

Received 21 October 2016 Accepted 27 October 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hydrogen bonding; piroxicam.

CCDC reference: 1512430

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a 2:1 piroxicam-gentisic acid co-crystal featuring neutral and zwitterionic piroxicam molecules

Elizabeth M. Horstman,^a Jeffery A. Bertke,^b Toby J. Woods^{b*} and Paul J. A. Kenis^a

^aUniversity of Illinois, Department of Chemical and Biomolecular Engineering, 600 S. Mathews Ave, Urbana, IL 61801, USA, and ^bUniversity of Illinois, School of Chemical Sciences, Box 59-1, 505 South Mathews Avenue, Urbana, Illinois 61801, USA. *Correspondence e-mail: tobyw@illinois.edu

A new 2:1 co-crystal of piroxicam and gentisic acid [systematic name: 4-hydroxy-1,1-dioxo-*N*-(pyridin-2-yl)-2*H*-1 λ^6 ,2-benzothiazine-3-carboxamide-2-(4-oxido-1,1-dioxo-2*H*-1 λ^6 ,2-benzothiazine-3-amido)pyridin-1-ium-2,5-dihydroxybenzoic acid, 2C₁₅H₁₃N₃O₄S·C₇H₆O₄] has been synthesized using a microfluidic platform and initially identified using Raman spectroscopy. In the co-crystal, one piroxicam molecule is in its neutral form and an intramolecular O-H···O hydrogen bond is observed. The other piroxicam molecule is zwitterionic (proton transfer from the OH group to the pyridine N atom) and two intramolecular N-H···O hydrogen bonds occur. The gentisic acid molecule shows whole-molecule disorder over two sets of sites in a 0.809 (2):0.191 (2) ratio. In the crystal, extensive hydrogen bonding between the components forms layers propagating in the *ab* plane.

1. Chemical context

Piroxicam is a non-steroidal anti-inflammatory drug classified as a BCS Class II drug due to its low aqueous solubility (Amidon et al., 1995; Thayer, 2010). Co-crystallization of an active pharmaceutical ingredient (API) and an FDAapproved counter-ion is a common technique employed to increase the solubility of the API (Trask et al., 2005). In this work, we explored the co-crystallization of piroxicam and gentisic acid. In a previous study, piroxicam was co-crystallized with 23 carboxylic acids yielding 50 co-crystals. From this work, three co-crystals of piroxicam and gentisic acid were identified with Raman spectroscopy, but no crystal structures were reported (Childs & Hardcastle, 2007). In our prior work, we reported the crystal structure of two co-crystals of piroxicam and gentisic acid, one was a 1:1 co-crystal and the second was a solvated co-crystal that incorporated acetone into the crystal in a 1:1:1 molar ratio (Horstman et al., 2015). In this work we describe the crystal structure of a 2:1 piroxicam:gentisic acid co-crystal.

2. Structural commentary

The asymmetric unit of this co-crystal consists of two piroxicam molecules and one gentisic acid molecule, with all atoms residing on general positions (Fig. 1). One of the piroxicam molecules is neutral and the other is a zwitterion: the two molecules exhibit two different conformations in the crystal structure. In the neutral S2-containing molecule, intramolecular hydrogen bonding exists between the hydroxyl proton H8 [H···A = 1.79 (3) Å] and the amide oxygen atom O7. In the S2 molecule, free rotation about the C–C bond (C1 and C10) allows a second zwitterionic conformation in which intramolecular hydrogen bonds exist between the amine proton H2 and the enolate oxygen atom O4 [H···A = 1.85 (2) Å] and the pyridinium proton H3 and the amide oxygen atom O3 [H···A = 2.19 (2) Å]. Further details of the hydrogen bonding are provided in Table 1.

The gentisic acid molecule shows whole molecule disorder over two orientations rotated by approximately 180° in the plane of the aromatic ring with site occupancies of 0.809 (2):0.191 (2). The major orientation participates in intramolecular hydrogen bonding between the O11 hydroxide substituent of the benzene ring and the O9 oxygen atom of the carboxylic acid [H···A = 1.89 (3) Å]. The major orientation also participates in intermolecular hydrogen bonding. The minor orientation of the gentisic acid molecule also displays

Figure 1

The molecular structure of the title co-crystal, showing 35% probability ellipsoids for non-H atoms and spheres of arbitrary size for H atoms. Only the major component of the disordered gentisic acid is shown.

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H2···O4	0.88 (2)	1.85 (2)	2.6169 (18)	145.2 (19)
N3-H3···O3	0.78 (2)	1.99 (2)	2.6027 (19)	135 (2)
$N3-H3\cdots O3^{i}$	0.78 (2)	2.19 (2)	2.8034 (19)	136 (2)
O8−H8···O7	0.88 (3)	1.79 (3)	2.5722 (19)	148 (2)
$N5-H5\cdots O9$	0.84 (2)	2.25 (2)	3.074 (2)	167 (2)
$O10-H10\cdots N6$	0.91 (3)	1.74 (3)	2.637 (3)	167 (3)
O11-H11···O9	0.81 (3)	1.89 (3)	2.614 (2)	148 (3)
$O12-H12\cdots O4^{ii}$	0.81 (3)	1.94 (3)	2.738 (3)	164 (4)
$O10B - H10B \cdot \cdot \cdot O4^{ii}$	0.84	1.67	2.508 (12)	172
$O11B - H11B \cdot \cdot \cdot O2^{i}$	0.84	2.57	3.061 (6)	118
$O11B - H11B \cdots O9B$	0.84	1.89	2.614 (9)	143
$O12B - H12B \cdots N6$	0.84	2.10	2.856 (12)	149

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z.

intramolecular hydrogen bonding between the O11*B* hydroxide substituent and the O9*B* oxygen atom of the carboxylic acid ($H \cdots A = 1.89 \text{ Å}$) but does not participate in intermolecular hydrogen bonding.

3. Supramolecular features

In the crystal, hydrogen bonds (Table 1) between the piroxicam and gentisic acid molecules form hexameric units that propagate along the *a*-axis direction (Fig. 2). These units pack into layers in the *ab* plane; the layers stack along the *c*-axis direction, Fig. 3.

The repeating motif of the hexameric unit is formed by one gentisic acid molecule hydrogen bonded to two piroxicam molecules, one of each conformation (*i.e.* neutral and zwitterion). The non-zwitterionic form of piroxicam accepts hydrogen bonds from the gentisic acid *via* $O-H\cdots N$ bonds between the carboxylic acid and the pyridine ring of piroxicam $[H\cdots A = 1.74 (3) \text{ Å}]$ as well as $N-H\cdots O$ bonds between the carbonyl oxygen atom of gentisic acid and the amine nitrogen atom of piroxicam $[H\cdots A = 2.25 (2) \text{ Å}]$. The zwitterionic form of piroxicam accepts hydrogen bonds from the gentisic acid *via* $O-H\cdots O$ bonds between the 5-hydroxy substituent of gentisic acid and the enolate oxygen atom of piroxicam $[H\cdots A = 1.94 (3) \text{ Å}]$. The repeat units are linked together by $N-H\cdots O$ bonds between the pyridinium nitrogen atoms and

Ball-and-stick model highlighting the hydrogen-bonding network in the title co-crystal. Only the major component of the disordered gentisic acid is shown. Color key: C gray, N blue, H green, O red, and S yellow. H atoms not involved in hydrogen bonding have been omitted for clarity.

research communications

Figure 3

Ball-and-stick packing diagram of the co-crystal, as viewed approximately down the b axis, highlighting the layers formed by the packing of the hexameric units. Color key: C gray, N blue, O red, and S yellow. H atoms have been omitted for clarity.

the amide oxygen atoms of the zwitterionic form of piroxicam $[H \cdots A = 2.19 (2) \text{ Å}].$

crystals had been identified, we removed the crystals from the microfluidic platform.

4. Synthesis and crystallization

Piroxicam (>=98.0%) and gentisic acid (>=98.0%) were used as purchased from Sigma-Aldrich (St. Louis, MO, USA). Acetonitrile (>=99.9%) was used as purchased from Fisher Scientific (Fair Lawn, NJ, USA). A 1:2 molar ratio of piroxicam:gentisic acid was dissolved in acetonitrile. The concentration of piroxicam in acetonitrile was near saturation (~ 0.034 M). The resulting solution was introduced into a microfluidic platform. The microfluidic platform was a 6×6 array of single microwells (~100 nl) (Horstman et al., 2015). After being filled, the microfluidic platform was placed inside a petri dish and then the petri dish was sealed with parafilm to slow the rate of solvent evaporation. The crystallization solution evaporated over the course of one day, after which crystals were observed via optical microscopy. Specifics of the microfluidic platform fabrication and operation have been previously reported (Horstman et al., 2015). Once crystals were observed, Raman spectroscopy was used to distinguish between crystals. Within one microfluidic chip, three different co-crystals of piroxicam and gentisic acid were observed, two of which had been previously reported (Horstman et al., 2015) and one new solid form, reported here. Once the new co-

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The gentisic acid molecule shows whole molecule disorder over two sets of sites: the like C-Oand C-C distances were restrained to be similar (s.u. 0.01 Å). Similar displacement amplitudes (s.u. 0.01) were imposed on disordered sites overlapping by less than the sum of van der Waals radii.

All O-H and N-H hydrogen atoms were located in the difference map except for those on the minor-disordered component of the gentisic acid. The H atoms located in the difference map were allowed to refine the O-H/N-H bond distances. These H atoms refined to good hydrogen-bonding positions (Hamilton & Ibers, 1968). The hydroxyl H atoms on the minor-disordered component of gentisic acid were optimized by rotation about R-O bonds with idealized O-H and R-H distances. These H atoms are also in good hydrogen-bonding locations. Methyl H-atom positions, R-CH₃, were optimized by rotation about R-C bonds with idealized C-H, $R \cdots$ H and H \cdots H distances. The remaining H atoms were included as riding idealized contributors. Methyl, hydroxyl and amine H atom U_{iso} values were assigned as $1.5U_{eq}$ of the

	• •	•
research	communicat	inne
i cocai chi	communicat	10113

Table 2 Experimental details.

Crystal data	
Chemical formula	$2C_{15}H_{13}N_{3}O_{4}S \cdot C_{7}H_{6}O_{4}$
$M_{ m r}$	816.80
Crystal system, space group	Triclinic, P1
Temperature (K)	105
a, b, c (Å)	8.8764 (3), 13.4060 (5), 15.2678 (6)
α, β, γ (°)	80.4660 (15), 85.4332 (15), 78.4602 (15)
$V(Å^3)$	1753.48 (11)
Z	2
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	2.05
Crystal size (mm)	$0.15\times0.15\times0.03$
Data collection	
Diffractometer	Bruker D8 Venture/Photon 100
Absorption correction	Integration (SADABS; Bruker, 2014)
T_{\min}, T_{\max}	0.867, 0.965
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	49307, 6416, 5801
R _{int}	0.037
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.086, 1.11
No. of reflections	6416
No. of parameters	637
No. of restraints	374
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.24, -0.40
,	,

Computer programs: APEX2, SAINT, XPREP, and XCIF (Bruker, 2014), SHELXS2014-4 and SHELXTL (Sheldrick, 2008), SHELXL2014-6 (Sheldrick, 2015) and CrystalMaker (CrystalMaker, 1994).

carrier atom; remaining H-atom $U_{\rm iso}$ were assigned as 1.2 \times

carrier U_{eq} . The (112) reflection was omitted from the final refinement because it was partially obscured by the shadow of the beamstop in some orientations.

Acknowledgements

The Materials Chemistry Laboratory at the University of Illinois was supported in part by grants NSF CHE 95-03145 and NSF CHE 03-43032 from the National Science Foundation.

References

- Amidon, G. L., Lennernäs, H., Shah, V. P. & Crison, J. R. (1995). Pharm. Res. 12, 413-420.
- Bruker (2014). APEX2, SAINT, XPREP, XCIF and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Childs, S. L. & Hardcastle, K. I. (2007). Cryst. Growth Des. 7, 1291-1304.

CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England. www.CrystalMaker.com.

Hamilton, W. C. & Ibers, J. A. (1968). In Hydrogen Bonding in Solids. New York: W. A. Benjamin Inc.

Horstman, E. M., Bertke, J. A., Kim, E. H., Gonzalez, L. C., Zhang, G. G. Z., Gong, Y. & Kenis, P. J. A. (2015). CrystEngComm, 17, 5299-5306.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Thayer, A. M. (2010). Chem. Eng. News, 88, 13-18.
- Trask, A. V., Motherwell, W. D. S. & Jones, W. (2005). Cryst. Growth Des. 5, 1013-1021.

supporting information

Acta Cryst. (2016). E72, 1714-1717 [https://doi.org/10.1107/S2056989016017321]

Crystal structure of a 2:1 piroxicam-gentisic acid co-crystal featuring neutral and zwitterionic piroxicam molecules

Elizabeth M. Horstman, Jeffery A. Bertke, Toby J. Woods and Paul J. A. Kenis

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014) and *XPREP* (Bruker, 2014); program(s) used to solve structure: *SHELXS2014-4* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014-6* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008), *CrystalMaker* (*CrystalMaker*, 1994); software used to prepare material for publication: *XCIF* (Bruker, 2014).

 $\label{eq:approx} 4-Hydroxy-1,1-dioxo-N-(pyridin-2-yl)-2H-1\lambda^6,2-benzothiazine-3-carboxamide-2-(4-oxido-1,1-dioxo-2H-1\lambda^6,2-benzothiazine-3-amido)pyridin-1-ium-2,5-dihydroxybenzoic acid$

Crystal data

 $2C_{15}H_{13}N_{3}O_{4}S \cdot C_{7}H_{6}O_{4}$ $M_{r} = 816.80$ Triclinic, *P*1 a = 8.8764 (3) Å b = 13.4060 (5) Å c = 15.2678 (6) Å $a = 80.4660 (15)^{\circ}$ $\beta = 85.4332 (15)^{\circ}$ $\gamma = 78.4602 (15)^{\circ}$ $V = 1753.48 (11) Å^{3}$

Data collection

Bruker D8 Venture/Photon 100 diffractometer Radiation source: microfocus sealed tube Multilayer mirrors monochromator profile data from φ and ω scans Absorption correction: integration (SADABS; Bruker, 2014) $T_{min} = 0.867, T_{max} = 0.965$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.086$ S = 1.116416 reflections Z = 2 F(000) = 848 $D_x = 1.547 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9375 reflections $\theta = 2.9-68.1^{\circ}$ $\mu = 2.05 \text{ mm}^{-1}$ T = 105 KPlate, colourless $0.15 \times 0.15 \times 0.03 \text{ mm}$

49307 measured reflections 6416 independent reflections 5801 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 68.3^\circ, \ \theta_{min} = 2.9^\circ$ $h = -10 \rightarrow 10$ $k = -16 \rightarrow 15$ $l = -18 \rightarrow 18$

637 parameters374 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0348P)^2 + 1.2991P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2014). Thirty frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2013) then corrected for absorption by integration using SAINT/SADABS v2014/2 (Bruker, 2014) to sort, merge, and scale the combined data. No decay correction was applied.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Structure was phased by direct methods (Sheldrick, 2014). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F^2 . The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.90408 (4)	0.14390 (3)	0.54955 (3)	0.01390 (10)	
O1	0.82965 (14)	0.05638 (9)	0.56665 (8)	0.0187 (3)	
O2	0.94543 (13)	0.18072 (9)	0.45902 (8)	0.0171 (3)	
O3	0.63926 (13)	0.43288 (9)	0.53570 (8)	0.0190 (3)	
O4	1.07869 (13)	0.38775 (9)	0.63196 (8)	0.0179 (3)	
N1	0.79315 (16)	0.23889 (11)	0.59094 (9)	0.0146 (3)	
N2	0.82451 (16)	0.51014 (11)	0.57712 (10)	0.0153 (3)	
H2	0.918 (3)	0.4941 (16)	0.5974 (14)	0.023*	
N3	0.60509 (16)	0.63109 (12)	0.53091 (10)	0.0154 (3)	
Н3	0.571 (3)	0.5850 (18)	0.5199 (14)	0.023*	
C1	0.86562 (19)	0.32602 (13)	0.59352 (11)	0.0146 (3)	
C2	1.01351 (19)	0.31258 (13)	0.62393 (11)	0.0146 (3)	
C3	1.10283 (19)	0.20511 (13)	0.64669 (11)	0.0145 (3)	
C4	1.22916 (19)	0.18627 (14)	0.70002 (11)	0.0170 (4)	
H4A	1.2584	0.2418	0.7215	0.020*	
C5	1.3123 (2)	0.08704 (14)	0.72188 (12)	0.0208 (4)	
H5A	1.3976	0.0754	0.7586	0.025*	
C6	1.2726 (2)	0.00480 (14)	0.69087 (12)	0.0214 (4)	
H6A	1.3307	-0.0627	0.7062	0.026*	
C7	1.1480 (2)	0.02107 (14)	0.63738 (12)	0.0186 (4)	
H7A	1.1199	-0.0349	0.6158	0.022*	
C8	1.06514 (19)	0.12048 (13)	0.61587 (11)	0.0148 (3)	
C9	0.6952 (2)	0.21086 (14)	0.67045 (12)	0.0203 (4)	
H9A	0.6442	0.1555	0.6607	0.030*	
H9B	0.6174	0.2711	0.6812	0.030*	
H9C	0.7591	0.1874	0.7221	0.030*	
C10	0.76774 (19)	0.42370 (13)	0.56612 (11)	0.0143 (3)	
C11	0.74705 (19)	0.60956 (13)	0.56233 (11)	0.0138 (3)	
C12	0.5198 (2)	0.72695 (13)	0.51690 (11)	0.0176 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

1110 4	0.4100	0.7275	0.40(1	0.001*	
HI2A	0.4189	0./3/5	0.4961	0.021*	
	0.5776(2)	0.80883 (13)	0.53244 (11)	0.01/9 (4)	
HI3A	0.5187	0.8768	0.5222	0.022*	
C14	0.7258 (2)	0.79029 (13)	0.56383 (11)	0.0165 (3)	
H14A	0.7689	0.8464	0.5744	0.020*	
C15	0.81005 (19)	0.69159 (13)	0.57964 (11)	0.0159 (3)	
H15A	0.9100	0.6793	0.6021	0.019*	
S2	0.69631 (5)	0.91958 (3)	0.90830 (3)	0.01758 (11)	
05	0.55243 (14)	0.92712 (10)	0.86939 (9)	0.0249 (3)	
O6	0.71653 (14)	0.87123 (10)	0.99842 (8)	0.0221 (3)	
07	1.23078 (14)	0.76608 (10)	0.90420 (8)	0.0239 (3)	
08	1.15980 (15)	0.96135 (11)	0.90637 (8)	0.0224 (3)	
H8	1.218 (3)	0.900 (2)	0.9064 (15)	0.034*	
N4	0.83342 (17)	0.85905 (11)	0.84673 (9)	0.0177 (3)	
N5	1.04254 (18)	0.67834 (12)	0.88379 (10)	0.0197 (3)	
Н5	0.950 (3)	0.6828 (18)	0.8715 (15)	0.030*	
N6	1.06042 (17)	0.50686 (12)	0.87478 (11)	0.0243 (4)	
C16	0.9849 (2)	0.86239 (14)	0.87249 (11)	0.0179 (4)	
C17	1.0193 (2)	0.95255 (14)	0.88695 (11)	0.0190 (4)	
C18	0.9022 (2)	1.04731 (14)	0.88701 (11)	0.0186 (4)	
C19	0.9434 (2)	1.14325 (15)	0.88329 (12)	0.0223 (4)	
H19A	1.0489	1.1488	0.8781	0.027*	
C20	0.8303(2)	1.23013 (15)	0.88712 (13)	0.0251 (4)	
H20A	0.8590	1 2953	0.8839	0.030*	
C21	0.6755 (2)	1 22358 (15)	0.89559(12)	0.0236(4)	
H21A	0.5993	1 2840	0.8983	0.028*	
C22	0.6316(2)	1 12915 (14)	0.0903	0.020	
H22A	0.5259	1.12913 (14)	0.9059	0.0203 (4)	
C23	0.3259 0.7451 (2)	1.1241 1.04244 (14)	0.9059	0.025	
C24	0.7451(2) 0.8156(2)	0.88255(15)	0.074035(12)	0.0177(4)	
	0.8150 (2)	0.88233 (13)	0.74933(12) 0.7362	0.025*	
1124A	0.7110	0.8770	0.7302	0.035*	
П24Б	0.8914	0.0527	0.7198	0.035*	
П24С	0.8322	0.9327	0.7270	0.055	
C25	1.0965 (2)	0.70029(14)	0.88/33(11)	0.0195(4)	
C26	1.1243 (2)	0.5//10(14)	0.90290 (12)	0.0190 (4)	
C27	1.1306 (2)	0.40//1 (16)	0.891/8 (16)	0.0338 (5)	
H2/A	1.0865	0.35/6	0.8/08	0.041*	
C28	1.2628 (2)	0.37473 (16)	0.93788 (16)	0.0339 (5)	
H28A	1.3088	0.3038	0.9490	0.041*	
C29	1.3263 (2)	0.44807 (16)	0.96739 (14)	0.0304 (5)	
H29A	1.4172	0.4278	0.9999	0.036*	
C30	1.2588 (2)	0.55046 (16)	0.94990 (13)	0.0254 (4)	
H30A	1.3025	0.6017	0.9693	0.031*	
09	0.72760 (18)	0.66660 (12)	0.81992 (11)	0.0214 (4)	0.809 (2)
O10	0.8016 (3)	0.5013 (2)	0.8038 (3)	0.0235 (7)	0.809 (2)
H10	0.888 (4)	0.514 (2)	0.8249 (19)	0.035*	0.809 (2)
O11	0.47005 (19)	0.77049 (14)	0.75304 (11)	0.0209 (4)	0.809 (2)
H11	0.546 (4)	0.758 (2)	0.782 (2)	0.031*	0.809 (2)

O12	0.3599 (3)	0.3988 (2)	0.6873 (2)	0.0234 (6)	0.809 (2)
H12	0.272 (4)	0.407 (3)	0.672 (2)	0.035*	0.809 (2)
C31	0.5536 (2)	0.58575 (16)	0.75879 (14)	0.0152 (5)	0.809 (2)
C32	0.4463 (3)	0.67789 (19)	0.73843 (19)	0.0152 (6)	0.809 (2)
C33	0.3109 (3)	0.67561 (19)	0.69899 (15)	0.0185 (5)	0.809 (2)
H33A	0.2387	0.7377	0.6840	0.022*	0.809 (2)
C34	0.2805 (3)	0.5836 (2)	0.68143 (17)	0.0186 (5)	0.809 (2)
H34A	0.1877	0.5830	0.6546	0.022*	0.809 (2)
C35	0.3854 (3)	0.49164 (17)	0.70295 (14)	0.0172 (5)	0.809 (2)
C36	0.5210 (5)	0.4934 (2)	0.7409 (4)	0.0163 (7)	0.809 (2)
H36A	0.5931	0.4310	0.7551	0.020*	0.809 (2)
C37	0.6998 (3)	0.5882 (2)	0.79668 (14)	0.0167 (5)	0.809 (2)
O9B	0.1664 (7)	0.5901 (5)	0.6578 (4)	0.0206 (16)	0.191 (2)
O10B	0.3138 (14)	0.4318 (6)	0.6853 (10)	0.021 (2)	0.191 (2)
H10B	0.2402	0.4157	0.6631	0.032*	0.191 (2)
O11B	0.2617 (7)	0.7479 (5)	0.6992 (4)	0.0197 (15)	0.191 (2)
H11B	0.2006	0.7193	0.6775	0.030*	0.191 (2)
O12B	0.7796 (13)	0.4710 (8)	0.8181 (12)	0.023 (3)	0.191 (2)
H12B	0.8381	0.5004	0.8411	0.035*	0.191 (2)
C31B	0.4054 (8)	0.5709 (5)	0.7243 (5)	0.0140 (14)	0.191 (2)
C32B	0.3839 (10)	0.6760 (6)	0.7300 (8)	0.011 (2)	0.191 (2)
C33B	0.4961 (9)	0.7113 (8)	0.7689 (7)	0.0185 (18)	0.191 (2)
H33B	0.4817	0.7822	0.7743	0.022*	0.191 (2)
C34B	0.6284 (10)	0.6449 (6)	0.7999 (6)	0.0200 (17)	0.191 (2)
H34B	0.7037	0.6701	0.8263	0.024*	0.191 (2)
C35B	0.6496 (9)	0.5409 (6)	0.7919 (6)	0.0181 (17)	0.191 (2)
C36B	0.5395 (19)	0.5046 (9)	0.7541 (17)	0.016 (3)	0.191 (2)
H36B	0.5550	0.4338	0.7484	0.019*	0.191 (2)
C37B	0.2857 (10)	0.5323 (6)	0.6866 (7)	0.017 (2)	0.191 (2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01315 (19)	0.0118 (2)	0.0172 (2)	-0.00249 (15)	-0.00408 (15)	-0.00194 (15)
O1	0.0190 (6)	0.0134 (6)	0.0248 (6)	-0.0051 (5)	-0.0039 (5)	-0.0020 (5)
O2	0.0183 (6)	0.0175 (6)	0.0166 (6)	-0.0050 (5)	-0.0041 (5)	-0.0019 (5)
O3	0.0139 (6)	0.0157 (6)	0.0277 (7)	-0.0021 (5)	-0.0080 (5)	-0.0021 (5)
O4	0.0145 (6)	0.0142 (6)	0.0259 (6)	-0.0031 (5)	-0.0062 (5)	-0.0029 (5)
N1	0.0128 (7)	0.0118 (7)	0.0193 (7)	-0.0025 (5)	-0.0020 (6)	-0.0015 (6)
N2	0.0112 (7)	0.0134 (7)	0.0212 (7)	-0.0022 (6)	-0.0049 (6)	-0.0010 (6)
N3	0.0146 (7)	0.0135 (7)	0.0193 (7)	-0.0040 (6)	-0.0042 (6)	-0.0025 (6)
C1	0.0148 (8)	0.0126 (8)	0.0170 (8)	-0.0037 (7)	-0.0024 (6)	-0.0020 (6)
C2	0.0155 (8)	0.0143 (9)	0.0136 (8)	-0.0025 (7)	-0.0016 (6)	-0.0015 (6)
C3	0.0130 (8)	0.0151 (9)	0.0147 (8)	-0.0021 (7)	-0.0016 (6)	-0.0007 (6)
C4	0.0160 (8)	0.0166 (9)	0.0191 (9)	-0.0042 (7)	-0.0039 (7)	-0.0019 (7)
C5	0.0167 (9)	0.0211 (10)	0.0231 (9)	-0.0019 (7)	-0.0081 (7)	0.0022 (7)
C6	0.0183 (9)	0.0156 (9)	0.0275 (10)	0.0019 (7)	-0.0046 (7)	0.0003 (7)
C7	0.0202 (9)	0.0153 (9)	0.0202 (9)	-0.0028 (7)	-0.0028 (7)	-0.0024 (7)

supporting information

C8	0.0124 (8)	0.0167 (9)	0.0148 (8)	-0.0019 (7)	-0.0022 (6)	-0.0014 (7)
C9	0.0193 (9)	0.0186 (9)	0.0228 (9)	-0.0055 (7)	0.0025 (7)	-0.0023 (7)
C10	0.0148 (8)	0.0141 (9)	0.0147 (8)	-0.0038 (7)	-0.0013 (6)	-0.0024 (6)
C11	0.0129 (8)	0.0150 (8)	0.0128 (8)	-0.0021 (6)	-0.0002(6)	-0.0008(6)
C12	0.0155 (8)	0.0162 (9)	0.0197 (9)	-0.0007 (7)	-0.0047 (7)	-0.0002(7)
C13	0.0181 (9)	0.0138 (9)	0.0205 (9)	0.0003 (7)	-0.0018 (7)	-0.0024(7)
C14	0.0183 (8)	0.0158 (9)	0.0162 (8)	-0.0050 (7)	0.0007 (7)	-0.0038(7)
C15	0.0126 (8)	0.0185 (9)	0.0175 (8)	-0.0041(7)	-0.0022(6)	-0.0031(7)
S2	0.0170(2)	0.0154 (2)	0.0212 (2)	-0.00564(16)	-0.00270(16)	-0.00123 (16)
05	0.0197 (7)	0.0201 (7)	0.0361 (8)	-0.0052(5)	-0.0079 (6)	-0.0028(6)
06	0.0242 (7)	0.0200(7)	0.0218(7)	-0.0076(5)	0.0007 (5)	0.0004 (5)
07	0.0175 (6)	0.0289(7)	0.0258(7)	-0.0037(5)	-0.0018(5)	-0.0063(6)
08	0.0186 (6)	0.0261(7)	0.0245(7)	-0.0079(5)	-0.0030(5)	-0.0043(6)
N4	0.0100(0)	0.0201(7) 0.0170(8)	0.0219(7) 0.0179(7)	-0.0054(6)	-0.0051(6)	-0.0023(6)
N5	0.0157(7)	0.0179(8)	0.0245(8)	-0.0002(6)	-0.0042(6)	-0.0022(6)
N6	0.0168(8)	0.0175(8)	0.0215(0)	-0.0002(0)	-0.0032(7)	0.0022(0)
C16	0.0182(9)	0.0206(9)	0.0303(9) 0.0157(8)	-0.0052(7)	-0.0021(7)	-0.0027(7)
C17	0.0102(9)	0.0249(10)	0.0139(8)	-0.0088(7)	-0.0003(7)	-0.0019(7)
C18	0.0190(9) 0.0228(9)	0.0249(10)	0.0139(0) 0.0140(8)	-0.0073(7)	-0.0003(7)	-0.0019(7)
C19	0.0226(9)	0.0203(9)	0.0192(9)	-0.0121(8)	0.0001(7)	-0.0039(7)
C20	0.0250(10) 0.0345(11)	0.0292(10) 0.0198(10)	0.0192(9) 0.0243(10)	-0.0126(8)	0.0019(7)	-0.0058(8)
C21	0.0313(11) 0.0297(10)	0.0196(10)	0.0218(9)	-0.00126(8)	0.0026 (8)	-0.0056(7)
C22	0.0225(9)	0.0190(10) 0.0206(10)	0.0210(9) 0.0188(9)	-0.0055(7)	0.0020(0) 0.0019(7)	-0.0034(7)
C23	0.0223(9) 0.0228(9)	0.0200(10) 0.0179(9)	0.0130(9)	-0.0076(7)	-0.0015(7)	-0.0015(7)
C24	0.0220(9)	0.0179(9)	0.0133(0)	-0.0062(8)	-0.0067(7)	-0.0013(7)
C25	0.0201(10) 0.0195(9)	0.0251(10) 0.0253(10)	0.0135(9) 0.0137(8)	-0.0043(7)	0.0007(7)	-0.0034(7)
C26	0.0155(9)	0.0203(10)	0.0197(0)	-0.0015(7)	0.0001(7)	-0.0001(7)
C27	0.0131(0) 0.0214(10)	0.0201(9)	0.0190(9)	-0.0076(8)	-0.0013(7)	0.0001(7)
C28	0.0211(10) 0.0195(10)	0.0210(11)	0.0591(11) 0.0543(14)	-0.0003(8)	0.002((3))	0.0023(9) 0.0087(9)
C29	0.0178 (9)	0.0210(11) 0.0333(12)	0.0338(11)	0.0011 (8)	-0.0013(8)	0.0069 (9)
C30	0.0217(9)	0.0272(11)	0.0255(10)	-0.0006(8)	-0.0045(8)	-0.0020(8)
09	0.0217(9)	0.0272(11)	0.0298(9)	-0.0042(6)	-0.0090(7)	-0.0047(6)
010	0.0207(3)	0.0150(14)	0.0298(9)	-0.0010(10)	-0.0108(10)	-0.0061(12)
011	0.0210 (9)	0.0120(11)	0.0291(9)	-0.0034(7)	-0.0057(7)	-0.0047(7)
012	0.0210(3) 0.0183(14)	0.0172(14)	0.0291(9) 0.0385(11)	-0.0057(10)	-0.0092(11)	-0.0085(12)
C31	0.0151(10)	0.0172(11)	0.0150(10)	-0.0035(8)	-0.0011(8)	-0.0010(8)
C32	0.0178(14)	0.0120(11)	0.0167(12)	-0.0052(11)	-0.0006(12)	-0.0022(9)
C33	0.0175(12)	0.0120(11) 0.0170(13)	0.0212(12)	0.0002(11)	-0.0034(9)	-0.0014(9)
C34	0.0133(12) 0.0144(12)	0.0208(14)	0.0212(12)	-0.0009(11)	-0.0030(9)	-0.0035(12)
C35	0.0168(11)	0.0266(11) 0.0168(11)	0.0200(11) 0.0188(10)	-0.0049(9)	0.0001 (8)	-0.0034(9)
C36	0.0160(11)	0.0100(11) 0.0128(13)	0.0100(10)	-0.0031(10)	-0.0016(10)	-0.0014(10)
C37	0.0109(14) 0.0178(12)	0.0120(13) 0.0158(13)	0.019(2)	-0.0036(11)	-0.0018(9)	-0.0013(9)
09B	0.0170(12)	0.017(3)	0.0101(11) 0.029(4)	-0.004(3)	-0.012(3)	-0.002(3)
010B	0.021 (6)	0.017(5)	0.029(4) 0.031(4)	-0.004(3)	-0.012(3)	-0.002(3)
011B	0.012(3)	0.012(0)	0.031(1)	0.000(1)	-0.015(3)	-0.002(3)
012B	0.012(5)	0.015 (6)	0.039 (6)	-0.001(3)	-0.012(3)	-0.002(5)
C31B	0.014(3)	0.013(3)	0.015(3)	-0.001(2)	-0.002(2)	-0.002(3)
C32B	0.011(4)	0.012(3)	0.016(3)	-0.003(3)	-0.002(2)	-0.004(3)
~~~~	····· ( ')	0.000 (0)	0.010(0)	0.000 (0)	0.000(1)	0.001(0)

# supporting information

C33B	0.019 (4)	0.013 (4)	0.024 (4)	-0.006 (4)	0.002 (3)	-0.003 (4)
C34B	0.017 (4)	0.017 (4)	0.024 (3)	-0.003 (3)	0.000 (3)	-0.003 (3)
C35B	0.013 (3)	0.021 (4)	0.021 (3)	-0.004 (3)	-0.006 (3)	0.000 (3)
C36B	0.012 (4)	0.018 (4)	0.017 (4)	0.000 (4)	-0.003 (3)	-0.001 (4)
C37B	0.019 (4)	0.014 (4)	0.018 (4)	0.002 (4)	0.001 (3)	-0.005 (4)

Geometric parameters (Å, °)

<u>S102</u>	1.4333 (12)	C18—C19	1.397 (3)
S1—O1	1.4361 (12)	C18—C23	1.404 (3)
S1—N1	1.6299 (14)	C19—C20	1.383 (3)
S1—C8	1.7646 (17)	C19—H19A	0.9500
O3—C10	1.241 (2)	C20—C21	1.389 (3)
O4—C2	1.285 (2)	C20—H20A	0.9500
N1—C1	1.449 (2)	C21—C22	1.387 (3)
N1—C9	1.477 (2)	C21—H21A	0.9500
N2—C11	1.363 (2)	C22—C23	1.384 (3)
N2	1.392 (2)	C22—H22A	0.9500
N2—H2	0.88 (2)	C24—H24A	0.9800
N3—C11	1.344 (2)	C24—H24B	0.9800
N3—C12	1.348 (2)	C24—H24C	0.9800
N3—H3	0.78 (2)	C26—C30	1.396 (3)
C1—C2	1.395 (2)	C27—C28	1.374 (3)
C1—C10	1.437 (2)	C27—H27A	0.9500
C2—C3	1.499 (2)	C28—C29	1.377 (3)
C3—C4	1.396 (2)	C28—H28A	0.9500
C3—C8	1.405 (2)	C29—C30	1.375 (3)
C4—C5	1.388 (2)	С29—Н29А	0.9500
C4—H4A	0.9500	C30—H30A	0.9500
C5—C6	1.385 (3)	O9—C37	1.238 (3)
С5—Н5А	0.9500	O10—C37	1.318 (4)
C6—C7	1.388 (3)	O10—H10	0.91 (3)
С6—Н6А	0.9500	O11—C32	1.356 (3)
C7—C8	1.388 (2)	O11—H11	0.81 (3)
С7—Н7А	0.9500	O12—C35	1.370 (4)
С9—Н9А	0.9800	O12—H12	0.81 (3)
С9—Н9В	0.9800	C31—C36	1.400 (4)
С9—Н9С	0.9800	C31—C32	1.407 (3)
C11—C15	1.399 (2)	C31—C37	1.471 (3)
C12—C13	1.362 (3)	C32—C33	1.395 (4)
C12—H12A	0.9500	C33—C34	1.386 (4)
C13—C14	1.397 (2)	С33—Н33А	0.9500
C13—H13A	0.9500	C34—C35	1.396 (3)
C14—C15	1.377 (2)	C34—H34A	0.9500
C14—H14A	0.9500	C35—C36	1.383 (5)
C15—H15A	0.9500	С36—Н36А	0.9500
S2—O6	1.4293 (13)	O9B—C37B	1.245 (8)
S2—O5	1.4295 (13)	O10B—C37B	1.323 (9)

S2—N4	1.6428 (15)	O10B—H10B	0.8400
S2—C23	1.7624 (18)	O11B—C32B	1.356 (8)
O7—C25	1.238 (2)	O11B—H11B	0.8400
O8—C17	1.337 (2)	O12B—C35B	1.373 (9)
O8—H8	0.88 (3)	O12B—H12B	0.8400
N4—C16	1.441 (2)	C31B—C36B	1,394 (9)
N4—C24	1482(2)	$C_{31B} = C_{32B}$	1 400 (8)
N5_C25	1.162(2) 1.369(2)	$C_{31B} = C_{37B}$	1.464 (8)
N5 C26	1.309(2) 1.401(2)	C32B C33B	1.404 (0)
N5 115	1.401(2)	C32D C24D	1.394(9)
	0.84(2)		1.388 (9)
No	1.334 (2)	C33B—H33B	0.9500
N6—C27	1.343 (3)	C34B—C35B	1.393 (8)
C16—C17	1.360 (3)	C34B—H34B	0.9500
C16—C25	1.457 (3)	C35B—C36B	1.378 (10)
C17—C18	1.471 (3)	С36В—Н36В	0.9500
			1001
O2—S1—O1	117.92 (7)	С20—С19—Н19А	120.1
O2—S1—N1	108.03 (7)	C18—C19—H19A	120.1
O1—S1—N1	108.36 (7)	C19—C20—C21	121.01 (18)
O2—S1—C8	110.48 (7)	C19—C20—H20A	119.5
O1—S1—C8	109.35 (8)	C21—C20—H20A	119.5
N1—S1—C8	101.39 (8)	C22—C21—C20	120.24 (18)
C1—N1—C9	115.16 (13)	C22—C21—H21A	119.9
C1—N1—S1	114.32 (11)	C20—C21—H21A	119.9
C9—N1—S1	116.52 (11)	C23—C22—C21	118.57 (17)
C11—N2—C10	125.83 (15)	C23—C22—H22A	120.7
C11—N2—H2	121.7 (14)	C21—C22—H22A	120.7
C10 - N2 - H2	1124(14)	$C^{22}$ $C^{23}$ $C^{18}$	122.17(17)
$C_{11} = N_3 = C_{12}$	123 43 (16)	$C_{22} = C_{23} = C_{10}$	120.38(14)
C11N3H3	1174(16)	$C_{18}$ $C_{23}$ $S_{2}$	120.30(11) 117.37(14)
C12 N3 H3	110.1 (16)	N4 C24 H24A	100 5
$C_{12} = N_{3} = N_{3}$	119.1(10) 125.28(15)	N4 C24 H24P	109.5
$C_2 = C_1 = C_{10}$	123.26(13) 121.28(15)	$\mathbf{N} = \mathbf{C} 2 4 - 1 2 4 \mathbf{D}$	109.5
Clo Cl NI	121.36 (13)	HZ4A - CZ4 - HZ4D	109.5
C10 - C1 - N1	113.28 (14)	N4 - C24 - H24C	109.5
04-02-01	123.40 (15)	H24A—C24—H24C	109.5
04-02-03	118.03 (14)	H24B—C24—H24C	109.5
C1 - C2 - C3	118.55 (15)	07—C25—N5	123.18 (17)
C4—C3—C8	117.53 (15)	O7—C25—C16	120.74 (17)
C4—C3—C2	120.01 (15)	N5—C25—C16	116.05 (16)
C8—C3—C2	122.46 (15)	N6—C26—C30	122.23 (17)
C5—C4—C3	120.54 (16)	N6—C26—N5	114.40 (16)
C5—C4—H4A	119.7	C30—C26—N5	123.35 (17)
C3—C4—H4A	119.7	N6-C27-C28	123.5 (2)
C6—C5—C4	120.85 (16)	N6—C27—H27A	118.2
С6—С5—Н5А	119.6	C28—C27—H27A	118.2
С4—С5—Н5А	119.6	C27—C28—C29	117.72 (19)
C5—C6—C7	120.00 (16)	C27—C28—H28A	121.1
С5—С6—Н6А	120.0	C29—C28—H28A	121.1

С7—С6—Н6А	120.0	C30—C29—C28	120.25 (19)
C8—C7—C6	118.87 (16)	С30—С29—Н29А	119.9
С8—С7—Н7А	120.6	С28—С29—Н29А	119.9
С6—С7—Н7А	120.6	C29—C30—C26	118.22 (19)
C7—C8—C3	122.22 (15)	С29—С30—Н30А	120.9
C7—C8—S1	120.18 (13)	С26—С30—Н30А	120.9
C3—C8—S1	117.59 (13)	С37—О10—Н10	107.2 (19)
N1—C9—H9A	109.5	C32—O11—H11	106 (2)
N1—C9—H9B	109.5	С35—О12—Н12	108 (3)
H9A—C9—H9B	109.5	C36—C31—C32	119.5 (2)
N1—C9—H9C	109.5	C36—C31—C37	120.9 (2)
Н9А—С9—Н9С	109.5	C32—C31—C37	119.6 (2)
H9B—C9—H9C	109.5	O11—C32—C33	117.8 (2)
O3—C10—N2	120.69 (15)	O11—C32—C31	123.0 (2)
O3—C10—C1	123.59 (15)	C33—C32—C31	119.2 (2)
N2—C10—C1	115.71 (14)	C34—C33—C32	120.6 (2)
N3—C11—N2	119.99 (15)	С34—С33—Н33А	119.7
N3—C11—C15	117.96 (15)	С32—С33—Н33А	119.7
N2-C11-C15	122.04 (15)	C33—C34—C35	120.4 (2)
N3—C12—C13	120.29 (16)	С33—С34—Н34А	119.8
N3—C12—H12A	119.9	C35—C34—H34A	119.8
C13—C12—H12A	119.9	O12—C35—C36	118.2 (2)
C12—C13—C14	118.25 (16)	O12—C35—C34	122.4 (2)
С12—С13—Н13А	120.9	C36—C35—C34	119.4 (2)
C14—C13—H13A	120.9	C35—C36—C31	120.9 (2)
C15—C14—C13	120.70 (16)	С35—С36—Н36А	119.6
C15—C14—H14A	119.7	С31—С36—Н36А	119.6
C13—C14—H14A	119.7	O9—C37—O10	121.5 (2)
C14—C15—C11	119.34 (15)	O9—C37—C31	122.7 (2)
C14—C15—H15A	120.3	O10—C37—C31	115.8 (2)
C11—C15—H15A	120.3	C37B—O10B—H10B	109.5
O6—S2—O5	119.45 (8)	C32B—O11B—H11B	109.5
O6—S2—N4	107.35 (8)	C35B—O12B—H12B	109.5
O5—S2—N4	108.47 (8)	C36B—C31B—C32B	120.0 (7)
O6—S2—C23	108.59 (8)	C36B—C31B—C37B	120.9 (7)
O5—S2—C23	109.83 (8)	C32B—C31B—C37B	119.1 (6)
N4—S2—C23	101.66 (8)	O11B—C32B—C33B	116.5 (7)
С17—О8—Н8	106.5 (16)	O11B—C32B—C31B	124.8 (7)
C16—N4—C24	113.57 (14)	C33B—C32B—C31B	118.6 (7)
C16—N4—S2	112.35 (11)	C34B—C33B—C32B	121.3 (8)
C24—N4—S2	116.08 (12)	C34B—C33B—H33B	119.4
C25—N5—C26	126.35 (16)	C32B—C33B—H33B	119.4
C25—N5—H5	119.4 (16)	C33B—C34B—C35B	119.4 (8)
C26—N5—H5	114.2 (16)	C33B—C34B—H34B	120.3
C26—N6—C27	118.03 (17)	C35B—C34B—H34B	120.3
C17—C16—N4	120.42 (16)	O12B—C35B—C36B	117.0 (9)
C17—C16—C25	121.07 (16)	O12B—C35B—C34B	122.9 (9)
N4—C16—C25	118.42 (15)	C36B—C35B—C34B	120.1 (7)
	()		(')

08 - C17 - C16	123 01 (17)	C35B—C36B—C31B	120.6 (9)
08-C17-C18	114 49 (16)	C35B—C36B—H36B	119.7
$C_{16}$ $C_{17}$ $C_{18}$	122 43 (16)	C31B—C36B—H36B	119.7
C19-C18-C23	1122.13(10) 118.14(17)	O9B - C37B - O10B	122.6 (8)
C19 - C18 - C17	121.45(16)	O9B C37B C31B	122.0(0) 122.2(7)
$C_{13}^{23} = C_{13}^{18} = C_{17}^{17}$	121.43(10) 120.31(16)	$O_{10}^{10}$ $C_{37}^{10}$ $C_{31}^{10}$	122.2(7)
$C_{25} = C_{18} = C_{17}$	120.31(10) 110.86(18)	010B-037B-031B	115.2 (8)
C20-C19-C18	119.00 (10)		
02 S1 N1 C1	-62.22 (12)	C16 C17 C18 C23	17.4(2)
02 - SI - NI - CI	-02.25(15)	C10 - C17 - C18 - C23	17.4 (3)
OI—SI—NI—CI	168.95 (11)	$C_{23}$ $C_{18}$ $C_{19}$ $C_{20}$	-1.0(3)
C8—SI—NI—CI	53.93 (13)	C1/-C18-C19-C20	-1//.36(16)
02—SI—NI—C9	159.44 (12)	C18—C19—C20—C21	0.7 (3)
Ol—Sl—Nl—C9	30.63 (14)	C19—C20—C21—C22	-0.2 (3)
C8—S1—N1—C9	-84.39 (13)	C20—C21—C22—C23	0.1 (3)
C9—N1—C1—C2	93.30 (19)	C21—C22—C23—C18	-0.4 (3)
S1—N1—C1—C2	-45.60 (19)	C21—C22—C23—S2	176.15 (13)
C9—N1—C1—C10	-84.02 (18)	C19—C18—C23—C22	0.9 (3)
S1—N1—C1—C10	137.08 (13)	C17—C18—C23—C22	177.31 (16)
C10—C1—C2—O4	1.0 (3)	C19—C18—C23—S2	-175.77 (13)
N1—C1—C2—O4	-176.02 (15)	C17—C18—C23—S2	0.6 (2)
C10-C1-C2-C3	-177.70 (15)	O6—S2—C23—C22	-97.44 (15)
N1—C1—C2—C3	5.3 (2)	O5—S2—C23—C22	34.84 (17)
O4—C2—C3—C4	19.5 (2)	N4—S2—C23—C22	149.56 (14)
C1—C2—C3—C4	-161.71 (16)	O6—S2—C23—C18	79.31 (15)
O4—C2—C3—C8	-160.13 (15)	O5—S2—C23—C18	-148.41 (13)
C1—C2—C3—C8	18.6 (2)	N4—S2—C23—C18	-33.69 (15)
C8—C3—C4—C5	-0.6 (2)	C26—N5—C25—O7	3.8 (3)
C2—C3—C4—C5	179.71 (16)	C26—N5—C25—C16	-174.46 (16)
C3—C4—C5—C6	0.4 (3)	C17—C16—C25—O7	-7.8(3)
C4—C5—C6—C7	-0.1(3)	N4—C16—C25—O7	175.54 (15)
$C_{5}-C_{6}-C_{7}-C_{8}$	0.0(3)	C17 - C16 - C25 - N5	170 47 (16)
C6-C7-C8-C3	-0.2(3)	N4-C16-C25-N5	-62(2)
C6-C7-C8-S1	-178.95(14)	$C_{27}$ N6 $C_{26}$ C30	-0.9(3)
C4-C3-C8-C7	0.5(2)	$C_{27} = N6 = C_{26} = N5$	-17899(17)
$C_{1}^{2} - C_{3}^{2} - C_{8}^{2} - C_{7}^{2}$	-179.81(15)	$C_{25}$ N5 $C_{26}$ N6	-164.95(17)
$C_{2} = C_{3} = C_{3} = C_{4} = C_{7}$	170.26 (13)	$C_{25} = N_5 = C_{26} = C_{30}$	170(3)
$C_{1}^{2} = C_{2}^{3} = C_{3}^{2} = C_{3}^{3} = C_{3$	-1.1(2)	$C_{25} = N_{5} = C_{20} = C_{30}$	17.0(3)
$C_2 = C_3 = C_6 = S_1$	-00.16(15)	120 - 100 - 27 - 228	1.2(3)
02 - 31 - 03 - 07	-99.10(13)	$N_{0} = C_{2}^{2} = C_{2}^{2} = C_{2}^{2}$	-0.5(3)
01 - 51 - 60 - 67	52.21(10)	$C_2/-C_{20}$	-0.0(3)
$NI = SI = C\delta = C7$	140.49(14)	$C_{28} = C_{29} = C_{30} = C_{26}$	0.8 (3)
02 - 51 - 68 - 63	82.06 (14)	N6-C26-C30-C29	-0.1(3)
01-51-08-03	-146.5/(13)	N5-C26-C30-C29	1//.80(1/)
NI - SI - C8 - C3	-32.29 (15)	C36—C31—C32—O11	-1/9.4 (3)
C11—N2—C10—O3	4.3 (3)	C3/—C31—C32—O11	-0.8 (4)
C11—N2—C10—C1	-174.59 (15)	C36—C31—C32—C33	-1.4 (4)
C2-C1-C10-O3	176.72 (16)	C37—C31—C32—C33	177.3 (2)
N1—C1—C10—O3	-6.1 (2)	O11—C32—C33—C34	179.3 (2)
C2-C1-C10-N2	-4.4(2)	C31—C32—C33—C34	1.2 (4)

N1-C1-C10-N2	172.79 (14)	C32—C33—C34—C35	-0.1 (4)
C12—N3—C11—N2	178.15 (16)	C33—C34—C35—O12	179.6 (3)
C12—N3—C11—C15	-1.3 (2)	C33—C34—C35—C36	-0.8 (4)
C10—N2—C11—N3	-2.9 (3)	O12—C35—C36—C31	-179.8 (4)
C10—N2—C11—C15	176.52 (15)	C34—C35—C36—C31	0.6 (6)
C11—N3—C12—C13	1.7 (3)	C32—C31—C36—C35	0.5 (6)
N3—C12—C13—C14	-0.6 (3)	C37—C31—C36—C35	-178.1 (3)
C12—C13—C14—C15	-0.8 (3)	C36—C31—C37—O9	-174.1 (3)
C13—C14—C15—C11	1.2 (3)	C32—C31—C37—O9	7.3 (3)
N3-C11-C15-C14	-0.2 (2)	C36—C31—C37—O10	6.5 (4)
N2-C11-C15-C14	-179.62 (15)	C32—C31—C37—O10	-172.1 (3)
O6—S2—N4—C16	-59.05 (13)	C36B—C31B—C32B—O11B	176.7 (16)
O5—S2—N4—C16	170.60 (12)	C37B—C31B—C32B—O11B	-3.3 (16)
C23—S2—N4—C16	54.87 (13)	C36B—C31B—C32B—C33B	-2 (2)
O6—S2—N4—C24	167.90 (12)	C37B—C31B—C32B—C33B	177.7 (10)
O5—S2—N4—C24	37.55 (15)	O11B—C32B—C33B—C34B	-177.8 (9)
C23—S2—N4—C24	-78.18 (14)	C31B—C32B—C33B—C34B	1.3 (17)
C24—N4—C16—C17	87.5 (2)	C32B—C33B—C34B—C35B	0.1 (16)
S2—N4—C16—C17	-46.7 (2)	C33B—C34B—C35B—O12B	177.7 (12)
C24—N4—C16—C25	-95.81 (18)	C33B—C34B—C35B—C36B	0 (2)
S2-N4-C16-C25	129.92 (14)	O12B—C35B—C36B—C31B	-178.8 (17)
N4—C16—C17—O8	-176.38 (15)	C34B—C35B—C36B—C31B	-1 (3)
C25—C16—C17—O8	7.1 (3)	C32B—C31B—C36B—C35B	2 (3)
N4—C16—C17—C18	6.9 (3)	C37B—C31B—C36B—C35B	-178.1 (16)
C25-C16-C17-C18	-169.68 (16)	C36B—C31B—C37B—O9B	-178.4 (16)
O8—C17—C18—C19	16.6 (2)	C32B—C31B—C37B—O9B	1.5 (15)
C16—C17—C18—C19	-166.38 (17)	C36B—C31B—C37B—O10B	1 (2)
O8—C17—C18—C23	-159.65 (16)	C32B—C31B—C37B—O10B	-178.7 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2…O4	0.88 (2)	1.85 (2)	2.6169 (18)	145.2 (19)
N3—H3····O3	0.78 (2)	1.99 (2)	2.6027 (19)	135 (2)
N3—H3····O3 ⁱ	0.78 (2)	2.19 (2)	2.8034 (19)	136 (2)
O8—H8…O7	0.88 (3)	1.79 (3)	2.5722 (19)	148 (2)
N5—H5…O9	0.84 (2)	2.25 (2)	3.074 (2)	167 (2)
O10—H10…N6	0.91 (3)	1.74 (3)	2.637 (3)	167 (3)
O11—H11…O9	0.81 (3)	1.89 (3)	2.614 (2)	148 (3)
O12—H12…O4 ⁱⁱ	0.81 (3)	1.94 (3)	2.738 (3)	164 (4)
O10 <i>B</i> —H10 <i>B</i> ····O4 ⁱⁱ	0.84	1.67	2.508 (12)	172
O11 <i>B</i> —H11 <i>B</i> ····O2 ⁱ	0.84	2.57	3.061 (6)	118
O11 <i>B</i> —H11 <i>B</i> ····O9 <i>B</i>	0.84	1.89	2.614 (9)	143
O12 <i>B</i> —H12 <i>B</i> ····N6	0.84	2.10	2.856 (12)	149

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.