

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 30 August 2016
Accepted 7 November 2016

Edited by I. D. Brown, McMaster University, Canada

Keywords: XRD; iron phosphate; alluaudite structure; crystal structure.

CCDC reference: 1515407

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Synthesis and crystal structure of a new alluauditelike iron phosphate $\mathrm{Na}_{2} \mathrm{CaMnFe}\left(\mathrm{PO}_{4}\right)_{3}$

Semeh Jebli,* Abdessalem Badri and Mongi Ben Amara

Unité de Recherche, Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, 5019, Monastir, Tunisia.
*Correspondence e-mail: seme7jebli@gmail.com

A new iron phosphate, disodium calcium manganese(II) iron(III) tris(phosphate), $\mathrm{Na}_{2} \mathrm{CaMnFe}\left(\mathrm{PO}_{4}\right)_{3}$, has been synthesized as single crystals by the flux technique. This compound crystallizes in the monoclinic space group C2/ c. The structure belongs to the alluaudite structural type and thus, it obeys the $X(2) X(1) M(1) M(2)_{2}\left(\mathrm{PO}_{4}\right)_{3}$ general formula. Both the $X(2)$ and $X(1)$ sites are fully occupied by sodium, while $M(1)$ is occupied by calcium and $M(2)$ exhibits a statistical distribution of iron and manganese.

1. Chemical context

A promising line of research in the materials science field is the creation of materials based on inorganic phosphates, which have considerable potential for use in laser engineering, optics and electronics owing to their non-linear optical, electrical and luminescent properties. In recent years, iron monophosphates have assumed great importance for their promising applications in several fields such as catalysis (Moffat, 1978), corrosion inhibition (Meisel et al., 1983) and electrochemistry as a positive electrode for lithium ion batteries (Padhi et al., 1997; Ravet et al.,2005; Trad et al., 2010). The physical properties of inorganic materials are related to their structure. A large number of iron phosphates belong to the alluaudite structure type (Yakubovich et al., 1977; Corbin et al., 1986; Korzenski et al., 1998; Hatert et al., 2003; Strutynska et al., 2013) discovered for the first time from natural minerals by Fisher (1955). The term alluaudite refers to a large family of natural or synthetic compounds with the general formula proposed by Moore (1971) of $X(2) X(1) M(1) M(2)_{2}\left(\mathrm{PO}_{4}\right)_{3}$ with X and M being cationic sites ranked in descending order of size. The M sites are fully occupied while the X sites can be empty or partially occupied. In this paper, we report a structural study of a new composition of alluaudite-like iron phosphate $\mathrm{Na}_{2} \mathrm{CaMn}$ $\mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$. In this compound the $M(1)$ and $M(2)$ sites are occupied by Ca and $(0.5 \mathrm{Mn}+0.5 \mathrm{Fe})$, respectively, while the $X(1)$ and $X(2)$ sites are fully occupied by Na atoms.

In iron phosphates adopting the alluaudite-type structure, the $M(2)$ site is often preferentially occupied by iron with oxidation state + III. Consequently, and on basis of the Mössbauer spectroscopy results observed in similar compounds, the presence of $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Mn}^{\mathrm{III}}$ in the $M(2)$ site was not considered in the $\mathrm{Na}_{2} \mathrm{CaMnFe}\left(\mathrm{PO}_{4}\right)_{3}$ compound. Indeed, in $\mathrm{Na}_{2} \mathrm{Mn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$ (Hidouri et al., 2011), iron and manganese adopt exclusively the oxidation states + III and +II , respectively, whereas in $\mathrm{NaMnFe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Trad et al., 2010), $\mathrm{Mn}^{\mathrm{III}}$ and $\mathrm{Fe}^{\mathrm{II}}$ were observed in very low amounts, leading to a Mn / Fe ratio close to 1 .

Figure 1
View of a chain showing the distorted octahedral sites $M(1)$ (orange polyhedra) and $M(2)$ (cyan polyhedra).

2. Structural commentary

The structure of the title compound consists of infinite chains (Fig. 1) formed by a succession of pairs of $M(2) \mathrm{O}_{6}$ octahedra linked together by common edges and sharing edges with a strongly distorted $M(1) \mathrm{O}_{8}$ polyhedron. Connected equivalent chains through the PO_{4} tetrahedra lead to the formation of sheets stacked parallel to the $a c$ plane (Fig. 2) and interconnected along the b axis by PO_{4} tetrahedra. The resulting three-dimensional anionic framework exhibits two kinds of tunnels parallel to the c axis situated at $(1 / 2,0, z)$ and $(0,0, z)$ (Fig. 3) and occupied by the Na^{+}ions. Fig. 4 shows the displacement ellipsoids of the coordination polyhedra of Ca , $\mathrm{Mn} / \mathrm{Fe}, \mathrm{P} 1$ and P 2 .

The $M(2)-\mathrm{O}$ distances and the $\mathrm{O}-M(2)-\mathrm{O}$ angles range from 2.027 (2) to 2.246 (2) A and from 80.11 (9) to 174.29 (9) ${ }^{\circ}$, respectively. This dispersion evidences an important distortion of the $M(2) \mathrm{O}_{6}$ octahedron due to edge-sharing. The $M(1) \mathrm{O}_{8}$ polyhedron is also very distorted as indicated by the $M(1)-\mathrm{O}$ distances and the $\mathrm{O}-M(1)-\mathrm{O}$ angles which vary from 2.336 (2) to 2.951 (3) \AA and from 54.00 (8) to $161.85(8)^{\circ}$, respectively. In the ${\mathrm{P} 1 \mathrm{O}_{4}}^{0}$ and $\mathrm{P}_{2} \mathrm{O}_{4}$ tetrahedra, the $\mathrm{P}-\mathrm{O}$ distances vary between 1.521 (2) and 1.547 (2) A. Their mean distances $\langle\mathrm{P} 1-\mathrm{O}\rangle=1.538$ (2) \AA and $\langle\mathrm{P} 2-\mathrm{O}\rangle=1.537$ (2) \AA are in a good accordance with the value of $1.537 \AA$ calculated by Baur (1974) for monophosphate groups.

Assuming sodium-oxygen distances below 3.0, both the Na 1 and Na 2 sites are surrounded by six oxygen atoms. Their

Figure 2
View showing a sheet made of $M \mathrm{O}_{6}$ octahedra and PO_{4} tetrahedra (light grey).

Figure 3
View of the alluaudite structure in the $a b$ plane. The polyhedra represent a chain of MO_{6} octahedra parallel to [101]; Tunnel 1 (light-green atoms) and Tunnel 2 (dark-green atoms).
environments approximate strongly distorted octahedra (Fig. 5). Note that in the ideal alluaudite-type structure, both $X(2)$ and $X(1)$ sites are eightfold coordinated, such as for example in $\mathrm{Na}_{2} \mathrm{Mn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$ and $\mathrm{Na}_{2} \mathrm{Cd}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{3}$ (Hidouri et al., 2011). However, in $\mathrm{Na}_{4} \mathrm{CaFe}_{4}\left(\mathrm{PO}_{4}\right)_{6}$ (Hidouri et al., 2004), the coordination numbers of the $X(1)$ and $X(2)$ sites are eight and six, respectively. The decrease of the $X(2)$ coordination number seems to be related to the presence of calcium $(0.5 \mathrm{Ca}$ $+0.5 \mathrm{Na})$ in the $M(1)$ site. In the title compound, the decrease

(a)

(c)

(b)

(d)

Figure 4
The environment of atoms (a) $\mathrm{Ca},(b) \mathrm{Mn} / \mathrm{Fe}$, (c) P1 and (d) P 2 .

(a)

(b)

Figure 5
The environment of cations (a) Na 1 and (b) Na 2 .
of the coordination numbers from eight to six for both the $X(1)$ and $X(2)$ sites is probably related to the increase of the calcium content in the $M(1)$ site, which becomes exclusively occupied by calcium.

3. Synthesis and crystallization

Single crystals of the title compound were obtained in a flux of sodium dimolybdate $\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$. A starting mixture of appropriate amounts of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O} \quad(3.999 \mathrm{~g})$; $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(2.472 \mathrm{~g}) ; \mathrm{CaCO}_{3}(0.985 \mathrm{~g}) ;\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ (3.921 g) ; $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.845 \mathrm{~g})$ and $\mathrm{MoO}_{3}(2.148 \mathrm{~g})$ was dissolved in nitric acid and then dried for 24 h at 353 K . The dry residue was well ground in an agate mortar and was gradually heated up to 873 K in a platinum crucible to evacuate the decomposition products $\mathrm{NH}_{3}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. Then, the obtained product was melted for 1 h at 1073 K and was cooled slowly to 473 K at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. Finally, hexagonally shaped brown crystals of $\mathrm{Na}_{2} \mathrm{CaMnFe}\left(\mathrm{PO}_{4}\right)_{3}$ were obtained after washing the mixture with boiling water.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The refinement was performed on the basis of electrical neutrality and previous work. Application of direct methods revealed the position of the site, labeled $M(2)$, statistically occupied by the Fe^{3+} and Mn^{2+} ions. This distribution was supported by the $M(2)-\mathrm{O}$ distances, which range between those of $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{Fe}-\mathrm{O}$ observed in similar environments.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.
Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany. Corbin, D. R., Whitney, J. F., Fultz, W. C., Stucky, G. D., Eddy, M. M. \& Cheetham, A. K. (1986). Inorg. Chem. 25, 2279-2280.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Table 1
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.028,0.081,1.07$
No. of reflections 1333
No. of parameters 97
No. of restraints 2
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right) \quad 0.63,-0.90$
Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), XCAD4 (Harms \&
Wocadlo, 1995), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

Fisher, D. J. (1955). Am. Mineral. 40, 1100-1109.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hatert, F., Hermann, R. P., Long, G. J., Fransolet, A.-M. \& Grandjean, F. (2003). Am. Mineral. 88, 211-222.

Hidouri, M., Lajmi, B., Wattiaux, A., Fournés, L., Darriet, J. \& Amara, M. B. (2004). J. Solid State Chem. 177, 55-60.

Hidouri, M., Wattiaux, A., Fournés, L., Darriet, J. \& Amara, M. B. (2011). C. R. Chim. 14, 904-910.

Korzenski, M. B., Schimek, G. L., Kolis, J. W. \& Long, G. J. (1998). J. Solid State Chem. 139, 152-160.
Meisel, W., Guttmann, H. J. \& Gütlich, P. (1983). Corros. Sci. 23, 1373-1379.
Moffat, J. B. (1978). Catal. Rev. 18, 199-258.
Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Padhi, A., Nanjundaswamy, K. \& Goodenough, J. (1997). J. Electrochem. Soc. 144, 1188-1194.
Ravet, N., Besner, S., Simoneau, M., Vallée, A., Armand, M. \& Magnan, J. F. (2005). US Patent 6,962,666.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Strutynska, N. Yu., Kovba, Ya. Yu., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. \& Slobodyanik, N. S. (2013). Inorg. Mater. 49, 709-714.
Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Lajmi, B., Ben Amara, M. \& Delmas, C. (2010). J. Phys. Chem. C, 114, 1003410044.

Yakubovich, O. V., Simonov, M. A., Tismenko, Y. K. E. \& Belov, N. V. (1977). Dokl. Acad. Nauk SSSR, 236, 1123-1126.

supporting information

Acta Cryst. (2016). E72, 1806-1808 [https://doi.org/10.1107/S2056989016017771]
Synthesis and crystal structure of a new alluaudite-like iron phosphate $\mathrm{Na}_{2} \mathrm{CaMnFe}\left(\mathrm{PO}_{4}\right)_{3}$

Semeh Jebli, Abdessalem Badri and Mongi Ben Amara

Computing details

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Disodium calcium manganese iron tris(phosphate)

Crystal data

$\mathrm{Na}_{2} \mathrm{CaMnFe}\left(\mathrm{PO}_{4}\right)_{3}$
$M_{r}=481.76$
Monoclinic, $C 2 / c$
$a=12.283$ (1) \AA
$b=12.736$ (1) \AA
$c=6.494(5) \AA$
$\beta=114.76$ (3) ${ }^{\circ}$
$V=922.5(7) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius TurboCAD-4
diffractometer
Radiation source: fine-focus sealed tube
non-profiled $\omega / 2 \tau$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min }=0.514, T_{\max }=0.689$
1780 measured reflections
1333 independent reflections

$$
F(000)=936
$$

$D_{\mathrm{x}}=3.469 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=8.0-14.7^{\circ}$
$\mu=4.19 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, brown
$0.22 \times 0.14 \times 0.07 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.081$
$S=1.07$
1333 reflections
97 parameters
2 restraints

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0351 P)^{2}+3.0677 P\right]\)
    where \(P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=0.63\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.90\) e \(\AA^{-3}\)
Extinction correction: SHELXL2014
    (Sheldrick, 2015),
    \(\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}\)
Extinction coefficient: 0.0026 (4)
```


Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Na 1	0.5000	0.0000	0.0000	$0.0223(4)$	
Na 2	0.0000	$0.0217(2)$	0.7500	$0.0464(7)$	
Ca	0.0000	$0.26845(6)$	0.2500	$0.01178(18)$	
Mn	$0.22734(3)$	$0.15466(3)$	$0.14341(7)$	$0.01013(14)$	$0.4999(3)$
Fe	$0.22734(3)$	$0.15466(3)$	$0.14341(7)$	$0.01013(14)$	$0.5001(2)$
P 1	0.0000	$0.27735(8)$	0.7500	$0.0081(2)$	
O 11	$0.05225(18)$	$0.20662(17)$	$0.9616(3)$	$0.0139(4)$	
O 12	$0.0910(2)$	$0.35033(18)$	$0.7174(4)$	$0.0204(5)$	
P 2	$0.23941(6)$	$-0.10428(6)$	$0.13282(11)$	$0.00951(17)$	
O 21	$0.37036(19)$	$-0.08841(17)$	$0.1794(4)$	$0.0160(4)$	
O 22	$0.1756(2)$	$0.00101(19)$	$0.1190(4)$	$0.0228(5)$	
O 23	$0.1718(2)$	$-0.16191(17)$	$-0.0952(4)$	$0.0165(4)$	
O 24	$0.23187(19)$	$-0.17266(18)$	$0.3233(4)$	$0.0164(4)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na 1	$0.0296(10)$	$0.0080(8)$	$0.0110(8)$	$-0.0041(7)$	$-0.0095(7)$	$0.0027(6)$
Na 2	$0.0339(13)$	$0.0492(16)$	$0.0406(15)$	0.000	$0.0004(11)$	0.000
Ca	$0.0109(3)$	$0.0092(4)$	$0.0175(4)$	0.000	$0.0082(3)$	0.000
Mn	$0.0079(2)$	$0.0119(2)$	$0.0101(2)$	$-0.00091(14)$	$0.00324(16)$	$-0.00062(14)$
Fe	$0.0079(2)$	$0.0119(2)$	$0.0101(2)$	$-0.00091(14)$	$0.00324(16)$	$-0.00062(14)$
P 1	$0.0079(4)$	$0.0090(4)$	$0.0060(4)$	0.000	$0.0016(3)$	0.000
O 11	$0.0132(9)$	$0.0180(10)$	$0.0082(8)$	$-0.0031(8)$	$0.0023(7)$	$0.0036(8)$
O 12	$0.0163(10)$	$0.0184(11)$	$0.0255(12)$	$-0.0014(8)$	$0.0076(9)$	$0.0111(9)$
P 2	$0.0116(3)$	$0.0087(3)$	$0.0062(3)$	$0.0015(2)$	$0.0017(2)$	$0.0004(2)$
O 21	$0.0143(9)$	$0.0160(10)$	$0.0160(10)$	$-0.0034(8)$	$0.0049(8)$	$-0.0015(8)$
O 22	$0.0291(12)$	$0.0189(11)$	$0.0173(11)$	$0.0124(9)$	$0.0064(10)$	$-0.0018(9)$
O 23	$0.0211(10)$	$0.0138(10)$	$0.0094(9)$	$-0.0034(8)$	$0.0012(8)$	$-0.0015(8)$
O 24	$0.0159(9)$	$0.0212(11)$	$0.0114(10)$	$-0.0005(9)$	$0.0052(8)$	$0.0028(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Na} 1-\mathrm{O} 21^{\mathrm{i}}$	$2.315(2)$	$\mathrm{Ca}-\mathrm{O} 11^{\mathrm{x}}$	$2.355(3)$
$\mathrm{Na} 1-\mathrm{O} 21^{\mathrm{ii}}$	$2.315(2)$	$\mathrm{Ca}-\mathrm{O} 12^{\mathrm{vi}}$	$2.951(3)$
$\mathrm{Na} 1-\mathrm{O} 12^{\mathrm{iii}}$	$2.357(2)$	$\mathrm{Ca}-\mathrm{O} 12$	$2.951(3)$
$\mathrm{Na} 1-\mathrm{O} 12^{\mathrm{iv}}$	$2.357(2)$	$\mathrm{Mn}-\mathrm{O} 12^{\mathrm{xv}}$	$2.027(2)$
$\mathrm{Na} 1-\mathrm{O} 21^{\mathrm{v}}$	$2.591(2)$	$\mathrm{Mn}-\mathrm{O} 22$	$2.043(3)$
$\mathrm{Na} 1-\mathrm{O} 21$	$2.591(2)$	$\mathrm{Mn}-\mathrm{O} 23^{\mathrm{ix}}$	$2.080(3)$

$\mathrm{Na} 2-\mathrm{O} 22^{\text {vi }}$	2.477 (3)
$\mathrm{Na} 2-\mathrm{O} 22^{\text {vii }}$	2.477 (3)
$\mathrm{Na} 2-\mathrm{O} 22^{\text {viii }}$	2.645 (3)
$\mathrm{Na} 2-\mathrm{O} 22^{\text {ix }}$	2.645 (3)
$\mathrm{Na} 2-\mathrm{O} 11^{\text {x }}$	2.667 (3)
Na2-O11	2.667 (3)
$\mathrm{Ca}-\mathrm{O} 21^{\text {xi }}$	2.336 (2)
$\mathrm{Ca}-\mathrm{O} 21{ }^{\text {xii }}$	2.336 (2)
$\mathrm{Ca}-\mathrm{O} 23^{\text {xiii }}$	2.351 (2)
$\mathrm{Ca}-\mathrm{O} 23{ }^{\text {ix }}$	2.351 (2)
$\mathrm{Ca}-\mathrm{O} 11^{\text {xiv }}$	2.355 (3)
$\mathrm{O} 21{ }^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 21^{\text {ii }}$	180.00 (13)
$\mathrm{O} 21{ }^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 12{ }^{\text {iii }}$	96.91 (9)
$\mathrm{O} 21{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 12^{\text {iii }}$	83.09 (9)
$\mathrm{O} 21-\mathrm{Na}-\mathrm{O} 12^{\mathrm{iv}}$	83.09 (9)
$\mathrm{O} 21{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 12^{\text {iv }}$	96.91 (9)
$\mathrm{O} 12{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 12^{\text {iv }}$	180.00 (13)
$\mathrm{O} 21{ }^{\text {i }}-\mathrm{Na} 1-\mathrm{O} 21^{\text {v }}$	72.85 (9)
$\mathrm{O} 21{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 21^{\mathrm{v}}$	107.15 (9)
$\mathrm{O} 12{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 21^{\mathrm{v}}$	72.01 (9)
$\mathrm{O} 12{ }^{\text {iv }}-\mathrm{Na} 1-\mathrm{O} 21^{\mathrm{v}}$	107.99 (9)
$\mathrm{O} 21{ }^{\mathrm{i}}$ - $\mathrm{Na}-\mathrm{O} 21$	107.15 (9)
$\mathrm{O} 21{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{O} 21$	72.85 (9)
$\mathrm{O} 12{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 21$	107.99 (9)
$\mathrm{O} 12{ }^{\text {iv }}-\mathrm{Na} 1-\mathrm{O} 21$	72.01 (9)
$\mathrm{O} 21{ }^{\mathrm{v}}-\mathrm{Na} 1-\mathrm{O} 21$	180.0
$\mathrm{O} 22^{\text {vi }}-\mathrm{Na} 2-\mathrm{O} 22^{\text {vii }}$	167.80 (17)
$\mathrm{O} 22^{\text {vi }}$ - $\mathrm{Na} 2-\mathrm{O} 22^{\text {viii }}$	78.62 (9)
$\mathrm{O} 22^{\text {vii }}-\mathrm{Na} 2-\mathrm{O} 22^{\text {viii }}$	100.03 (9)
$\mathrm{O} 22^{\mathrm{vi}}-\mathrm{Na} 2-\mathrm{O} 22^{\text {ix }}$	100.03 (9)
$\mathrm{O} 22^{\text {vii }}-\mathrm{Na} 2-\mathrm{O} 22^{\text {ix }}$	78.62 (9)
$\mathrm{O} 22^{\text {viii- }}$ - $\mathrm{Na} 2-\mathrm{O} 22^{\text {ix }}$	167.47 (16)
$\mathrm{O} 22^{\text {vi }}-\mathrm{Na} 2-\mathrm{O} 11^{\text {x }}$	70.80 (8)
$\mathrm{O} 22^{\text {vii }}$ - $\mathrm{Na} 2-\mathrm{O} 11^{\text {x }}$	121.10 (12)
$\mathrm{O} 22{ }^{\text {viii }}-\mathrm{Na} 2-\mathrm{O} 11^{\text {x }}$	102.10 (9)
$\mathrm{O} 22^{\mathrm{ix}}$ - $\mathrm{Na} 2-\mathrm{O} 11^{\mathrm{x}}$	89.04 (9)
$\mathrm{O} 22{ }^{\text {vi }}-\mathrm{Na} 2-\mathrm{O} 11$	121.10 (12)
$\mathrm{O} 22{ }^{\text {vii }} \mathrm{-Na}-\mathrm{O} 11$	70.80 (8)
$\mathrm{O} 22^{\text {viii- }} \mathrm{Na} 2-\mathrm{O} 11$	89.04 (9)
$\mathrm{O} 22^{\mathrm{ix}}$ - $\mathrm{Na} 2-\mathrm{O} 11$	102.10 (9)
O11 ${ }^{\text {- }-\mathrm{Na} 2-\mathrm{O} 11}$	55.90 (11)
$\mathrm{O} 21^{\mathrm{xi}}-\mathrm{Ca}-\mathrm{O} 21^{\text {xii }}$	77.41 (11)
$\mathrm{O} 21^{\mathrm{xi}}-\mathrm{Ca}-\mathrm{O} 23^{\text {xiii }}$	161.85 (8)
$\mathrm{O} 21^{\text {xii }}-\mathrm{Ca}-\mathrm{O} 23{ }^{\text {xiii }}$	87.17 (8)
$\mathrm{O} 21^{\text {xi }}-\mathrm{Ca}-\mathrm{O} 23^{\text {ix }}$	87.17 (8)
$\mathrm{O} 21^{\text {xii }}-\mathrm{Ca}-\mathrm{O} 23^{\text {ix }}$	161.85 (8)
$\mathrm{O} 23{ }^{\text {xiii }}-\mathrm{Ca}-\mathrm{O} 23^{\text {ix }}$	109.49 (11)

109.49 (11)

$\mathrm{Mn}-\mathrm{O} 11^{\mathrm{xiv}}$	$2.081(2)$
$\mathrm{Mn}-\mathrm{O} 24^{\mathrm{i}}$	$2.115(3)$
$\mathrm{Mn}-\mathrm{O} 24^{\mathrm{xi}}$	$2.246(2)$
$\mathrm{P} 1-\mathrm{O} 12^{\mathrm{x}}$	$1.535(2)$
$\mathrm{P} 1-\mathrm{O} 12$	$1.535(2)$
$\mathrm{P} 1-\mathrm{O} 11$	$1.541(2)$
$\mathrm{P} 1-\mathrm{O} 11^{\mathrm{x}}$	$1.541(2)$
$\mathrm{P} 2-\mathrm{O} 21$	$1.521(2)$
$\mathrm{P} 2-\mathrm{O} 22$	$1.537(2)$
$\mathrm{P} 2-\mathrm{O} 23$	$1.546(2)$
$\mathrm{P} 2-\mathrm{O} 24$	$1.547(2)$

87.80 (8)
140.93 (11)
81.93 (8)
65.72 (7)
83.03 (8)
121.96 (7)
54.00 (8)
145.50 (7)
65.72 (7)
81.93 (8)
121.96 (7)
83.03 (8)
145.50 (7)
54.00 (8)
138.61 (10)
104.67 (10)
108.27 (10)
84.73 (9)
161.07 (9)
92.66 (9)
80.46 (9)
87.98 (10)
99.38 (10)
161.79 (9)
81.62 (9)
80.11 (9)
174.29 (9)
90.82 (8)
83.06 (8)
83.79 (9)
105.48 (19)
106.63 (13)
114.95 (12)
114.95 (12)
106.63 (13)
108.44 (18)

$\mathrm{O} 21^{\text {xi }}-\mathrm{Ca}-\mathrm{O} 11^{\text {xiv }}$	$91.53(8)$	$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 22$	$111.53(14)$
$\mathrm{O} 21^{\text {xii }}-\mathrm{Ca}-\mathrm{O} 11^{\text {xiv }}$	$119.68(8)$	$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 23$	$110.66(13)$
$\mathrm{O} 23^{\text {xiii }}-\mathrm{Ca}-\mathrm{O} 11^{\text {xiv }}$	$87.80(8)$	$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 23$	$107.57(13)$
$\mathrm{O} 23^{\mathrm{ix}}-\mathrm{Ca}-\mathrm{O} 11^{\text {xiv }}$	$69.66(8)$	$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 24$	$109.17(13)$
$\mathrm{O} 21^{\mathrm{xi}}-\mathrm{Ca}-\mathrm{O} 11^{\mathrm{x}}$	$119.68(8)$	$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 24$	$109.76(14)$
$\mathrm{O} 21^{\text {xii }}-\mathrm{Ca}-\mathrm{O} 11^{\mathrm{x}}$	$91.53(8)$	$\mathrm{O} 23-\mathrm{P} 2-\mathrm{O} 24$	$108.08(13)$
$\mathrm{O} 23^{\mathrm{xiii}}-\mathrm{Ca}-\mathrm{O} 11^{\mathrm{x}}$	$69.66(8)$		

Symmetry codes: (i) $x,-y, z-1 / 2$; (ii) $-x+1, y,-z+1 / 2$; (iii) $x+1 / 2,-y+1 / 2, z-1 / 2$; (iv) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (v) $-x+1,-y,-z$; (vi) $-x, y,-z+1 / 2$; (vii) x, y, $z+1$; (viii) $-x,-y,-z+1$; (ix) $x,-y, z+1 / 2$; (x) $-x, y,-z+3 / 2$; (xi) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (xii) $x-1 / 2, y+1 / 2, z$; (xiii) $-x,-y,-z$; (xiv) $x, y, z-1$; (xv) $-x+1 / 2$, $-y+1 / 2,-z+1$.

