ^{vn}	2.5600	$H4A\cdots H12B^{vm}$	2.3700
O5····H20A ^{vin}	2.5500	Н5А…Н3А	2.5900
O6…H5B	2.1300	H5A···H12B ^{viii}	2.2800
O6…H12A	2.7800	H5A…O2 ^{iv}	2.6600
O6…H13A ^{xi}	2.8900	H5B····H20A ^{viii}	2.4800
07…H25A	2.4800	H5B…O6	2.1300
O8…H29A	2.4900	H5B…N5 ^{ix}	2.8500
O8…H7A ^x	1.8400	H5B····O3 ^{ix}	2.1600
08…H22A	2.6900	H6A···O2 ^{iv}	2.7100
O9····H17A ⁱⁱ	2.4900	Н6А…Н8А	2.5700
O9····H9A ^{xi}	2.5200	H6A…N5 ^{iv}	2.9100
O9…H22A	2.8000	H6B…H12B	2.4600
O9…H1A	2.5600	H6B…O12	1.9400
O9…H15A ⁱⁱ	2.7600	H6B…H12A	2.2000
O10····H3A ^{xii}	2.4800	H6B…H29A	2.3500
O10…H12B	2.1300	H7A···H7A ^x	2.5600
010···H15A ⁱⁱ	2.5600	H7A···O8 ^x	1.8400
011···H12B	2 8700	$H7A\cdots C31^{x}$	2 7600
011····H29A	2.8200	H7A····C22 ^x	2.9600
$O11 \cdots H13A^{xi}$	2.6200	H8A····O ⁵ xiii	2.5600
O11H22A	2.0000	H8AH6A	2.5000
012H6B	1.9400		2.5700
	1.9400		2.0200
N1N4	1.9200		2.5200
INT INA	3.030(3)		2.8400
INT'''INJ NILNIQ	3.298 (4) 2.665 (1)	$\Pi I U A \cdots C I T X^{i}$	2.9300
NT····NZ	2.005 (4)		2.9600
NI…C22	5.55/(4)		2.2000
NI····UI	2.801 (3)		2.2900
NI…CII	2.387 (4)	H12A····O2 ^{xi}	2.5500
N2…N3	3.085 (4)	H12A···H18A ^{xv1}	2.4700

N2…C12	2.388 (4)	H12A····C18 ^{xvi}	2.7800
N2…N1	2.665 (4)	H12A…O6	2.7800
N3…N4	2.664 (4)	H12B…N6	2.8800
N3…C10	3.415 (5)	H12B…O11	2.8700
N3…N2	3.085 (4)	H12B····O2 ^{xi}	2.6500
N3…O1	2.989 (3)	H12B····H4A ^{xii}	2.3700
N3…C23	2.381 (4)	H12B…H6B	2.4600
N4…C24	2.380 (4)	H12B····H5A ^{xii}	2.2800
N4…N3	2.664 (4)	H12B…O10	2.1300
N4…N1	3.036 (3)	H13A…O6 ⁱⁱⁱ	2.8900
N4…O7 ^x	3.128 (3)	H13A…O11 ⁱⁱⁱ	2.6800
N5…O3 ⁱ	3.032 (4)	H13A…O2	2.5900
N6…C9 ^{xi}	3.405 (5)	H14A····C2 ⁱⁱⁱ	2.9900
N6…C10 ^{xi}	3.283 (5)	H14A…H2A ⁱⁱⁱ	2.5400
N6…C22	3.345 (4)	H14A…C28 ⁱⁱⁱ	2.8700
N1…H22A	2.8800	H14A····C27 ⁱⁱⁱ	3.0000
N5…H5B ^v	2.8500	H15A…O9 ⁱⁱ	2.7600
N5…H6A ^{iv}	2.9100	H15A…H17A	2.5700
N6…H12B	2.8800	H15A…H3A ⁱⁱⁱ	2.5200
N6…H10A ^{xi}	2.8400	H15A…O10 ⁱⁱ	2.5600
N6···H22A	2.7900	H17A…H15A	2.5700
C1…O9	3.338 (4)	H17A…O9 ⁱⁱ	2.4900
C1…O11	3.419 (4)	H18A···H12A ^{xv}	2.4700
C1…C22	3.474 (5)	H18A…H20A	2.5800
C1O5 ^v	3.338 (4)	H18A…O1 ⁱⁱ	2.6300
C2···C14 ^{xi}	3.401 (5)	H18A····O3 ^{xiv}	2.5500
C2…O5 ^v	3.363 (4)	H20A…O3 ^{xiv}	2.4400
C2…O11	3.359 (4)	H20A…H18A	2.5800
C3····C8 ^{iv}	3.354 (5)	H20A····H5B ^{xii}	2.4800
C3···O10 ^{viii}	3.395 (4)	H20A····O5 ^{xii}	2.5500
C4····C7 ^{iv}	3.464 (5)	H22A…O11	2.7400
C5····C7 ^{iv}	3.538 (5)	H22A…N1	2.8800
C5····O2 ^{iv}	3.295 (4)	H22A…N6	2.7900
C5···C11 ^{iv}	3.468 (5)	H22A…C1	2.7900
C6…O2 ^{iv}	3.322 (4)	H22A…O9	2.8000
C6…C12 ^{iv}	3.481 (5)	H22A…O8	2.6900
C7…C4 ^{iv}	3.464 (5)	H25A…O7	2.4800
C7···C5 ^{iv}	3.538 (5)	H25A…H4A	2.4000
C8····C3 ^{iv}	3.354 (5)	H29A…O8	2.4900
C8····O4 ^{xiii}	3.332 (4)	H29A…O11	2.8200
C9…N6 ⁱⁱⁱ	3.405 (5)	H29A…H6B	2.3500
C9O9 ⁱⁱⁱ	3.166 (4)	H29A…C9 ^x	2.9700
C9C29 ^x	3.402 (5)		
O1—Cu—O2	50.52 (8)	C17—C18—C19	121.0 (3)
O1—Cu—N1	86.42 (10)	C18—C19—C20	124.1 (3)
O1—Cu—N2	132.61 (9)	C20—C19—C23	117.0 (3)
O1—Cu—N3	93.74 (10)	C18—C19—C23	118.8 (3)
	× /		

01 0 14	105.24 (0)	C10 C20 C21	110 7 (2)
OI—Cu—N4	105.34 (9)	C19 - C20 - C21	119.7(3)
02—Cu—NI	93.06 (8)	$C_{20} = C_{21} = C_{22}$	119.6 (3)
O2—Cu—N2	84.29 (8)	N4—C22—C21	122.1 (3)
O2—Cu—N3	88.12 (8)	C19—C23—C24	119.6 (3)
O2—Cu—N4	153.32 (9)	N4—C23—C24	117.4 (3)
N1—Cu—N2	82.09 (11)	N4—C23—C19	123.0 (3)
N1—Cu—N3	178.59 (10)	N3—C24—C23	116.5 (3)
N1—Cu—N4	96.77 (10)	N3—C24—C16	122.6 (3)
N2—Cu—N3	98.81 (11)	C16—C24—C23	120.9 (3)
N2—Cu—N4	121.57 (10)	C2—C1—H1A	119.00
N3—Cu—N4	81.84 (10)	N1—C1—H1A	119.00
Cu—O1—N5	109.30 (19)	C1—C2—H2A	120.00
Cu—O2—N5	78.26 (15)	C3—C2—H2A	120.00
C26—O4—H4A	108.00	С4—С3—НЗА	120.00
С27—О5—Н5В	107.00	С2—С3—НЗА	120.00
С28—О6—Н6В	107.00	С6—С5—Н5А	120.00
С31—О7—Н7А	108.00	C4—C5—H5A	120.00
H12A—O12—H12B	101.00	С5—С6—Н6А	119.00
C1—N1—C12	118.5 (3)	C7—C6—H6A	119.00
Cu - N1 - C1	1274(2)	C7—C8—H8A	120.00
Cu = N1 = C12	112, 11(2) 114, 0, (2)	C9-C8-H8A	120.00
$Cu = N^2 = C^{11}$	110.5(2)	C10-C9-H9A	120.00
C10 N2 C11	117.5(2)		120.00
C_{11} N2 C_{10}	117.5(3) 1320(2)	$N_2 = C_1 + 10A$	110.00
$C_{12} = N_2 = C_{10}$	132.0(2) 118.7(2)	C_{0} C_{10} H_{10A}	119.00
$C_{13} = 103 = 0.024$	110.7(3) 112.6(2)	$C_{14} = C_{12} = H_{12}$	119.00
$C_{\rm II}$ N2 C12	113.0(2)	C14 - C12 - H12A	119.00
Cu = N3 = C13	127.7(2)		119.00
Cu = N4 = C22	131.2 (2)	C15—C14—H14A	120.00
Cu - N4 - C23	110.3 (2)	C13—C14—H14A	120.00
C22—N4—C23	118.4 (3)	С14—С15—Н15А	121.00
01—N5—03	119.0 (3)	C16—C15—H15A	121.00
O2—N5—O3	122.1 (2)	С16—С17—Н17А	120.00
O1—N5—O2	118.9 (2)	C18—C17—H17A	120.00
O9—N6—O11	121.8 (3)	C19—C18—H18A	120.00
O9—N6—O10	119.1 (3)	C17—C18—H18A	120.00
O10—N6—O11	119.0 (3)	C21—C20—H20A	120.00
N1—C1—C2	122.3 (3)	C19—C20—H20A	120.00
C1—C2—C3	119.6 (3)	C20—C21—H21A	120.00
C2—C3—C4	119.7 (3)	C22—C21—H21A	120.00
C5—C4—C12	118.1 (3)	N4—C22—H22A	119.00
C3—C4—C5	124.4 (3)	C21—C22—H22A	119.00
C3—C4—C12	117.4 (3)	C26—C25—C30	119.7 (3)
C4—C5—C6	120.9 (3)	O4—C26—C25	123.1 (3)
C5—C6—C7	121.7 (3)	O4—C26—C27	117.2 (3)
C6—C7—C11	118.9 (3)	C25—C26—C27	119.8 (3)
C8—C7—C11	117.1 (3)	C26—C27—C28	120.5 (3)
C6—C7—C8	124.0 (3)	O5—C27—C26	119.9 (3)
C7—C8—C9	119.3 (3)	O5—C27—C28	119.6 (3)
			(-)

C8—C9—C10	119.8 (3)	C27—C28—C29	120.1 (3)
N2—C10—C9	122.7 (3)	O6—C28—C27	114.0 (3)
C7—C11—C12	119.4 (3)	O6—C28—C29	125.9 (3)
N2—C11—C7	123.7 (3)	C28—C29—C30	119.5 (3)
N2—C11—C12	116.9 (2)	C25—C30—C31	121.3 (3)
N1—C12—C11	116.4 (3)	C29—C30—C31	118.3 (3)
N1—C12—C4	122.5 (3)	C_{25} C_{30} C_{29}	120.4(3)
C4-C12-C11	121.1(3)	07-C31-C30	115.8 (2)
N3-C13-C14	121.9 (3)	08-C31-C30	121.5(3)
C_{13} C_{14} C_{15}	1202(3)	07-031-08	122.6(3)
C14-C15-C16	118.9(3)	C_{30} C_{25} H_{25A}	120.00
C_{15} C_{16} C_{24}	1177(3)	C26—C25—H25A	120.00
C17 - C16 - C24	118.8 (3)	C_{28} C_{29} H_{29A}	120.00
C_{15} C_{16} C_{17}	1235(3)	C_{30} C_{29} H_{29A}	120.00
C_{16} C_{17} C_{18}	123.5(3) 121.0(3)		120.00
010-017-010	121.0 (5)		
O2—Cu—O1—N5	10.27 (17)	C22—N4—C23—C19	0.2 (4)
N1—Cu—O1—N5	-86.7(2)	C22—N4—C23—C24	-178.3(3)
N2—Cu—O1—N5	-10.8(3)	N1—C1—C2—C3	0.6 (5)
N3—Cu—O1—N5	94.7 (2)	C1—C2—C3—C4	-1.1(5)
N4—Cu—O1—N5	177.29 (19)	C2—C3—C4—C5	-176.6(3)
O1—Cu—O2—N5	-10.12 (16)	C2—C3—C4—C12	0.6 (5)
N1—Cu—O2—N5	72.70 (18)	C3—C4—C5—C6	177.0 (3)
N2—Cu—O2—N5	154.43 (18)	C12—C4—C5—C6	-0.1(5)
N3—Cu—O2—N5	-106.52(18)	C3—C4—C12—N1	0.5 (5)
N4—Cu—O2—N5	-39.0 (3)	C3—C4—C12—C11	-176.8(3)
O1—Cu—N1—C1	-42.0 (3)	C5—C4—C12—N1	177.8 (3)
O1—Cu—N1—C12	136.0 (2)	C5—C4—C12—C11	0.6 (5)
O2—Cu—N1—C1	-92.2 (3)	C4—C5—C6—C7	-0.8(5)
O2—Cu—N1—C12	85.9 (2)	C5—C6—C7—C8	-176.3(3)
N2—Cu—N1—C1	-176.0 (3)	C5—C6—C7—C11	1.2 (5)
N2—Cu—N1—C12	2.1 (2)	C6—C7—C8—C9	177.2 (3)
N4—Cu—N1—C1	63.0 (3)	C11—C7—C8—C9	-0.3 (5)
N4—Cu—N1—C12	-119.0 (2)	C6—C7—C11—N2	-178.1(3)
O1—Cu—N2—C10	98.6 (3)	C6—C7—C11—C12	-0.7 (5)
O1—Cu—N2—C11	-79.7 (2)	C8—C7—C11—N2	-0.5 (5)
O2—Cu—N2—C10	82.4 (3)	C8—C7—C11—C12	176.9 (3)
O2—Cu—N2—C11	-95.9 (2)	C7—C8—C9—C10	1.0 (5)
N1—Cu—N2—C10	176.3 (3)	C8—C9—C10—N2	-0.9(5)
N1—Cu—N2—C11	-2.0(2)	N2-C11-C12-N1	0.1 (4)
N3—Cu—N2—C10	-4.8 (3)	N2-C11-C12-C4	177.5 (3)
N3—Cu—N2—C11	176.9 (2)	C7—C11—C12—N1	-177.6(3)
N4—Cu—N2—C10	-90.6 (3)	C7—C11—C12—C4	-0.2 (5)
N4—Cu—N2—C11	91.1 (2)	N3—C13—C14—C15	0.6 (5)
O1—Cu—N3—C13	-68.7 (3)	C13—C14—C15—C16	-1.8 (5)
O1—Cu—N3—C24	110.3 (2)	C14—C15—C16—C17	-177.9(3)
O2—Cu—N3—C13	-18.4 (3)	C14—C15—C16—C24	0.7 (4)
O2—Cu—N3—C24	160.6 (2)	C15—C16—C17—C18	176.7 (3)

N2—Cu—N3—C13	65.5 (3)	C24—C16—C17—C18	-1.9 (5)
N2—Cu—N3—C24	-115.5 (2)	C15-C16-C24-N3	1.7 (4)
N4—Cu—N3—C13	-173.6 (3)	C15—C16—C24—C23	-176.2 (3)
N4—Cu—N3—C24	5.4 (2)	C17—C16—C24—N3	-179.6 (3)
O1—Cu—N4—C22	87.0 (3)	C17—C16—C24—C23	2.5 (4)
O1—Cu—N4—C23	-97.6 (2)	C16—C17—C18—C19	0.7 (6)
O2—Cu—N4—C22	109.7 (3)	C17—C18—C19—C20	-177.9 (4)
O2—Cu—N4—C23	-74.9 (3)	C17—C18—C19—C23	0.0 (5)
N1—Cu—N4—C22	-1.2 (3)	C18—C19—C20—C21	177.5 (4)
N1—Cu—N4—C23	174.3 (2)	C23-C19-C20-C21	-0.4 (5)
N2—Cu—N4—C22	-86.0 (3)	C18—C19—C23—N4	-177.9 (3)
N2—Cu—N4—C23	89.5 (2)	C18—C19—C23—C24	0.6 (5)
N3—Cu—N4—C22	178.6 (3)	C20-C19-C23-N4	0.1 (5)
N3—Cu—N4—C23	-5.9 (2)	C20-C19-C23-C24	178.6 (3)
Cu—O1—N5—O2	-20.5 (3)	C19—C20—C21—C22	0.4 (5)
Cu—O1—N5—O3	157.7 (2)	C20-C21-C22-N4	0.0 (5)
Cu—O2—N5—O1	14.9 (2)	N4—C23—C24—N3	-1.3 (4)
Cu—O2—N5—O3	-163.2 (3)	N4-C23-C24-C16	176.7 (3)
Cu—N1—C1—C2	178.4 (2)	C19—C23—C24—N3	-179.9 (3)
C12—N1—C1—C2	0.4 (5)	C19—C23—C24—C16	-1.9 (4)
Cu—N1—C12—C4	-179.2 (3)	C30—C25—C26—O4	-179.6 (3)
Cu—N1—C12—C11	-1.8 (3)	C30—C25—C26—C27	-1.0 (5)
C1—N1—C12—C4	-1.0 (5)	C26—C25—C30—C29	0.0 (5)
C1—N1—C12—C11	176.4 (3)	C26—C25—C30—C31	177.9 (3)
Cu—N2—C10—C9	-178.0 (2)	O4—C26—C27—O5	-2.2 (4)
C11—N2—C10—C9	0.2 (5)	O4—C26—C27—C28	179.8 (3)
Cu—N2—C11—C7	179.2 (3)	C25—C26—C27—O5	179.2 (3)
Cu—N2—C11—C12	1.6 (3)	C25—C26—C27—C28	1.1 (5)
C10—N2—C11—C7	0.6 (5)	O5—C27—C28—O6	1.3 (4)
C10—N2—C11—C12	-176.9 (3)	O5—C27—C28—C29	-178.3 (3)
Cu—N3—C13—C14	-179.3 (3)	C26—C27—C28—O6	179.3 (3)
C24—N3—C13—C14	1.7 (5)	C26—C27—C28—C29	-0.3 (5)
Cu—N3—C24—C16	178.0 (2)	O6—C28—C29—C30	179.8 (3)
Cu—N3—C24—C23	-4.0 (3)	C27—C28—C29—C30	-0.7 (5)
C13—N3—C24—C16	-2.9 (4)	C28—C29—C30—C25	0.8 (5)
C13—N3—C24—C23	175.1 (3)	C28—C29—C30—C31	-177.1 (3)
Cu—N4—C22—C21	174.9 (2)	C25—C30—C31—O7	-0.9 (4)
C23—N4—C22—C21	-0.3 (4)	C25—C30—C31—O8	179.4 (3)
Cu—N4—C23—C19	-175.9 (3)	C29—C30—C31—O7	177.1 (3)
Cu—N4—C23—C24	5.5 (3)	C29—C30—C31—O8	-2.7 (5)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1/2, y-1/2, -z+1/2; (iv) -x+1, -y+1, -z; (v) x+1/2, -y+3/2, z+1/2; (vi) x+1, y, z; (vii) -x+1/2, y+1/2, -z-1/2; (viii) x+1/2, -y+3/2, z-1/2; (ix) x-1/2, -y+3/2, z-1/2; (ii) -x+1/2, y+1/2, -z+1/2; (iii) x-1/2, -y+3/2, z+1/2; (iii) -x+1/2, y+1/2, -z+1/2; (iii) x-1/2, -y+3/2, z+1/2; (iii) x-1/2, -y+3/2, z+1/2; (iii) x-1/2, -y+3/2, z+1/2; (iii) x-1/2, -y+3/2, z+1/2; (iii) -x+1/2, y-1/2, -z-1/2; (iv) x-1, y, z; (iv) x-1/2, y-1/2, -z+1/2; (iv) x-1/2, -y+3/2, z+1/2; (iv) -x-1/2, y-1/2, -z+1/2; (iv) -x-1/2, y-1/2, -z+1/2; (iv) -x-1/2, -z+1/2; (iv) -x-1/2; (iv) -x-1/2, -z+1/2; (iv) -x-1/2; (iv)

e e e e e e e e e e e e e e e e e e e					
D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
04—H4 <i>A</i> ···O12 ^{viii}	0.82	1.92	2.730 (3)	167	
O5—H5 <i>B</i> ⋯O6	0.82	2.13	2.624 (3)	119	
O5—H5 <i>B</i> ⋯O3 ^{ix}	0.82	2.16	2.859 (3)	143	
O6—H6 <i>B</i> ⋯O12	0.82	1.94	2.682 (3)	150	
O7—H7 <i>A</i> ···O8 ^x	0.82	1.84	2.648 (3)	170	
O12—H12 A ···O2 ^{xi}	0.82	2.55	2.960 (3)	112	
O12—H12B…O10	0.82	2.13	2.708 (4)	128	
C1—H1A····O9	0.95	2.56	3.338 (4)	139	
C3—H3A···O10 ^{viii}	0.95	2.48	3.395 (4)	161	
C8—H8A····O5 ^{xiii}	0.95	2.56	3.482 (4)	165	
С9—Н9А…О9 ^{ііі}	0.95	2.52	3.166 (4)	125	
C13—H13A····O2	0.95	2.59	3.254 (4)	128	
C15—H15A…O10 ⁱⁱ	0.95	2.56	3.457 (4)	158	
С17—Н17А…О9 ^{іі}	0.95	2.49	3.340 (5)	150	
C18—H18A····O3 ^{xiv}	0.95	2.55	3.363 (4)	144	
C20—H20A····O3 ^{xiv}	0.95	2.44	3.282 (4)	148	
C20—H20A…O5 ^{xii}	0.95	2.55	3.346 (4)	141	
C25—H25 <i>A</i> ··· <i>Cg</i> 9 ^x	0.95	2.95	3.680 (3)	135	

Hydrogen-bond geometry (Å, °) Cg9 is the centroid of the C16-C19/C23/C24 ring.

Symmetry codes: (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*+1/2, *y*-1/2, -*z*+1/2; (viii) *x*+1/2, -*y*+3/2, *z*-1/2; (ix) *x*-1/2, -*y*+3/2, *z*-1/2; (x) -*x*, -*y*+1, -*z*; (xi) -*x*+1/2, *y*+1/2, -*z*+1/2; (xii) *x*-1/2, -*y*+3/2, *z*+1/2; (x) -*x*+1/2, -*y*+1/2, -*z*+1/2; (ix) *x*-1, *y*, *z*.