research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of di-μ-bromido-bis­{di­bromido­[η5-2-(di­methyl­amino)­inden­yl]zirconium(IV)} and di­bromido­bis­­[η5-2-(di­methyl­amino)­inden­yl]zirconium(IV)

CROSSMARK_Color_square_no_text.svg

aX-ray Structural Laboratory, A. N. Nesmeyanov Institute of Organoelement Compounds, Vavilova St. 28, GSP-1, Moscow 119991, V-334, Russian Federation, and bDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
*Correspondence e-mail: medvedev.m.g@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 September 2016; accepted 17 October 2016; online 21 October 2016)

In the title compounds, [Zr2Br6(C11H12N)2], (I) and [ZrBr2(C11H12N)2], (II), the positions of the η5-binding 2-di­methyl­amino­indenyl units are fixed by intra­molecular C—H⋯Br inter­actions involving aromatic or di­methyl­amino H atoms. The binuclear mol­ecule of (I) is located on a general position, while the mononuclear mol­ecule of (II) is situated on a twofold rotation axis. Both ZrIV atoms in (I) are ligated by one cyclo­penta­dienyl (CP) ring and four Br ligands (two bridging, two terminal), while in (II) the ZrIV atom is ligated by two CP rings and two terminal Br ligands. The crystal structures of both (I) and (II) comprise of strands of ππ- and N–π-bonded mol­ecules, which in turn are linked by C—H⋯Br inter­actions.

1. Chemical context

In the course of a systematic study of the mol­ecular and crystal structures of cyclo­penta­dienyl-halogenide complexes of zirconium(IV) and hafnium(IV) bearing oxygen- and nitro­gen-containing substituents at the cyclo­penta­dienyl-type ligand(s) to understand possible intra- and inter­molecular inter­actions between the ligands resulting in specific conformational properties of the complexes as well as to explain influences of the electronic properties of the involved fragments, we have determined several new crystal structures. These results are of importance for the understanding of possible inter­molecular inter­actions in solutions of the compounds under investigation for their further use in catalysis. Here we report on synthesis and crystal structures of two ZrIV complexes with substituted indenyl ligands, [Zr2(C11H12N)2Br6], (I)[link] and [Zr(C11H12N)2Br2], (II)[link]. Other zirconium(IV) complexes with indenyl ligands have been reported by Chirik (2010[Chirik, P. J. (2010). Organometallics, 29, 1500-1517.]) and Pinkas & Lamač (2015[Pinkas, J. & Lamač, M. (2015). Coord. Chem. Rev. 296, 45-90.]).

2. Structural commentary

Structure determination revealed that both title compounds are monomeric in the solid state, with the di­methyl­amino­indenyl anions acting as η5-ligands and the ZrIV atoms being above the centres of cyclo­penta­dienyl (CP) rings. The 2-di­methyl­amino­indenyl units deviate from planarity, the highest deviations involving the N atoms in (I)[link] [0.165 (3) Å for N1 in the first anion and 0.171 (3) Å for N2 in the second anion] and one C atom [0.187 (1) Å for C9] in (II)[link]. The Zr⋯centroid(CP) distances are 2.1815 (15) Å and 2.1823 (15) Å in (I)[link] and 2.2278 (6) Å in (II)[link]. The dihedral angles between the planes of the indenyl units which belong to the same mol­ecule are 3.70 (8)° in (I)[link] and 44.25 (5)° in (II)[link].

[Scheme 1]

Compound (I)[link] (Fig. 1[link]) crystallizes with one binuclear complex mol­ecule in the asymmetric unit. Each of the ZrIV atoms is coordinated by one CP and four Br ligands, with two Br ligands in a bridging and two in a terminal coordination mode. The Zr⋯Zr distance is 4.3359 (5) Å, a little longer than in a related complex with 2-(9H-carbazol-9-yl)indenyl ligands [4.3212 (7) Å; Lebedev et al., 2009[Lebedev, A. Y., Izmer, V. V., Asachenko, A. F., Tzarev, A. A., Uborsky, D. V., Homutova, Y. A., Shperber, E. R., Canich, J. A. M. & Voskoboynikov, A. Z. (2009). Organometallics, 28, 1800-1816.]]. The Zr—centroid(CP) distances found in (I)[link] are virtually identical to those of the related complex [2.1812 (15) and 2.1845 (15) Å; Lebedev et al., 2009[Lebedev, A. Y., Izmer, V. V., Asachenko, A. F., Tzarev, A. A., Uborsky, D. V., Homutova, Y. A., Shperber, E. R., Canich, J. A. M. & Voskoboynikov, A. Z. (2009). Organometallics, 28, 1800-1816.]] and close to those of other similar complexes with Cl and Cp* ligands [2.176 (2) Å; Martín et al., 1994[Martín, A., Mena, M. & Palacios, F. (1994). J. Organomet. Chem. 480, c10-c11.]] or Cl and 1-[n-but­yl(dimeth­yl)sil­yl]-2,3,4,5,6,7-hexa­methyl­indenyl ligands [2.1896 (8) Å; Buffet et al., 2015[Buffet, J.-C., Arnold, T. A. Q., Turner, Z. R., Angpanitcharoen, P. & O'Hare, D. (2015). RSC Adv. 5, 87456-87464.]]. In (I)[link], the range of centroid(CP)—Zr—Br angles is 103–104° and 108–111° for bridging and terminal Br ligands, respectively. The Br—Zr—Br angles are 75.823 (13) and 76.248 (13)° for bridging Br ligands and 92.208 (16) and 90.069 (16)° for terminal Br ligands.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] with displacement ellipsoids drawn at the 50% probability level.

Compound (II)[link] (Fig. 2[link]) crystallizes with one half of the complex mol­ecule in the asymmetric unit, the other half being completed by application of twofold rotation symmetry. Here the ZrIV atom is coordinated by two symmetry-related CP ligands and two symmetry-related terminal Br ligands. The Br—Zr—Br angle is 93.390 (7)°, smaller than in related structures with Cl ligands [95.04 (8) or 94.90 (8)°; Barsties et al., 1996[Barsties, E., Schaible, S., Prosenc, M.-H., Rief, U., Röll, W., Weyand, O., Dorer, B. & Brintzinger, H.-H. (1996). J. Organomet. Chem. 520, 63-68.]; Luttikhedde et al., 1996[Luttikhedde, H. J. G., Leino, R. P., Wilén, C.-E., Näsman, J. H., Ahlgrén, M. J. & Pakkanen, T. A. (1996). Organometallics, 15, 3092-3094.]]. Correspondingly, the centroid(CP)—Zr—centroid(CP) angle is a little bit larger at 133.42 (3)° versus 133.07 (12) and 132.77 (14)° in the related structures.

[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by symmetry code −x + 1, y, −z + [{3\over 2}].

The positions of the 2-di­methyl­amino­indenyl units in the two structures are fixed by intra­molecular C—H⋯Br inter­actions involving aromatic or di­methyl­amino H atoms (Tables 1[link] and 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Br4i 1.00 2.96 3.694 (4) 131
C4—H4⋯Br4i 0.95 3.35 3.944 (4) 123
C4—H4⋯Br5ii 0.95 3.42 4.123 (4) 132
C5—H5⋯Br5 0.95 3.53 3.998 (4) 113
C5—H5⋯Br5ii 0.95 3.52 4.182 (4) 129
C5—H5⋯Br6ii 0.95 2.93 3.840 (4) 162
C10—H10C⋯Br3 0.98 2.88 3.613 (4) 133
C11—H11A⋯Br6iii 0.98 2.91 3.817 (4) 154
C11—H11B⋯Br3 0.98 3.21 3.843 (4) 124
C11—H11B⋯Br5iv 0.98 3.44 3.919 (4) 113
C13—H13⋯Br6v 1.00 3.04 3.690 (4) 124
C15—H15⋯Br6v 0.95 3.04 3.655 (4) 124
C16—H16⋯Br3 0.95 3.27 3.763 (4) 114
C16—H16⋯Br3vi 0.95 3.15 3.754 (4) 123
C17—H17⋯Br3vi 0.95 2.97 3.665 (4) 131
C18—H18⋯Br2vii 0.95 3.01 3.897 (4) 155
C20—H20⋯Br4vii 1.00 3.17 4.115 (4) 158
C21—H21B⋯Br5 0.98 2.94 3.660 (4) 131
C21—H21C⋯Br3viii 0.98 3.20 3.811 (4) 122
C22—H22A⋯Br4vii 0.98 3.02 3.986 (4) 167
C22—H22B⋯Br4viii 0.98 3.36 3.974 (4) 122
C22—H22C⋯Br5 0.98 3.06 3.738 (4) 128
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z+1; (vii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Br1i 0.95 2.98 3.8960 (13) 163
C6—H6⋯Br1ii 0.95 3.10 3.7621 (13) 128
C7—H7⋯Br1ii 0.95 3.09 3.7493 (12) 128
C10—H10A⋯Br1iii 0.98 3.11 3.9381 (13) 143
C10—H10C⋯Br1 0.98 2.86 3.5178 (13) 125
C11—H11A⋯Br1iv 0.98 3.41 3.9170 (13) 115
C11—H11B⋯Br1 0.98 3.04 3.6325 (13) 120
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-1, -z+{\script{3\over 2}}]; (iii) [x, -y+2, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

3. Supra­molecular features

The crystal structures of both (I)[link] and (II)[link] (Figs. 3[link] and 4[link]) comprise of infinite strands (along [100] for (I)[link] and along [001] for (II)), of ππ- and N–π-bonded mol­ecules, which in turn are linked by C—H⋯Br inter­actions. The plane-to-plane distances of the stacked di­methyl­amino­indenyl moieties are 3.656 (4) and 3.481 (3) Å for (I)[link] and 3.6533 (10) Å for (II)[link], with angles between the planes of 3.70 (8)° for (I)[link] and 0° for (II)[link]. C—H⋯Br inter­actions are in the range 2.86–3.53 Å for both structures (Tables 1[link] and 2[link]). The presence of the ternary amino function in the two structures plays a crucial role in the supra­molecular architecture since di­chlorido-bis­(η5-2-di­methyl­amino­inden­yl)zirconium(IV) (Barsties et al., 1996[Barsties, E., Schaible, S., Prosenc, M.-H., Rief, U., Röll, W., Weyand, O., Dorer, B. & Brintzinger, H.-H. (1996). J. Organomet. Chem. 520, 63-68.]; Luttikhedde et al., 1996[Luttikhedde, H. J. G., Leino, R. P., Wilén, C.-E., Näsman, J. H., Ahlgrén, M. J. & Pakkanen, T. A. (1996). Organometallics, 15, 3092-3094.]) also exhibits stacking inter­actions, but di­chlorido-bis­(η5-inden­yl)zirconium(IV) (Repo et al., 1996[Repo, T., Klinga, M., Mutikainen, I., Su, Y., Leskelä, M., Polamo, M., Homsi, M. N., Kuske, F. K. H., Haugg, M., Trabesinger-Rüf, N. & Weinhold, E. G. (1996). Acta Chem. Scand. 50, 1116-1120.]) does not.

[Figure 3]
Figure 3
The crystal packing of compound (I)[link] with displacement ellipsoids drawn at the 50% probability level.
[Figure 4]
Figure 4
The crystal packing of compound (II)[link] with displacement ellipsoids drawn at the 50% probability level.

4. Synthesis and crystallization

Di[(μ-bromido)(η5-2-di­methyl­amino­inden­yl)di­bromidozirconium(IV)], (I)[link], was obtained by reaction of Zr(NMe2)4 with one equivalent of 2-di­methyl­amino-1H-indene in toluene, followed by treatment of an excess of Me3SiBr. The crude product was recrystallized from toluene.

Bis(η5-2-di­methyl­amino­inden­yl)di­bromido­zirconium(IV), (II)[link], was obtained from the reaction of (I)[link] with one equivalent (per Zr) of 2-di­methyl­amino­indenyllithium in tetra­hydro­furan. The crude product was recrystallized from toluene.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were fixed geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms and Uiso(H) = 1.5Ueq(C) for hydrogen atoms associated with methyl groups.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [Zr2Br6(C11H12N)2] [ZrBr2(C11H12N)2]
Mr 978.33 567.47
Crystal system, space group Monoclinic, P21/n Monoclinic, C2/c
Temperature (K) 100 100
a, b, c (Å) 11.3275 (6), 13.9365 (7), 17.6082 (9) 18.4476 (5), 8.3497 (2), 14.3737 (4)
β (°) 99.028 (1) 111.854 (1)
V3) 2745.3 (2) 2054.90 (9)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 9.51 4.43
Crystal size (mm) 0.34 × 0.14 × 0.04 0.26 × 0.24 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.052, 0.165 0.552, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 35046, 7921, 6465 13152, 3003, 2876
Rint 0.050 0.017
(sin θ/λ)max−1) 0.703 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 1.04 0.015, 0.039, 1.07
No. of reflections 7921 3003
No. of parameters 293 125
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.23, −0.80 0.45, −0.42
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) Di-µ-bromido-bis{dibromido[η5-2-(dimethylamino)indenyl]zirconium(IV)} top
Crystal data top
[Zr2Br6(C11H12N)2]F(000) = 1840
Mr = 978.33Dx = 2.367 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.3275 (6) ÅCell parameters from 9986 reflections
b = 13.9365 (7) Åθ = 2.3–35.3°
c = 17.6082 (9) ŵ = 9.51 mm1
β = 99.028 (1)°T = 100 K
V = 2745.3 (2) Å3Plate, clear light yellow
Z = 40.34 × 0.14 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
6465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.052, Tmax = 0.165k = 1919
35046 measured reflectionsl = 2424
7921 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0301P)2 + 4.7762P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7921 reflectionsΔρmax = 1.23 e Å3
293 parametersΔρmin = 0.80 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.36393 (3)0.65228 (2)0.29842 (2)0.01182 (7)
Zr20.64736 (3)0.55177 (2)0.17911 (2)0.01153 (7)
Br10.48396 (3)0.48720 (2)0.26602 (2)0.01492 (7)
Br20.51643 (3)0.71490 (2)0.20438 (2)0.01584 (8)
Br30.39515 (3)0.58155 (3)0.43385 (2)0.01707 (8)
Br40.39478 (4)0.82303 (3)0.35560 (2)0.02100 (8)
Br50.61893 (3)0.60910 (3)0.04056 (2)0.01838 (8)
Br60.63720 (3)0.37380 (2)0.13784 (2)0.01671 (8)
N10.0895 (3)0.5840 (2)0.36083 (18)0.0173 (6)
N20.9189 (3)0.6378 (2)0.12242 (17)0.0140 (6)
C10.1401 (3)0.6093 (3)0.2990 (2)0.0147 (7)
C20.1957 (3)0.5458 (3)0.2516 (2)0.0146 (7)
H20.19720.47430.25610.018*
C30.2185 (3)0.5991 (3)0.1849 (2)0.0155 (7)
C40.2623 (3)0.5706 (3)0.1174 (2)0.0202 (8)
H40.28190.50550.10950.024*
C50.2755 (4)0.6392 (3)0.0640 (2)0.0244 (8)
H50.30360.62100.01810.029*
C60.2485 (4)0.7367 (3)0.0755 (2)0.0250 (9)
H60.25730.78210.03650.030*
C70.2100 (3)0.7672 (3)0.1412 (2)0.0210 (8)
H70.19500.83330.14900.025*
C80.1928 (3)0.6973 (3)0.1979 (2)0.0160 (7)
C90.1556 (3)0.7050 (3)0.2719 (2)0.0174 (7)
H90.12350.76440.29310.021*
C100.0968 (3)0.4848 (3)0.3864 (2)0.0219 (8)
H10A0.07640.44230.34190.033*
H10B0.04050.47430.42260.033*
H10C0.17820.47100.41190.033*
C110.0659 (4)0.6577 (3)0.4155 (2)0.0226 (8)
H11A0.02930.71370.38750.034*
H11B0.14110.67670.44730.034*
H11C0.01130.63210.44860.034*
C120.8679 (3)0.6084 (2)0.1826 (2)0.0141 (7)
C130.8056 (3)0.6676 (2)0.2300 (2)0.0144 (7)
H130.79820.73900.22610.017*
C140.7834 (3)0.6109 (2)0.2951 (2)0.0135 (6)
C150.7322 (3)0.6339 (3)0.3611 (2)0.0165 (7)
H150.70700.69750.36950.020*
C160.7198 (3)0.5621 (3)0.4129 (2)0.0160 (7)
H160.68740.57680.45810.019*
C170.7545 (3)0.4664 (3)0.4001 (2)0.0171 (7)
H170.74580.41860.43720.021*
C180.8005 (3)0.4412 (3)0.3351 (2)0.0167 (7)
H180.82060.37640.32620.020*
C190.8171 (3)0.5144 (3)0.2818 (2)0.0139 (6)
C200.8588 (3)0.5112 (3)0.2085 (2)0.0144 (7)
H200.89700.45440.18770.017*
C210.9014 (3)0.7371 (3)0.0964 (2)0.0200 (8)
H21A0.92150.78050.14030.030*
H21B0.81770.74660.07330.030*
H21C0.95320.75070.05810.030*
C220.9489 (3)0.5679 (3)0.0667 (2)0.0192 (7)
H22A0.99100.51350.09400.029*
H22B1.00040.59810.03380.029*
H22C0.87540.54510.03500.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.01160 (15)0.01065 (15)0.01307 (16)0.00015 (11)0.00149 (12)0.00016 (11)
Zr20.01121 (15)0.01036 (15)0.01283 (15)0.00005 (11)0.00130 (12)0.00005 (11)
Br10.01492 (16)0.01102 (16)0.01984 (17)0.00068 (12)0.00585 (13)0.00148 (12)
Br20.01443 (16)0.01133 (16)0.02277 (19)0.00114 (12)0.00607 (13)0.00317 (13)
Br30.01681 (17)0.02043 (18)0.01397 (16)0.00111 (13)0.00243 (13)0.00302 (13)
Br40.0270 (2)0.01313 (17)0.02242 (19)0.00230 (14)0.00246 (15)0.00387 (13)
Br50.01924 (18)0.02087 (18)0.01419 (17)0.00033 (13)0.00006 (13)0.00387 (13)
Br60.02123 (18)0.01188 (16)0.01692 (17)0.00105 (13)0.00267 (13)0.00233 (12)
N10.0170 (15)0.0188 (15)0.0169 (15)0.0014 (12)0.0047 (12)0.0013 (12)
N20.0154 (14)0.0147 (14)0.0127 (14)0.0011 (11)0.0047 (11)0.0026 (11)
C10.0122 (15)0.0188 (17)0.0128 (16)0.0002 (13)0.0010 (13)0.0004 (13)
C20.0142 (16)0.0130 (16)0.0166 (17)0.0005 (12)0.0027 (13)0.0005 (12)
C30.0126 (16)0.0187 (17)0.0141 (17)0.0021 (13)0.0013 (13)0.0005 (13)
C40.0189 (18)0.025 (2)0.0162 (18)0.0028 (15)0.0012 (14)0.0048 (14)
C50.0210 (19)0.037 (2)0.0150 (18)0.0037 (16)0.0025 (15)0.0000 (16)
C60.0216 (19)0.033 (2)0.0192 (19)0.0021 (16)0.0001 (15)0.0117 (16)
C70.0161 (18)0.0198 (19)0.026 (2)0.0018 (14)0.0017 (15)0.0083 (15)
C80.0119 (16)0.0196 (18)0.0161 (17)0.0005 (13)0.0011 (13)0.0046 (13)
C90.0162 (17)0.0152 (17)0.0194 (18)0.0022 (13)0.0011 (14)0.0006 (13)
C100.0192 (18)0.024 (2)0.0224 (19)0.0052 (15)0.0041 (15)0.0063 (15)
C110.0234 (19)0.027 (2)0.0189 (19)0.0055 (16)0.0072 (15)0.0007 (15)
C120.0128 (16)0.0123 (16)0.0167 (17)0.0013 (12)0.0004 (13)0.0000 (12)
C130.0130 (15)0.0125 (16)0.0175 (17)0.0011 (12)0.0018 (13)0.0000 (13)
C140.0124 (15)0.0136 (16)0.0135 (16)0.0027 (12)0.0007 (12)0.0019 (12)
C150.0172 (17)0.0165 (17)0.0161 (17)0.0014 (13)0.0031 (13)0.0028 (13)
C160.0176 (17)0.0182 (18)0.0130 (16)0.0004 (13)0.0046 (13)0.0020 (13)
C170.0185 (17)0.0179 (18)0.0146 (17)0.0010 (13)0.0013 (14)0.0039 (13)
C180.0172 (17)0.0139 (17)0.0183 (18)0.0005 (13)0.0003 (14)0.0026 (13)
C190.0112 (15)0.0145 (16)0.0145 (16)0.0009 (12)0.0025 (12)0.0016 (12)
C200.0142 (16)0.0154 (16)0.0141 (16)0.0005 (13)0.0037 (13)0.0001 (13)
C210.0165 (17)0.0186 (18)0.025 (2)0.0011 (14)0.0040 (15)0.0059 (15)
C220.0208 (18)0.0223 (19)0.0150 (17)0.0024 (14)0.0045 (14)0.0013 (14)
Geometric parameters (Å, º) top
Zr1—Br12.7767 (5)C6—H60.9500
Zr1—Br22.7176 (5)C6—C71.367 (6)
Zr1—Br32.5531 (5)C7—H70.9500
Zr1—Br42.5862 (5)C7—C81.430 (5)
Zr1—C12.607 (3)C8—C91.435 (5)
Zr1—C22.453 (3)C9—H91.0000
Zr1—C32.495 (4)C10—H10A0.9800
Zr1—C82.491 (4)C10—H10B0.9800
Zr1—C92.445 (4)C10—H10C0.9800
Zr2—Br12.7325 (5)C11—H11A0.9800
Zr2—Br22.7881 (5)C11—H11B0.9800
Zr2—Br52.5391 (5)C11—H11C0.9800
Zr2—Br62.5820 (5)C12—C131.435 (5)
Zr2—C122.611 (3)C12—C201.437 (5)
Zr2—C132.474 (3)C13—H131.0000
Zr2—C142.497 (3)C13—C141.445 (5)
Zr2—C192.479 (3)C14—C151.415 (5)
Zr2—C202.436 (3)C14—C191.427 (5)
N1—C11.355 (5)C15—H150.9500
N1—C101.452 (5)C15—C161.376 (5)
N1—C111.461 (5)C16—H160.9500
N2—C121.348 (5)C16—C171.418 (5)
N2—C211.460 (5)C17—H170.9500
N2—C221.460 (5)C17—C181.374 (5)
C1—C21.429 (5)C18—H180.9500
C1—C91.436 (5)C18—C191.420 (5)
C2—H21.0000C19—C201.443 (5)
C2—C31.446 (5)C20—H201.0000
C3—C41.414 (5)C21—H21A0.9800
C3—C81.426 (5)C21—H21B0.9800
C4—H40.9500C21—H21C0.9800
C4—C51.366 (6)C22—H22A0.9800
C5—H50.9500C22—H22B0.9800
C5—C61.414 (6)C22—H22C0.9800
Br2—Zr1—Br176.248 (13)C4—C3—C2132.0 (3)
Br3—Zr1—Br182.618 (15)C4—C3—C8120.8 (3)
Br3—Zr1—Br2133.232 (17)C8—C3—Zr173.2 (2)
Br3—Zr1—Br490.069 (16)C8—C3—C2107.2 (3)
Br3—Zr1—C184.27 (8)C3—C4—H4120.9
Br4—Zr1—Br1143.296 (17)C5—C4—C3118.2 (4)
Br4—Zr1—Br283.207 (15)C5—C4—H4120.9
Br4—Zr1—C1106.38 (8)C4—C5—H5119.1
C1—Zr1—Br1108.57 (8)C4—C5—C6121.7 (4)
C1—Zr1—Br2141.97 (8)C6—C5—H5119.1
C2—Zr1—Br179.02 (8)C5—C6—H6119.2
C2—Zr1—Br2121.59 (9)C7—C6—C5121.6 (4)
C2—Zr1—Br393.84 (9)C7—C6—H6119.2
C2—Zr1—Br4137.53 (8)C6—C7—H7120.8
C2—Zr1—C132.62 (11)C6—C7—C8118.4 (4)
C2—Zr1—C333.97 (12)C8—C7—H7120.8
C2—Zr1—C855.74 (12)C3—C8—Zr173.5 (2)
C3—Zr1—Br182.66 (9)C3—C8—C7119.2 (3)
C3—Zr1—Br290.58 (8)C3—C8—C9108.3 (3)
C3—Zr1—Br3127.65 (8)C7—C8—Zr1119.5 (2)
C3—Zr1—Br4128.11 (9)C7—C8—C9132.5 (4)
C3—Zr1—C154.16 (11)C9—C8—Zr171.3 (2)
C8—Zr1—Br1114.48 (9)Zr1—C9—H9125.1
C8—Zr1—Br289.10 (8)C1—C9—Zr179.8 (2)
C8—Zr1—Br3137.66 (8)C1—C9—H9125.1
C8—Zr1—Br495.00 (9)C8—C9—Zr174.9 (2)
C8—Zr1—C153.97 (11)C8—C9—C1107.5 (3)
C8—Zr1—C333.24 (12)C8—C9—H9125.1
C9—Zr1—Br1134.33 (9)N1—C10—H10A109.5
C9—Zr1—Br2118.29 (9)N1—C10—H10B109.5
C9—Zr1—Br3106.39 (9)N1—C10—H10C109.5
C9—Zr1—Br482.25 (9)H10A—C10—H10B109.5
C9—Zr1—C132.83 (11)H10A—C10—H10C109.5
C9—Zr1—C256.10 (12)H10B—C10—H10C109.5
C9—Zr1—C355.98 (12)N1—C11—H11A109.5
C9—Zr1—C833.79 (12)N1—C11—H11B109.5
Br1—Zr2—Br275.823 (13)N1—C11—H11C109.5
Br5—Zr2—Br1130.298 (17)H11A—C11—H11B109.5
Br5—Zr2—Br284.624 (15)H11A—C11—H11C109.5
Br5—Zr2—Br692.208 (16)H11B—C11—H11C109.5
Br5—Zr2—C1284.51 (8)N2—C12—Zr2126.9 (2)
Br6—Zr2—Br180.623 (14)N2—C12—C13126.3 (3)
Br6—Zr2—Br2145.776 (17)N2—C12—C20126.6 (3)
Br6—Zr2—C12107.29 (8)C13—C12—Zr268.41 (19)
C12—Zr2—Br1144.67 (8)C13—C12—C20106.9 (3)
C12—Zr2—Br2106.31 (8)C20—C12—Zr266.86 (19)
C13—Zr2—Br1121.87 (8)Zr2—C13—H13125.1
C13—Zr2—Br277.50 (8)C12—C13—Zr279.0 (2)
C13—Zr2—Br596.80 (8)C12—C13—H13125.1
C13—Zr2—Br6136.60 (8)C12—C13—C14108.0 (3)
C13—Zr2—C1232.64 (11)C14—C13—Zr274.00 (19)
C13—Zr2—C1433.80 (11)C14—C13—H13125.1
C13—Zr2—C1955.77 (11)C13—C14—Zr272.21 (19)
C14—Zr2—Br192.08 (8)C15—C14—Zr2117.8 (2)
C14—Zr2—Br282.87 (8)C15—C14—C13132.2 (3)
C14—Zr2—Br5130.59 (8)C15—C14—C19120.2 (3)
C14—Zr2—Br6122.81 (8)C19—C14—Zr272.64 (19)
C14—Zr2—C1254.23 (12)C19—C14—C13107.5 (3)
C19—Zr2—Br192.21 (8)C14—C15—H15120.7
C19—Zr2—Br2115.21 (8)C16—C15—C14118.5 (3)
C19—Zr2—Br5137.19 (8)C16—C15—H15120.7
C19—Zr2—Br689.93 (8)C15—C16—H16119.4
C19—Zr2—C1254.30 (11)C15—C16—C17121.3 (3)
C19—Zr2—C1433.33 (11)C17—C16—H16119.4
C20—Zr2—Br1122.31 (8)C16—C17—H17119.2
C20—Zr2—Br2133.25 (8)C18—C17—C16121.5 (3)
C20—Zr2—Br5104.43 (8)C18—C17—H17119.2
C20—Zr2—Br680.56 (8)C17—C18—H18120.9
C20—Zr2—C1232.86 (11)C17—C18—C19118.3 (3)
C20—Zr2—C1356.07 (12)C19—C18—H18120.9
C20—Zr2—C1456.14 (12)C14—C19—Zr274.03 (19)
C20—Zr2—C1934.12 (12)C14—C19—C20108.0 (3)
Zr2—Br1—Zr1103.816 (15)C18—C19—Zr2117.7 (2)
Zr1—Br2—Zr2103.905 (15)C18—C19—C14120.2 (3)
C1—N1—C10119.1 (3)C18—C19—C20131.7 (3)
C1—N1—C11119.5 (3)C20—C19—Zr271.29 (19)
C10—N1—C11118.2 (3)Zr2—C20—H20125.0
C12—N2—C21118.8 (3)C12—C20—Zr280.3 (2)
C12—N2—C22119.9 (3)C12—C20—C19107.7 (3)
C22—N2—C21117.1 (3)C12—C20—H20125.0
N1—C1—Zr1126.7 (2)C19—C20—Zr274.6 (2)
N1—C1—C2126.1 (3)C19—C20—H20125.0
N1—C1—C9126.7 (3)N2—C21—H21A109.5
C2—C1—Zr167.75 (19)N2—C21—H21B109.5
C2—C1—C9107.0 (3)N2—C21—H21C109.5
C9—C1—Zr167.4 (2)H21A—C21—H21B109.5
Zr1—C2—H2125.0H21A—C21—H21C109.5
C1—C2—Zr179.6 (2)H21B—C21—H21C109.5
C1—C2—H2125.0N2—C22—H22A109.5
C1—C2—C3107.9 (3)N2—C22—H22B109.5
C3—C2—Zr174.6 (2)N2—C22—H22C109.5
C3—C2—H2125.0H22A—C22—H22B109.5
C2—C3—Zr171.4 (2)H22A—C22—H22C109.5
C4—C3—Zr1118.8 (2)H22B—C22—H22C109.5
Zr1—C1—C2—C370.0 (2)C6—C7—C8—C9179.1 (4)
Zr1—C1—C9—C870.4 (2)C7—C8—C9—Zr1113.2 (4)
Zr1—C2—C3—C4112.4 (4)C7—C8—C9—C1172.9 (4)
Zr1—C2—C3—C865.0 (2)C8—C3—C4—C52.1 (5)
Zr1—C3—C4—C588.9 (4)C9—C1—C2—Zr155.9 (2)
Zr1—C3—C8—C7115.0 (3)C9—C1—C2—C314.0 (4)
Zr1—C3—C8—C963.3 (2)C10—N1—C1—Zr183.6 (4)
Zr1—C8—C9—C173.9 (2)C10—N1—C1—C24.1 (5)
Zr2—C12—C13—C1469.0 (2)C10—N1—C1—C9171.1 (3)
Zr2—C12—C20—C1970.3 (2)C11—N1—C1—Zr175.6 (4)
Zr2—C13—C14—C15111.7 (4)C11—N1—C1—C2163.3 (3)
Zr2—C13—C14—C1964.5 (2)C11—N1—C1—C911.9 (6)
Zr2—C14—C15—C1687.4 (4)C12—C13—C14—Zr272.4 (2)
Zr2—C14—C19—C18113.1 (3)C12—C13—C14—C15175.9 (4)
Zr2—C14—C19—C2063.7 (2)C12—C13—C14—C197.8 (4)
Zr2—C19—C20—C1274.2 (2)C13—C12—C20—Zr256.7 (2)
N1—C1—C2—Zr1120.0 (4)C13—C12—C20—C1913.5 (4)
N1—C1—C2—C3170.0 (3)C13—C14—C15—C16178.1 (4)
N1—C1—C9—Zr1119.8 (4)C13—C14—C19—Zr264.3 (2)
N1—C1—C9—C8169.8 (3)C13—C14—C19—C18177.4 (3)
N2—C12—C13—Zr2120.6 (4)C13—C14—C19—C200.6 (4)
N2—C12—C13—C14170.4 (3)C14—C15—C16—C171.5 (5)
N2—C12—C20—Zr2119.7 (4)C14—C19—C20—Zr265.5 (2)
N2—C12—C20—C19170.1 (3)C14—C19—C20—C128.8 (4)
C1—C2—C3—Zr173.4 (2)C15—C14—C19—Zr2112.6 (3)
C1—C2—C3—C4174.1 (4)C15—C14—C19—C180.6 (5)
C1—C2—C3—C88.4 (4)C15—C14—C19—C20176.2 (3)
C2—C1—C9—Zr156.2 (2)C15—C16—C17—C180.8 (6)
C2—C1—C9—C814.3 (4)C16—C17—C18—C192.4 (5)
C2—C3—C4—C5179.2 (4)C17—C18—C19—Zr288.6 (4)
C2—C3—C8—Zr163.8 (2)C17—C18—C19—C141.7 (5)
C2—C3—C8—C7178.8 (3)C17—C18—C19—C20177.6 (4)
C2—C3—C8—C90.5 (4)C18—C19—C20—Zr2110.8 (4)
C3—C4—C5—C61.0 (6)C18—C19—C20—C12174.9 (4)
C3—C8—C9—Zr164.7 (2)C19—C14—C15—C162.2 (5)
C3—C8—C9—C19.1 (4)C20—C12—C13—Zr255.8 (2)
C4—C3—C8—Zr1114.0 (3)C20—C12—C13—C1413.2 (4)
C4—C3—C8—C71.0 (5)C21—N2—C12—Zr282.5 (4)
C4—C3—C8—C9177.3 (3)C21—N2—C12—C136.4 (5)
C4—C5—C6—C71.3 (6)C21—N2—C12—C20169.3 (3)
C5—C6—C7—C82.4 (6)C22—N2—C12—Zr273.8 (4)
C6—C7—C8—Zr188.0 (4)C22—N2—C12—C13162.6 (3)
C6—C7—C8—C31.3 (5)C22—N2—C12—C2013.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br4i1.002.963.694 (4)131
C4—H4···Br4i0.953.353.944 (4)123
C4—H4···Br5ii0.953.424.123 (4)132
C5—H5···Br50.953.533.998 (4)113
C5—H5···Br5ii0.953.524.182 (4)129
C5—H5···Br6ii0.952.933.840 (4)162
C10—H10C···Br30.982.883.613 (4)133
C11—H11A···Br6iii0.982.913.817 (4)154
C11—H11B···Br30.983.213.843 (4)124
C11—H11B···Br5iv0.983.443.919 (4)113
C13—H13···Br6v1.003.043.690 (4)124
C15—H15···Br6v0.953.043.655 (4)124
C16—H16···Br30.953.273.763 (4)114
C16—H16···Br3vi0.953.153.754 (4)123
C17—H17···Br3vi0.952.973.665 (4)131
C18—H18···Br2vii0.953.013.897 (4)155
C20—H20···Br4vii1.003.174.115 (4)158
C21—H21B···Br50.982.943.660 (4)131
C21—H21C···Br3viii0.983.203.811 (4)122
C22—H22A···Br4vii0.983.023.986 (4)167
C22—H22B···Br4viii0.983.363.974 (4)122
C22—H22C···Br50.983.063.738 (4)128
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+3/2, z+1/2; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x+3/2, y1/2, z+1/2; (viii) x+1/2, y+3/2, z1/2.
(II) Dibromidobis[η5-2-(dimethylamino)indenyl]zirconium(IV) top
Crystal data top
[ZrBr2(C11H12N)2]F(000) = 1120
Mr = 567.47Dx = 1.834 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.4476 (5) ÅCell parameters from 9893 reflections
b = 8.3497 (2) Åθ = 2.7–35.7°
c = 14.3737 (4) ŵ = 4.43 mm1
β = 111.854 (1)°T = 100 K
V = 2054.90 (9) Å3Prism, yellow
Z = 40.26 × 0.24 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2525
Tmin = 0.552, Tmax = 0.747k = 1111
13152 measured reflectionsl = 2020
3003 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.039 w = 1/[σ2(Fo2) + (0.0186P)2 + 2.1368P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3003 reflectionsΔρmax = 0.45 e Å3
125 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.50000.74647 (2)0.75000.00832 (4)
Br10.38964 (2)0.96156 (2)0.68020 (2)0.01412 (4)
N10.35083 (6)0.76823 (12)0.85552 (8)0.01326 (19)
C10.42107 (7)0.70340 (14)0.86778 (8)0.0114 (2)
C20.49565 (7)0.77305 (14)0.92202 (9)0.0116 (2)
H20.50450.87460.96160.014*
C30.55415 (7)0.65358 (14)0.93154 (8)0.0120 (2)
C40.63626 (7)0.65095 (16)0.98526 (9)0.0156 (2)
H40.66250.74211.02210.019*
C50.67705 (7)0.51419 (17)0.98303 (10)0.0175 (2)
H50.73190.51121.01900.021*
C60.63885 (7)0.37755 (16)0.92804 (9)0.0167 (2)
H60.66840.28390.92930.020*
C70.55973 (7)0.37769 (14)0.87287 (9)0.0148 (2)
H70.53480.28570.83580.018*
C80.51605 (7)0.51796 (14)0.87243 (9)0.0116 (2)
C90.43396 (7)0.55692 (14)0.82397 (9)0.0119 (2)
H90.39220.47980.78510.014*
C100.34843 (7)0.92403 (15)0.89929 (10)0.0166 (2)
H10A0.38130.92220.97080.025*
H10B0.29450.94920.89110.025*
H10C0.36781.00580.86550.025*
C110.28038 (7)0.69950 (17)0.78212 (10)0.0184 (2)
H11A0.27840.58480.79530.028*
H11B0.28070.71480.71470.028*
H11C0.23450.75260.78680.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.00882 (7)0.00802 (7)0.00796 (7)0.0000.00294 (5)0.000
Br10.01459 (6)0.01476 (6)0.01381 (6)0.00574 (4)0.00618 (4)0.00414 (4)
N10.0113 (4)0.0155 (5)0.0137 (4)0.0001 (4)0.0054 (4)0.0013 (4)
C10.0125 (5)0.0128 (5)0.0098 (5)0.0001 (4)0.0054 (4)0.0011 (4)
C20.0119 (5)0.0130 (5)0.0097 (5)0.0002 (4)0.0041 (4)0.0013 (4)
C30.0134 (5)0.0132 (5)0.0095 (5)0.0007 (4)0.0043 (4)0.0015 (4)
C40.0139 (5)0.0193 (6)0.0119 (5)0.0001 (4)0.0028 (4)0.0008 (4)
C50.0132 (5)0.0230 (6)0.0150 (5)0.0037 (5)0.0037 (4)0.0046 (5)
C60.0190 (6)0.0163 (6)0.0163 (5)0.0067 (4)0.0082 (5)0.0058 (4)
C70.0192 (5)0.0120 (5)0.0142 (5)0.0025 (4)0.0076 (4)0.0029 (4)
C80.0133 (5)0.0115 (5)0.0103 (5)0.0007 (4)0.0048 (4)0.0022 (4)
C90.0125 (5)0.0115 (5)0.0115 (5)0.0011 (4)0.0045 (4)0.0003 (4)
C100.0169 (5)0.0177 (6)0.0168 (5)0.0035 (4)0.0081 (4)0.0015 (4)
C110.0112 (5)0.0225 (6)0.0200 (6)0.0021 (5)0.0042 (4)0.0007 (5)
Geometric parameters (Å, º) top
Zr1—Br12.6183 (2)C3—C41.4215 (16)
Zr1—Br1i2.6183 (2)C3—C81.4330 (16)
Zr1—C12.6365 (11)C4—H40.9500
Zr1—C1i2.6365 (11)C4—C51.3745 (18)
Zr1—C22.5134 (11)C5—H50.9500
Zr1—C2i2.5134 (11)C5—C61.4171 (19)
Zr1—C3i2.5432 (11)C6—H60.9500
Zr1—C32.5432 (11)C6—C71.3775 (17)
Zr1—C82.5371 (11)C7—H70.9500
Zr1—C8i2.5371 (11)C7—C81.4203 (16)
Zr1—C92.4666 (12)C8—C91.4488 (16)
Zr1—C9i2.4665 (12)C9—H91.0000
N1—C11.3538 (15)C10—H10A0.9800
N1—C101.4529 (16)C10—H10B0.9800
N1—C111.4528 (16)C10—H10C0.9800
C1—C21.4284 (16)C11—H11A0.9800
C1—C91.4355 (16)C11—H11B0.9800
C2—H21.0000C11—H11C0.9800
C2—C31.4382 (16)
Br1i—Zr1—Br193.390 (7)C9—Zr1—C8i82.39 (4)
Br1i—Zr1—C1112.58 (3)C9i—Zr1—C882.39 (4)
Br1i—Zr1—C1i78.64 (3)C9i—Zr1—C8i33.62 (4)
Br1—Zr1—C178.64 (3)C9i—Zr1—C9100.17 (6)
Br1—Zr1—C1i112.58 (3)C1—N1—C10118.92 (10)
C1—Zr1—C1i164.32 (5)C1—N1—C11119.38 (10)
C2i—Zr1—Br1i90.65 (3)C11—N1—C10120.33 (10)
C2—Zr1—Br1i82.39 (3)N1—C1—Zr1126.33 (8)
C2—Zr1—Br190.65 (3)N1—C1—C2126.08 (11)
C2i—Zr1—Br182.39 (3)N1—C1—C9126.19 (11)
C2—Zr1—C132.09 (4)C2—C1—Zr169.20 (6)
C2i—Zr1—C1i32.09 (4)C2—C1—C9107.64 (10)
C2—Zr1—C1i150.61 (4)C9—C1—Zr167.25 (6)
C2i—Zr1—C1150.61 (4)Zr1—C2—H2125.2
C2—Zr1—C2i169.87 (5)C1—C2—Zr178.70 (6)
C2—Zr1—C3i153.14 (4)C1—C2—H2125.2
C2i—Zr1—C3153.14 (4)C1—C2—C3107.80 (10)
C2—Zr1—C333.04 (4)C3—C2—Zr174.62 (6)
C2i—Zr1—C3i33.04 (4)C3—C2—H2125.2
C2—Zr1—C8i135.28 (4)C2—C3—Zr172.34 (6)
C2—Zr1—C854.71 (4)C4—C3—Zr1119.62 (8)
C2i—Zr1—C8135.28 (4)C4—C3—C2132.26 (11)
C2i—Zr1—C8i54.71 (4)C4—C3—C8119.88 (11)
C3—Zr1—Br1i82.16 (3)C8—C3—Zr173.38 (6)
C3i—Zr1—Br182.16 (3)C8—C3—C2107.86 (10)
C3—Zr1—Br1123.69 (3)C3—C4—H4120.6
C3i—Zr1—Br1i123.69 (3)C5—C4—C3118.83 (12)
C3—Zr1—C153.09 (4)C5—C4—H4120.6
C3i—Zr1—C1i53.09 (4)C4—C5—H5119.4
C3i—Zr1—C1121.15 (4)C4—C5—C6121.26 (11)
C3—Zr1—C1i121.16 (4)C6—C5—H5119.4
C3—Zr1—C3i144.49 (5)C5—C6—H6119.3
C8i—Zr1—Br1112.13 (3)C7—C6—C5121.39 (11)
C8i—Zr1—Br1i130.91 (3)C7—C6—H6119.3
C8—Zr1—Br1i112.13 (3)C6—C7—H7120.6
C8—Zr1—Br1130.91 (3)C6—C7—C8118.75 (11)
C8i—Zr1—C1i53.26 (4)C8—C7—H7120.6
C8—Zr1—C153.26 (4)C3—C8—Zr173.85 (6)
C8—Zr1—C1i113.14 (4)C3—C8—C9107.57 (10)
C8i—Zr1—C1113.14 (4)C7—C8—Zr1122.88 (8)
C8i—Zr1—C3112.47 (4)C7—C8—C3119.78 (11)
C8—Zr1—C3i112.47 (4)C7—C8—C9132.61 (11)
C8—Zr1—C332.77 (4)C9—C8—Zr170.52 (6)
C8i—Zr1—C3i32.77 (4)Zr1—C9—H9125.1
C8i—Zr1—C882.46 (5)C1—C9—Zr180.30 (7)
C9i—Zr1—Br1i99.61 (3)C1—C9—C8107.14 (10)
C9—Zr1—Br199.61 (3)C1—C9—H9125.1
C9—Zr1—Br1i135.50 (3)C8—C9—Zr175.86 (7)
C9i—Zr1—Br1135.50 (3)C8—C9—H9125.1
C9—Zr1—C1i131.97 (4)N1—C10—H10A109.5
C9—Zr1—C132.46 (4)N1—C10—H10B109.5
C9i—Zr1—C1131.97 (4)N1—C10—H10C109.5
C9i—Zr1—C1i32.46 (4)H10A—C10—H10B109.5
C9—Zr1—C2i133.04 (4)H10A—C10—H10C109.5
C9i—Zr1—C2133.04 (4)H10B—C10—H10C109.5
C9—Zr1—C255.31 (4)N1—C11—H11A109.5
C9i—Zr1—C2i55.31 (4)N1—C11—H11B109.5
C9—Zr1—C355.28 (4)N1—C11—H11C109.5
C9i—Zr1—C3100.26 (4)H11A—C11—H11B109.5
C9i—Zr1—C3i55.28 (4)H11A—C11—H11C109.5
C9—Zr1—C3i100.26 (4)H11B—C11—H11C109.5
C9—Zr1—C833.62 (4)
Zr1—C1—C2—C369.62 (8)C3—C8—C9—Zr165.07 (8)
Zr1—C1—C9—C871.81 (8)C3—C8—C9—C19.88 (13)
Zr1—C2—C3—C4114.30 (13)C4—C3—C8—Zr1115.04 (10)
Zr1—C2—C3—C865.30 (8)C4—C3—C8—C73.99 (17)
Zr1—C3—C4—C590.04 (13)C4—C3—C8—C9177.92 (10)
Zr1—C3—C8—C7119.04 (11)C4—C5—C6—C71.52 (19)
Zr1—C3—C8—C962.88 (8)C5—C6—C7—C80.58 (18)
Zr1—C8—C9—C174.95 (8)C6—C7—C8—Zr187.19 (13)
N1—C1—C2—Zr1120.49 (11)C6—C7—C8—C32.14 (17)
N1—C1—C2—C3169.89 (11)C6—C7—C8—C9179.66 (12)
N1—C1—C9—Zr1119.29 (11)C7—C8—C9—Zr1117.19 (13)
N1—C1—C9—C8168.89 (11)C7—C8—C9—C1167.86 (12)
C1—C2—C3—Zr172.44 (8)C8—C3—C4—C53.07 (17)
C1—C2—C3—C4173.26 (12)C9—C1—C2—Zr156.29 (8)
C1—C2—C3—C87.14 (13)C9—C1—C2—C313.33 (13)
C2—C1—C9—Zr157.49 (8)C10—N1—C1—Zr188.58 (12)
C2—C1—C9—C814.32 (12)C10—N1—C1—C20.89 (17)
C2—C3—C4—C5177.38 (12)C10—N1—C1—C9175.32 (11)
C2—C3—C8—Zr164.61 (8)C11—N1—C1—Zr178.11 (13)
C2—C3—C8—C7176.35 (10)C11—N1—C1—C2167.58 (11)
C2—C3—C8—C91.73 (13)C11—N1—C1—C98.63 (18)
C3—C4—C5—C60.36 (18)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Br1ii0.952.983.8960 (13)163
C6—H6···Br1iii0.953.103.7621 (13)128
C7—H7···Br1iii0.953.093.7493 (12)128
C10—H10A···Br1iv0.983.113.9381 (13)143
C10—H10C···Br10.982.863.5178 (13)125
C11—H11A···Br1v0.983.413.9170 (13)115
C11—H11B···Br10.983.043.6325 (13)120
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y1, z+3/2; (iv) x, y+2, z+1/2; (v) x+1/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Russian Ministry of Education and Science (project No. 2015–14-585–0002, unique identifier RFMEFI61315X0041).

References

First citationBarsties, E., Schaible, S., Prosenc, M.-H., Rief, U., Röll, W., Weyand, O., Dorer, B. & Brintzinger, H.-H. (1996). J. Organomet. Chem. 520, 63–68.  CSD CrossRef CAS Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuffet, J.-C., Arnold, T. A. Q., Turner, Z. R., Angpanitcharoen, P. & O'Hare, D. (2015). RSC Adv. 5, 87456–87464.  CSD CrossRef CAS Google Scholar
First citationChirik, P. J. (2010). Organometallics, 29, 1500–1517.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLebedev, A. Y., Izmer, V. V., Asachenko, A. F., Tzarev, A. A., Uborsky, D. V., Homutova, Y. A., Shperber, E. R., Canich, J. A. M. & Voskoboynikov, A. Z. (2009). Organometallics, 28, 1800–1816.  CSD CrossRef CAS Google Scholar
First citationLuttikhedde, H. J. G., Leino, R. P., Wilén, C.-E., Näsman, J. H., Ahlgrén, M. J. & Pakkanen, T. A. (1996). Organometallics, 15, 3092–3094.  CSD CrossRef CAS Google Scholar
First citationMartín, A., Mena, M. & Palacios, F. (1994). J. Organomet. Chem. 480, c10–c11.  Google Scholar
First citationPinkas, J. & Lamač, M. (2015). Coord. Chem. Rev. 296, 45–90.  CrossRef CAS Google Scholar
First citationRepo, T., Klinga, M., Mutikainen, I., Su, Y., Leskelä, M., Polamo, M., Homsi, M. N., Kuske, F. K. H., Haugg, M., Trabesinger-Rüf, N. & Weinhold, E. G. (1996). Acta Chem. Scand. 50, 1116–1120.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds