

Received 25 October 2016 Accepted 27 October 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

‡ Additional correspondence author, e-mail: mmjotani@rediffmail.com.

**Keywords:** crystal structure; zinc; dithiocarbamate; hydroxypyridine; hydrogen bonding; Hirshfeld surface analysis.

CCDC references: 1511865; 1511864

**Supporting information**: this article has supporting information at journals.iucr.org/e



Bis(*N*,*N*-diethyldithiocarbamato- $\kappa^2 S$ ,*S'*)(3-hydroxypyridine- $\kappa N$ )zinc and bis[*N*-(2-hydroxyethyl)-*N*methyldithiocarbamato- $\kappa^2 S$ ,*S'*](3-hydroxypyridine- $\kappa N$ )zinc: crystal structures and Hirshfeld surface analysis

# Mukesh M. Jotani,<sup>a</sup>‡ Hadi D. Arman,<sup>b</sup> Pavel Poplaukhin<sup>c</sup> and Edward R. T. Tiekink<sup>d</sup>\*

<sup>a</sup>Department of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, <sup>b</sup>Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, <sup>c</sup>Chemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio, 43202, USA, and <sup>d</sup>Research Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. \*Correspondence e-mail: edwardt@sunway.edu.my

The common feature of the molecular structures of the title compounds,  $[Zn(C_5H_{10}NS_2)_2(C_5H_5NO)], (I), and [Zn(C_4H_8NOS_2)_2(C_5H_5NO)], (II), are NS_4$ donor sets derived from N-bound hydroxypyridyl ligands and asymmetrically chelating dithiocarbamate ligands. The resulting coordination geometries are highly distorted, being intermediate between square pyramidal and trigonal bipyramidal for both independent molecules comprising the asymmetric unit of (I), and significantly closer towards square pyramidal in (II). The key feature of the molecular packing in (I) is the formation of centrosymmetric, dimeric aggregates sustained by pairs of hydroxy- $O-H\cdots$ S(dithiocarbamate) hydrogen bonds. The aggregates are connected into a three-dimensional architecture by methylene-C-H···O(hydroxy) and methyl-C-H·· $\pi$ (chelate) interactions. With greater hydrogen-bonding potential, supramolecular chains along the caxis are formed in the crystal of (II), sustained by hydroxy- $O-H \cdots O(hydroxy)$ hydrogen bonds, with ethylhydroxy and pyridylhydroxy groups as the donors, along with ethylhydroxy- $O-H \cdots S$ (dithiocarbamate) hydrogen bonds. Chains are connected into layers in the *ac* plane by methylene-C-H··· $\pi$ (chelate) interactions and these stack along the b axis, with no directional interactions between them. An analysis of the Hirshfeld surfaces clearly distinguished the independent molecules of (I) and reveals the importance of the C-H··· $\pi$ (chelate) interactions in the packing of both (I) and (II).

#### 1. Chemical context

The structures of binary zinc bis(dithiocarbamates) are always zero-dimensional (*i.e.* molecular) (Heard, 2005) in contrast to their cadmium (Tan *et al.*, 2016*b*) and mercury (Jotani *et al.*, 2016) analogues; dithiocarbamate is  $-S_2CNRR'$ . The zinc structures can be mononuclear, distorted tetrahedral as in Zn(S<sub>2</sub>CNCy<sub>2</sub>)<sub>2</sub> (Cox & Tiekink, 2009) or, far more commonly, binuclear as in the archetypical compound [Zn(S<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>]<sub>2</sub>, where heavily distorted five-coordinate geometries are found for zinc as two of the ligands are chelating and the others are  $\mu_2$ -tridentate (Bonamico *et al.*, 1965; Tiekink, 2000), with the adoption of one form over the other often being related to the steric bulk of the *R/R'* groups (Tiekink, 2003). However, there is no clear-cut delineation between the adoption of one structural motif over the other depending on steric bulk. This is nicely illustrated in the structure of Zn[S<sub>2</sub>CN(*i*-Bu)<sub>2</sub>]<sub>2</sub> which has equal numbers of both motifs (Ivanov et al., 2005). A popular process by which structures of greater dimensionality might be formed is by the addition of neutral, potentially bridging ligands. However, in the case of zinc dithiocarbamates, complexation with bidentate ligands usually results in the isolation of zero-dimensional, binuclear mol- $\{Zn[S_2CN(Me)i-Pr)]_2\}_2(Me_2NCH_2CH_2NMe_2)$ ecules, e.g. (Malik et al., 1997); [Zn(S<sub>2</sub>CNMe<sub>2</sub>)<sub>2</sub>]<sub>2</sub>(4,4'-bipyridyl) (Zha et al., 2010) and  $[Zn(S_2CNEt_2)_2]_2(Ph_2PCH_2CH_2PPh_2)$  (Zeng et al., 1994). Even when excess base is included in the reaction, e.g. trans-1,2-bis(4-pyridyl)ethylene (bpe), only the zerodimensional binuclear compound is isolated with non-coordinating bpe solvate, *i.e.* Zn(S<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>]<sub>2</sub>(bpe)·bpe (Lai & Tiekink, 2003). That this reluctance to form coordination polymers is related directly to the nature of the dithiocarbamate ligand is seen in the adoption of zigzag chains in analogous xanthate complexes, e.g.  $\{[Zn(S_2COR)_2]_2(bpe)\}_n$ for R = Et and *n*-Bu (Kang *et al.*, 2010). Steric effects come into play when R = Cy whereby a binuclear species is isolated, *i.e.* [Zn(S<sub>2</sub>COCy)<sub>2</sub>]<sub>2</sub>(bpe) (Kang *et al.*, 2010). This difference in chemistry arises to the significant (40%) contribution of the canonical structure  ${}^{(2-)}S_2CN^{(+)}RR'$ , with two formally negatively charged sulfur atoms, which makes dithiocarbamate a very effective chelating agent, thereby decreasing the Lewis acidity of the zinc atom.



An approach to increase the supramolecular aggregation in the crystal structures of zinc dithiocarbamates has been to introduce hydrogen bonding functionality into the ligands, *i.e* using dithiocarbamate anions of the type  $^{S}_{2}CN(R)CH_{2}CH_{2}OH$ . This influence is seen in the recent report of the structures of  $Zn[S_{2}CN(R)CH_{2}CH_{2}OH]_{2}(2,2'$ bipyridyl) for R = i-Pr and  $CH_{2}CH_{2}OH$  (Safbri *et al.*, 2016). The common feature of these structures along with those of related species with no hydrogen bonding potential, *e.g.* 





The molecular structures of the two independent molecules comprising the asymmetric unit in (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Zn(S<sub>2</sub>CNMe<sub>2</sub>)<sub>2</sub>(2,2'-bipyridyl) (Manohar *et al.*, 1998), is the presence of a distorted octahedral N<sub>2</sub>S<sub>4</sub> donor set about the zinc atom. The O–H···O hydrogen bonding in Zn[S<sub>2</sub>CN(*R*)CH<sub>2</sub>CH<sub>2</sub>OH]<sub>2</sub>(2,2'-bipyridyl), in the case when *R* = CH<sub>2</sub>CH<sub>2</sub>OH, isolated as a 1:1 hydrate, leads to supramolecular ladders and these extend in two dimensions *via* water-O–H···S(dithiocarbamate) hydrogen bonds. When *R* = *i*-Pr, layers are sustained by hydroxy-O–H···S hydrogen bonds (Safbri *et al.*, 2016). As an extension of these studies, in the present report, Zn(S<sub>2</sub>CN*RR'*)<sub>2</sub> has been complexed with 3-hydroxypyridine (pyOH) to yield two 1:1 complexes. Quite different aggregation patterns are observed when *R* = *R'* = Et (I), and *R* = *i*-Pr and *R'* = CH<sub>2</sub>CH<sub>2</sub>OH (II). The crystal and molecular structures of (I) and (II) are described herein along with an analysis of their Hirshfeld surfaces.

#### 2. Structural commentary

Two independent molecules of  $Zn(S_2CNEt_2)_2(pyOH)$  comprise the asymmetric unit of (I), Fig. 1; pyOH is

## research communications

| Table 1            |                               |
|--------------------|-------------------------------|
| Geometric data (Å, | $^{\circ})$ for (I) and (II). |

| Parameter            | Zn1-molecule in (I)  | Zn2-molecule in (I)  | (II)                        |
|----------------------|----------------------|----------------------|-----------------------------|
| Zn-S1                | 2.3201 (8)           | _                    | 2.3319 (6)                  |
| Zn-S2                | 2.7461 (8)           | -                    | 2.7514 (8)                  |
| Zn-S3                | 2.3417 (8)           | -                    | 2.3437 (7)                  |
| Zn-S4                | 2.4932 (8)           | -                    | 2.5275 (6)                  |
| Zn-S5                | -                    | 2.3399 (8)           | -                           |
| Zn-S6                | -                    | 2.5453 (8)           | -                           |
| Zn-S7                | -                    | 2.3517 (8)           | -                           |
| Zn-S8                | -                    | 2.6051 (8)           | -                           |
| Zn-N3                | 2.069 (2)            | -                    | 2.0375 (16)                 |
| Zn-N6                | -                    | 2.070 (2)            | -                           |
| C-S1, S2             | 1.736 (3), 1.721 (3) | -                    | 1.733 (2),<br>1.7119 (19)   |
| C-S3, S4             | 1.741 (3), 1.720 (3) | _                    | 1.7364 (19),<br>1.7140 (19) |
| C-S5, S6             | -                    | 1.743 (3), 1.720 (3) | -                           |
| C-S7, S8             | -                    | 1.734 (3), 1.730 (3) | -                           |
| S1-Zn-S2             | 70.99 (3)            | -                    | 70.825 (18)                 |
| S3-Zn-S4             | 75.54 (3)            | -                    | 74.41 (2)                   |
| S1-Zn-S3             | 136.44 (3)           | -                    | 139.04 (2)                  |
| S2-Zn-S4             | 165.17 (2)           | -                    | 148.839 (18)                |
| S5-Zn-S6             | -                    | 74.34 (3)            | _                           |
| S7-Zn-S8             | -                    | 73.08 (3)            | -                           |
| S5-Zn-S7             | -                    | 137.08 (3)           | -                           |
| S6-Zn-S8             | -                    | 168.91 (2)           | -                           |
| \$1,\$2,C1/\$3,\$4,C | 19.30 (12)           | -                    | 63.81 (15)                  |
| \$5,\$6,C1/\$7,\$8,C | -                    | 38.87 (22)           | -                           |

3-hydroxypyridine. For the Zn1-containing molecule, Fig. 1*a*, the Zn<sup>II</sup> atom is chelated by two dithiocarbamate ligands and one nitrogen atom derived from the monodentate pyOH ligand. The S1-dithiocarbamate ligand chelates the zinc atom forming quite different Zn-S bond lengths compared with the S3-dithiocarbamate ligand. This is quantified in the values of  $\Delta$ (Zn-S), being the difference between the Zn-S<sub>long</sub> and Zn-S<sub>short</sub> bond lengths, Table 1, *i.e.* 0.43 and 0.15 Å, respectively. The Zn1-N3 bond length is significantly shorter than the Zn-S bonds. The NS<sub>4</sub> coordination geometry is highly distorted as seen in the value of  $\tau$  of 0.48 (Addison *et al.*, 1984).



Figure 2

The molecular structure of (II), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.



Figure 3

Overlay diagrams for the Zn1- and Zn2-molecules in (I) and the molecule in (II) shown as red, green and blue images, respectively: (a) approximately side-on to the pyOH ring and (b) along the N-Zn bond. The molecules are overlapped so that the pyOH rings are coincident.

This value is almost exactly intermediate between the ideal square pyramidal geometry with  $\tau = 0.0$  and ideal trigonal pyramidal with  $\tau = 1.0$ . The acute S–Zn–S chelate angles contribute to this distortion, Table 1. The widest angles in the coordination geometry are subtended by  $S_s$ –Zn– $S_s$  (s = short) and, especially, the  $S_1$ –Zn– $S_1$  (l = long) bond angles, Table 1. The coordination geometry for the Zn2 atom, Fig. 1*b*, is quite similar to that just described for the Zn1 atom. The values of  $\Delta$ (Zn–S) of 0.21 and 0.25 Å are intermediate to those for the Zn1-molecule. Even so, the differences in the Zn–S bond lengths in both molecules are not that great with this observation reflected in the closeness of the C–S bond lengths, Table 1. The value of  $\tau$  for the Zn2-molecule is 0.53, indicating an inclination towards trigonal bipyramidal *cf*. the Zn1-molecule.

The molecular structure of (II),  $Zn[S_2CN(Me)CH_2-CH_2OH]_2(pyOH)$ , is shown in Fig. 2 and selected geometric parameters are included in Table 1. The coordination modes

## Table 2Hydrogen-bond geometry (Å, $^{\circ}$ ) for (I).

Cg1 and Cg2 are the centroids of the (Zn1,S1,S2,C1) and (Zn2,S7,S8,C21) chelate rings, respectively.

| $D - H \cdots A$           | D-H     | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdots A$ |
|----------------------------|---------|-------------------------|-------------------------|------------------|
| $O1-H1O\cdots S8^{i}$      | 0.84(2) | 2.45 (1)                | 3.289 (2)               | 173 (4)          |
| $O2-H2O\cdots S2^{ii}$     | 0.84(2) | 2.31 (1)                | 3.143 (2)               | 170 (4)          |
| $C8-H8A\cdots Cg2$         | 0.98    | 2.98                    | 3.855 (3)               | 150              |
| $C13-H13\cdots Cg2^{i}$    | 0.95    | 2.79                    | 3.631 (3)               | 148              |
| $C20-H20C\cdots Cg1^{iii}$ | 0.98    | 2.97                    | 3.850 (3)               | 150              |
| $C28-H28\cdots Cg1^{ii}$   | 0.95    | 2.96                    | 3.738 (3)               | 140              |
| $C19-H19A\cdots O2^{iv}$   | 0.99    | 2.56                    | 3.321 (3)               | 134              |
|                            |         |                         |                         |                  |

Symmetry codes: (i) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (iii) x + 1, y, z; (iv)  $x, -y + \frac{1}{2}$ ,  $z - \frac{1}{2}$ .

## Table 3Hydrogen-bond geometry (Å, $^{\circ}$ ) for (II).

Cg1 is the centroid of the (Zn,S3,S4,C5) chelate ring.

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------|----------|-------------------------|--------------|-----------------------------|
| $O1-H1O\cdots S2$           | 0.84 (2) | 2.61 (2)                | 3.371 (2)    | 152 (3)                     |
| $O2-H2O\cdots O1^{i}$       | 0.83 (3) | 1.94 (3)                | 2.734 (2)    | 161 (3)                     |
| $O3-H3O\cdots O2^{ii}$      | 0.84(3)  | 1.79 (2)                | 2.619 (2)    | 170 (3)                     |
| $C2-H2B\cdots Cg1^{iii}$    | 0.99     | 2.76                    | 3.689 (2)    | 156                         |
|                             |          |                         |              |                             |

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 2, -y + 1, -z.

of the dithiocarbamate ligands in (II) are close to those observed for the Zn1-molecule in (I) with  $\Delta$ (Zn-S) values of 0.42 and 0.19 Å. The difference between (I) and (II) is found in the coordination geometry which is close to square pyramidal in (II), as seen in the value of  $\tau = 0.16$ . In this description, the S1-S4 atoms define the basal plane with the r.m.s. deviation being 0.0501 Å. The Zn atom lies 0.7514 (4) Å above the plane in the direction of the N3 atom. The dihedral angle between the chelate rings is 63.81 (15)°, an angle significantly greater than for the comparable angles in (I), Table 1.

Overlay diagrams of the three molecules in (I) and (II) are shown in Fig. 3. The molecules have been overlapped so that the pyOH rings are coincident. The differences in the conformations of the molecules comprising (I) are clearly seen, and especially between these and the conformation in (II). Such variability in structure reflects the flexibility in the binding modes of the dithiocarbamate ligands leading to quite distinctive coordination geometries.

#### 3. Supramolecular features

The key feature of the molecular packing of (I) is the formation of hydroxy-O-H···S(dithiocarbamate) hydrogen bonds that sustain centrosymmetric, dimeric aggregates, *via* a 14-membered {···HOC<sub>2</sub>NZnS}<sub>2</sub> synthon, Fig. 4*a* and Table 2. Additional stabilization to the dimer is provided by an intradimer  $\pi$ - $\pi$  interaction between the pyOH rings. The intercentroid distance is 3.5484 (18) Å and the angle of inclination is 3.91 (14)° for symmetry operation 1 - x,  $\frac{1}{2} + y$ ,  $\frac{1}{2} - z$ . The aggregates are further stabilized by pyOH-C-H··· $\pi$  inter-

actions where the  $\pi$ -system is a chelate ring. Such C-H $\cdots \pi$ (chelate) interactions are increasingly being recognized as being important in the supramolecular chemistry of metal 1,1-dithiolates (Tiekink & Zukerman-Schpector, 2011; Tan *et al.*, 2016*a*) and, it should be noted, routinely appear in the output from *PLATON* (Spek, 2009). Connections between aggregates leading to supramolecular layers in the *ab* plane are also of the type C-H $\cdots \pi$ (chelate) but with methyl-H atoms as the donors, Fig. 4*b*. The connections between layers along the *c* direction are of the type methylene-C-H $\cdots$ O(hydroxy), Fig. 4*c*.

The addition of greater hydrogen-bonding potential in (II) results in an infinite chain, Table 3. There is an hydroxy-O– $H \cdots O(hydroxy)$  hydrogen bond involving the O2 and O1 atoms as the donor and acceptor, respectively. The O1-hydroxy group forms a hydrogen bond with a dithio-carbamate-S2 atom. As shown by the '1' in Fig. 5*a*, these hydrogen bonds lead to a centrosymmetric 22-membered  $\{\cdots SZnSCNC_2OH \cdots OH\}_2$  synthon. On either side of these



Figure 4

The molecular packing in (I), showing (a) detail of the hydroxy-O- $H \cdots S$ (dithiocarbamate) hydrogen bonding, shown as orange dashed lines, leading to dimeric aggregates, (b) supramolecular layer where the aggregates in (a) are linked by  $C-H \cdots \pi$ (chelate) interactions, shown as purple dashed lines and (c) view of the unit-cell contents shown in projection down the *a* axis, with links between layers being of the type  $C-H \cdots O$ , shown as blue dashed lines.

## research communications

synthons, the pyOH hydroxy group hydrogen bonds to the O2hydroxy atom and through symmetry, a centrosymmetric 24membered { $\cdots$ OC<sub>2</sub>NCSZnNC<sub>2</sub>OH}<sub>2</sub> synthon is formed, highlighted as '2' in Fig. 5*a*. Alternating synthons generate a supramolecular chain aligned along the *c* axis. Methylene-C- $H \cdots \pi$ (chelate) interactions link molecules into dimeric units, Fig. 5*b*. The combination of the aforementioned interactions lead to supramolecular layers that stack along the *b* axis with no directional interactions between them, Fig. 5*c*.

#### 4. Hirshfeld surface analysis

The Hirshfeld surface analysis for (I) and (II) was performed as described recently (Cardoso *et al.*, 2016). From the views of the Hirshfeld surface mapped over  $d_{norm}$  in the range -0.2 to + 1.3 au for the Zn1- and Zn2-containing molecules of (I), Fig. 6, the presence of bright-red spots near the hydroxy-H1O and -H2O, and dithiocarbamate-S2 and S8 atoms represent the donors and acceptors of the  $O-H \cdot \cdot \cdot S$  hydrogen bonds; these are viewed as blue and red regions on the Hirshfeld surfaces mapped over electrostatic potential (mapped over the range -0.07 to +0.10 au), Fig. 7, corresponding to positive and negative potentials, respectively. The faint-red spots appearing near the hydroxy-O2 and methyl-C19 atoms in Fig. 6b and 6c are due to comparatively weaker intermolecular C-H···O interactions. The intra-dimer  $\pi$ - $\pi$  stacking interaction between the pyOH rings, Fig. 4a, is evident through the appearance of faint-red spots near the arene-C13 and C26 atoms of the rings, Fig. 6a and 6b, forming a close interatomic  $C \cdot \cdot \cdot C$  contact, Table 4. The diminutive-red spots near the pyOH-H13 and -H28 and dithiocarbamate-C21 atoms, Fig. 6ac, characterize the influence of the C-H··· $\pi$ (chelate) interactions; in Fig. 7, the light-blue and red regions represent the respective donors and acceptors for these interactions. The





The molecular packing in (II), (a) supramolecular chain mediated by hydroxy-O-H···O(hydroxyl), S(dithiocarbamate) hydrogen bonding, shown as orange and blue dashed lines, respectively, and non-acidic H atoms omitted, (b) detail of methylene-C-H··· $\pi$ (chelate) interactions shown as purple dashed lines and (c) view of the unit-cell contents shown in projection down the *a* axis, with one layer shown in space-filling mode.





Views of the Hirshfeld surfaces for (I) mapped over  $d_{norm}$  for the (a) Zn1-molecule and, (b) and (c) Zn2-molecule.

|          | • •        | •     |
|----------|------------|-------|
| research | communicat | tions |
| esearen  | commente   |       |

| Table 4                      |                |                 |
|------------------------------|----------------|-----------------|
| Summary of short interatomic | contacts (Å) i | n (I) and (II). |

| Contact                      | Distance    | Symmetry operation                         |
|------------------------------|-------------|--------------------------------------------|
| (1)                          |             |                                            |
| C13···C26                    | 3.314 (4)   | $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$  |
| H5· · · H7 <i>B</i>          | 2.36        | -x, 1-y, -z                                |
| $O1 \cdot \cdot \cdot H18B$  | 2.61        | 2 - x, 1 - y, 1 - z                        |
| S2···H20 <i>B</i>            | 2.96        | 1 - x, 1 - y, -z                           |
| S4· · ·H11                   | 2.98        | 1 - x, 1 - y, 1 - z                        |
| S5···H7A                     | 2.97        | <i>x</i> , <i>y</i> , <i>z</i>             |
| S5…H14                       | 2.94        | 1 - x, 1 - y, -z                           |
| C1···H28                     | 2.75        | $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$  |
| C21···H13                    | 2.65        | $1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$ |
| $C29 \cdot \cdot \cdot H24A$ | 2.84        | 1 + x, y, z                                |
| (II)                         |             |                                            |
| S4· · · S4                   | 3.4765 (11) | 2 - x, 1 - y, 1 - z                        |
| C8···C8                      | 3.308 (3)   | 2 - x, -y, 1 - z                           |
| $C1 \cdot \cdot \cdot H6A$   | 2.87        | x, 1 + y, z                                |
| C9· · · H7B                  | 2.57        | x, 1 + y, z                                |
| C10· · ·H10B                 | 2.88        | x, 1 + y, z                                |
| $H1O \cdot \cdot \cdot H2O$  | 2.37 (4)    | 1 - x, 1 - y, -z                           |
| $H2O \cdot \cdot \cdot H3O$  | 2.18 (3)    | 1 - x, 1 - y, 1 - z                        |
| $S3 \cdot \cdot \cdot H1O$   | 2.91 (3)    | 1 - x, 1 - y, -z                           |
| $S3 \cdot \cdot \cdot H7A$   | 2.99        | 1 - x, 1 - y, -z                           |
| $Zn \cdot \cdot \cdot H2B$   | 3.06        | 2 - x, 1 - y, -z                           |
| $O1 \cdot \cdot \cdot H6A$   | 2.68        | x, 1 + y, z                                |



Figure 7 Views of the Hirshfeld surfaces mapped over electrostatic potential for (I): (a) Zn1-molecule and (b) Zn2-molecule.





(a) View of the Hirshfeld surface mapped over  $d_{\text{norm}}$  for (I) showing O- $H \cdots S$  hydrogen bonds and short interatomic  $C \cdots C$  and  $C \cdots H/H \cdots C$ contacts, indicated by black, white and red dashed lines, respectively, about the reference molecule. (b) and (c) Views of Hirshfeld surface mapped with shape-index property about the Zn1 and Zn2-containing molecules, respectively. The dotted blue lines labelled with 1-4 indicates C-H··· $\pi$ (chelate) interactions and the red dotted line shows the  $\pi$ - $\pi$ stacking interaction.

immediate environments around reference molecules showing above intermolecular interactions are illustrated in Fig. 8.

The presence of peripheral hydroxy groups participating in the O-H···O hydrogen bonds in the structure of (II) result in the distinct bright-red spots near the respective donors and acceptor atoms on the Hirshfeld surface mapped over  $d_{\text{norm}}$ , Fig. 9a and 9b, and result in the blue and red regions corresponding to positive and negative potential on the Hirshfeld surface mapped over electrostatic potential (mapped over the range -0.12 to +0.18 au), Fig. 9c. The faint-red spots near the S4, C8, C9 and H2B atoms in Fig. 9a and 9b indicate their involvement in short interatomic S···S, C···C and C···H/ H···C contacts, Table 4. Fig. 10a illustrates the immediate environment about a reference molecule within Hirshfeld surfaces mapped over electrostatic potential and highlights the O-H···O hydrogen bonds. The C-H···π(chelate) and its



Figure 9 Views of the Hirshfeld surfaces for (II) mapped over (a) and (b)  $d_{\text{norm}}$  and (c) electrostatic potential.

reciprocal contact, *i.e.*  $\pi$ -H···C, and short interatomic S···S, C···C and C···H/H···C contacts, with labels 3–6, are shown in Fig. 10*b*.

The overall two-dimensional fingerprint plot for individual Zn1- and Zn2-containing molecules, overall (I) and (II) are illustrated in Fig. 11*a*. The respective plots delineated into  $H \cdots H$ ,  $O \cdots H/H \cdots O$ ,  $S \cdots H/H \cdots S$ ,  $C \cdots H/H \cdots C$ ,  $C \cdots C$  and  $S \cdots S$  contacts (McKinnon *et al.*, 2007) are shown in Fig. 11*b*-*g*, respectively; the relative contributions from different contacts to the Hirshfeld surfaces of (I) and (II) are summarized in Table 5.





(a) and (b) Views of the Hirshfeld surface mapped over electrostatic potential for (II) showing  $O-H\cdots$ S hydrogen bonds about the reference molecule. The hydrogen bonds are indicated with black dashed lines and labelled as '1' and '2' in (a). In (b), the intermolecular  $C-H\cdots$ O (labelled with a '6' and shown as red-dashed lines) and  $C-H\cdots$  $\pi/\pi\cdots$ H-C ('3', red and blue) interactions, and short interatomic S···S ('4', black) and C···H ('5', white) contacts are indicated by arrows.

The fingerprint plots delineated into  $H \cdots H$  contacts for (I), Fig. 11*b*, show different distributions of points in the individual plots for Zn1- and Zn2-molecules. This, as well as their different percentage contributions to the Hirshfeld surface, Table 5, confirm their distinct chemical environments. The overall plot is the superimposition of these individual plots with a pair of small peaks, at  $(d_e, d_i)$  distances shorter than their van der Waals separations, corresponding to short interatomic  $H \cdots H$  contacts, Table 4, between the hydrogen atoms of the Zn1-molecule.

The fingerprint plots delineated into  $O \cdots H/H \cdots O$  contacts, Fig. 11*c*, also exhibit slightly different profiles for the independent molecules. The respective peaks at  $d_e + d_i \sim 2.7$  Å and  $\sim 2.6$  Å correspond to donors (upper region) and the acceptors (lower region) for the Zn1-molecule, whereas these appear as a pair of peaks at the same  $d_e + d_i \sim 2.6$  Å distance for the Zn2-molecule. This is likely due to the interacting oxygen and hydrogen atoms for the Zn1-molecule being at



#### Figure 11

(a) The overall two-dimensional fingerprint plots for the Zn1-molecule in (I), Zn2-molecule in (I), (I) and (II), respectively, and those delineated into (b)  $H \cdots H$ , (c)  $O \cdots H/H \cdots O$ , (d)  $S \cdots H/H \cdots S$ , (e)  $C \cdots H/H \cdots C$ , (f)  $C \cdots C$  and (g)  $S \cdots S$  contacts.

Table 5

Percentage contribution to interatomic contacts from the Hirshfeld surface for (I) and (II).

| Contact                                           | Zn1-molecule in (I) | Zn2-molecule in (I) | (I)  | (II) |
|---------------------------------------------------|---------------------|---------------------|------|------|
|                                                   | 55.2                | 52.0                | 55.0 | 40.1 |
| H···H                                             | 55.5                | 52.9                | 55.5 | 42.1 |
| $O \cdots H/H \cdots O$                           | 4.1                 | 5.5                 | 5.3  | 15.0 |
| $S{\cdots}H/H{\cdots}S$                           | 23.8                | 25.3                | 22.7 | 22.2 |
| $C{\cdot}{\cdot}{\cdot}H/H{\cdot}{\cdot}{\cdot}C$ | 9.9                 | 10.0                | 10.0 | 12.3 |
| $N{\cdots}H/H{\cdots}N$                           | 2.6                 | 2.5                 | 2.7  | 2.9  |
| $S \cdots S$                                      | 1.2                 | 0.7                 | 1.1  | 3.8  |
| $C{\cdots}C$                                      | 1.6                 | 1.6                 | 1.8  | 0.8  |
| $Zn{\cdots}H/H{\cdots}Zn$                         | 0.8                 | 0.8                 | 0.4  | 0.7  |
| $C{\cdots}O/O{\cdots}C$                           | 0.4                 | 0.4                 | 0.4  | 0.0  |
| $C{\cdots}N/N{\cdots}C$                           | 0.2                 | 0.2                 | 0.3  | 0.1  |
| $S \cdots O / O \cdots S$                         | 0.1                 | 0.1                 | 0.0  | 0.0  |
| $S{\cdots}C/C{\cdots}S$                           | 0.0                 | 0.0                 | 0.0  | 0.1  |

their van der Waals separation in the donor region, *i.e.* at 2.72 Å, while in the acceptor region the peak corresponds to a short interatomic  $O \cdots H$  contact, Table 4. In the plot for the Zn2-molecule, this contact gives rise to the pair of peaks at  $d_e + d_i \sim 2.6$  Å.

The pair of spikes with their tips at different  $d_e + d_i$ distances in the fingerprint plots delineated into  $S \cdots H/H \cdots S$ contacts, Fig. 11d, for the Zn1- and Zn2-molecules result from hydroxy- $O-H \cdot \cdot \cdot S(dithiocarbamate)$  hydrogen different bonds. The tips at  $d_e + d_i \sim 2.4$  Å in the donor region of the plot for the Zn1-molecule and in the acceptor region for the Zn2-molecule are due to the formation of  $O-H \cdots S$  hydrogen bonds between the hydroxy-O1 and dithiocarbamate-S8 atoms; the other hydrogen bond, involving the O2 and S2 atoms, gives rise to tips at  $d_e + d_i \sim 2.3$  Å in the respective donor and acceptor regions of the plots, Fig. 11d. The plot for the overall structure results from the superimposition of individual plots and shows the symmetric distribution of points as a pair of long spikes having tips at  $d_e + d_i \sim 2.3$  Å. The short interatomic  $S \cdots H/H \cdots S$  contacts in the crystal of (I), Table 4, appear as a pair of aligned green points beginning at  $d_{\rm e} + d_{\rm i} \sim 3.0$  Å in the respective plots.

Almost the same percentage contribution from C···H/ H···C contacts to the overall surface is made by the Zn1- and Zn2-molecules, Table 5, and the respective fingerprint plots, Fig. 11*e*, have the same shape with tips at  $d_e + d_i \sim 2.7$  Å which are due to the short interatomic C···H/H···C contacts, Table 4, involving the atoms forming the C–H··· $\pi$ (chelate) interactions; the points corresponding to the other short C···H/H···C contacts are within the plot. The C···C contacts assigned to intra-dimer  $\pi$ - $\pi$  stacking interactions between pyOH-rings have a small, *i.e.* 1.8%, but recognizable contribution to the Hirshfeld surface and appear as an arrow-like distribution of points around  $d_e = d_i = 1.8$  Å in Fig. 11*f*. As indicated in Fig. 11*g*, S···S contacts do not figure prominently in the molecular packing of (I).

The corresponding two-dimensional fingerprint plots for (II) are also given in Fig. 11. In the fingerprint plots delineated into  $H \cdots H$  contacts, Fig. 11*b*, a pair of very thin spikes having their tips at  $d_e + d_i \sim 2.3$  Å indicate the presence of short interatomic  $H \cdots H$  contacts between hydroxy-H1O and -H2O atoms, Table 4. Also, the intermolecular  $O-H \cdots O$  hydrogen

## research communications

Table 6Experimental details.

|                                                                              | (I)                                | (II)                                 |
|------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| Crystal data                                                                 |                                    |                                      |
| Chemical formula                                                             | $[Zn(C_5H_{10}NS_2)_2(C_5H_5NO)]$  | $[Zn(C_4H_8NOS_2)_2(C_5H_5NO)]$      |
| $M_{\rm r}$                                                                  | 456.99                             | 460.94                               |
| Crystal system, space group                                                  | Monoclinic, $P2_1/c$               | Triclinic, $P\overline{1}$           |
| Temperature (K)                                                              | 98                                 | 98                                   |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                           | 10.032 (2), 31.955 (7), 13.233 (3) | 8.8645 (19), 9.956 (2), 11.473 (3)   |
| $\alpha, \beta, \gamma$ (°)                                                  | 90, 105.920 (2), 90                | 102.154 (4), 106.989 (4), 93.466 (3) |
| $V(\text{\AA}^3)$                                                            | 4079.4 (15)                        | 938.6 (4)                            |
| Ζ                                                                            | 8                                  | 2                                    |
| Radiation type                                                               | Μο Κα                              | Μο Κα                                |
| $\mu \ (\mathrm{mm}^{-1})$                                                   | 1.62                               | 1.77                                 |
| Crystal size (mm)                                                            | $0.50 \times 0.40 \times 0.15$     | $0.37 \times 0.25 \times 0.25$       |
| Data collection                                                              |                                    |                                      |
| Diffractometer                                                               | Rigaku AFC12k/SATURN724            | Rigaku AFC12k/SATURN724              |
| Absorption correction                                                        | Multi-scan (ABSCOR; Higashi, 1995) | Multi-scan (ABSCOR; Higashi, 1995)   |
| $T_{\min}, T_{\max}$                                                         | 0.687, 1.000                       | 0.860, 1.000                         |
| No. of measured, independent and                                             | 25139, 9202, 8401                  | 6836, 4249, 4133                     |
| observed $[I > 2\sigma(I)]$ reflections                                      |                                    |                                      |
| R <sub>int</sub>                                                             | 0.037                              | 0.026                                |
| $(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$                              | 0.650                              | 0.650                                |
| Refinement                                                                   |                                    |                                      |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.041, 0.106, 1.06                 | 0.032, 0.080, 1.06                   |
| No. of reflections                                                           | 9202                               | 4249                                 |
| No. of parameters                                                            | 447                                | 228                                  |
| No. of restraints                                                            | 2                                  | 3                                    |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.73, -0.45                        | 0.43, -0.60                          |

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006) and publcIF (Westrip, 2010).

bond between the pyOH-O3 and hydroxy-O2 atoms results in a short interatomic  $H \cdots H$  contact between the H2O and H3O atoms, Table 4. The increase in the percentage contribution from  $O \cdots H/H \cdots O$  contacts to the Hirshfeld surface and the corresponding decrease in the contribution from  $H \cdots H$ contacts in (II), *cf.* (I), Table 5, is due to the presence of dominating  $O-H \cdots O$  hydrogen bonds in the crystal of (II) and is characterized as a pair of long spikes terminating at  $d_e + d_i \sim 1.8$  Å, Fig. 11*c.* The tips corresponding to the  $O1 \cdots H6A$  contact, Table 4, are diminished within the long spikes corresponding to dominant  $O-H \cdots O$  hydrogen bonds.

The  $S \cdots H/H \cdots S$  contacts with the nearly same contribution to the surface of (II) as for (I), i.e. 22.2 and 22.7%, respectively, reflect the O-H···S hydrogen bonds and additional S···H contacts resulting in tips at  $d_e + d_i \sim 2.9$  Å in Fig. 11d and Table 4. The 12.3% contribution from  $C \cdot \cdot \cdot H/$ H···C contacts to the surface with the tips at  $d_e + d_i \sim 2.6$  Å in the plot, Fig. 11*e*, results from the C-H··· $\pi$ (chelate) and short interatomic  $C \cdots H/H \cdots C$  contacts, Table 4. The presence of  $C-H \cdots \pi$  (chelate) interactions is also indicated by the short interatomic  $Zn \cdots H/H \cdots Zn$  contacts summarized in Table 4. The presence of short interatomic  $C \cdot \cdot \cdot C$  contacts between symmetry-related methyl-C8 atoms is identified in the respective plot, Fig. 11*f*, as the pair of tips at  $d_e + d_i$  $\sim$ 1.7 Å. Finally, a cone-shaped distribution of points with a 3.8% contribution to the surface from  $S \cdot \cdot \cdot S$  contacts having a vertex at  $d_e = d_i \sim 1.7$  Å in the fingerprint plot, Fig. 11g, results from short interatomic contacts between S4 atoms, Table 4; the absence of analogous contacts in (I) results in a very low percentage contribution to its surface (see above).

#### 5. Database survey

As alluded to in the Chemical context, the presence of hydroxyethyl groups in zinc dithiocarbamates leads to a higher degree of recognizable supramolecular aggregation owing to hydrogen bonding, usually of the type hydroxy-O-H···O(hydroxy) but, sometimes also of the type hydroxy-O− H...S(dithiocarbamate) (Tan et al., 2013; Jamaludin et al., 2016). The following is a brief overview of some previous structures with ethylhydroxydithiocarbamate ligands highlighting the important role of hydrogen bonding in the supramolecular aggregation. In the what might be termed the parent binary compound, *i.e.* {Zn[S<sub>2</sub>CN(CH<sub>2</sub>CH<sub>2</sub>OH)<sub>2</sub>]<sub>2</sub>}, the usual dimeric motif is evident but these self-assemble via strong hydrogen bonding into three-dimensional architectures in both of the polymorphs characterized thus far, with the difference between the structures being the topology of supramolecular layers, *i.e.* flattened (Manohar et al., 1998) and undulating (Benson et al., 2007). When one ethylhydroxy group is replaced by an ethyl group, as in {Zn[S<sub>2</sub>CN(Et)CH<sub>2</sub>CH<sub>2</sub>OH]<sub>2</sub>}<sub>2</sub>, the reduced hydrogen bonding leads to supramolecular chains (Benson et al., 2007). Bridging ligands lead to zero-dimensional aggregates, e.g. in  $\{Zn[S_2CN(Me)CH_2CH_2OH)_2]_2\}_2L$ , where L is (3-pyridyl)- $CH_2N(H)C(=O)C(=O)N(H)CH_2(3-pyridyl).$ However.

complimented by observations that some of these compounds exhibit exciting, cell-specific, anti-cancer potential (Tan *et al.*, 2015). The foregoing suggests this is a fertile area of research, well deserving of continuing attention.

#### 6. Synthesis and crystallization

Synthesis of (I): In a 2:1:0.5 molar ratio,  $Zn(S_2CNEt_2)_2$ , *N*,*N*'bis(pyridin-3-ylmethyl)ethanedithiodiamide (Zukerman-Schpector *et al.*, 2015) and 3-hydroxy pyridine were dissolved in chloroform. Solvent diffusion of hexane into this solution produced pink crystals. FT–IR (cm<sup>-1</sup>):  $\nu$ (C=N) 1482 (*s*, *br*);  $\nu$ (C–S) 987 (*s*). <sup>1</sup>H NMR (*d*<sub>6</sub>-DMSO, 300 MHz):  $\delta$  9.91 (*s*, 1H, OH), 8.20–8.00 (*m*, 2H, aromatic-H), 7.30–7.10 (*m*, 2H, aromatic-H), 3.82 (8H, *q*, NCH<sub>2</sub>, *J* = 7.00 Hz); 1.22 (12H, *t*, CH<sub>3</sub>, *J* = 7.20 Hz).

Synthesis of (II): In a 1:1 molar ratio,  $Zn[S_2N(Me)CH_2-CH_2OH]_2$  and 3-hydroxy pyridine were dissolved in a MeOH/ EtOH (1:1  $\nu/\nu$ ) solution. Solvent diffusion of hexane into this solution led to the formation of colourless crystals. FT–IR (cm<sup>-1</sup>):  $\nu$ (C=N) 1480 (*s*);  $\nu$ (C–S) 1002 (*s*). <sup>1</sup>H NMR (*d*<sub>6</sub>-DMSO, 300 MHz):  $\delta$  9.91 (*s*, 1H, aromatic-OH), 8.20–8.00 (*m*, 2H, aromatic-H), 7.30–7.10 (*m*, 2H, aromatic-H), 4.91 (2H, *t*, OH, *J* = 5.50 Hz); 3.90 (4H, *t*, NCH<sub>2</sub>, *J* = 6.25 Hz); 3.70 (4H, *dt*, CH<sub>2</sub>O, *J* = 5.50, 5.50 Hz); 3.41 (6H, *s*, CH<sub>3</sub>).

#### 7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 6. The carbon-bound H-atoms were placed in calculated positions (C–H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with  $U_{iso}(H)$  set to 1.2–1.5 $U_{eq}(C)$ . The oxygen-bound H-atoms were located in difference Fourier maps but were refined with a distance restraint of O–H = 0.84±0.01 Å, and with  $U_{iso}(H)$ set to 1.5 $U_{eq}(O)$ .

#### Acknowledgements

We thank Sunway University for support of biological and crystal engineering studies of metal dithiocarbamates.

#### References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–941.
- Bonamico, M., Mazzone, G., Vaciago, A. & Zambonelli, L. (1965). *Acta Cryst.* **19**, 898–909.

research communications

- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Cardoso, L. N. F., Nogueira, T. C. M., Wardell, J. L., Wardell, S. M. S. V., de Souza, M. V. N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1025–1031.
- Cox, M. J. & Tiekink, E. R. T. (2009). Z. Kristallogr. 214, 184-190.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559. Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1–69.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Ivanov, A. V., Korneeva, E. V., Gerasimenko, A. V. & Forsling, W. (2005). Russ. J. Coord. Chem. **31**, 695–707.
- Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. *Kristallogr.* 231, 341–349.
- Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413.
- Kang, J.-G., Shin, J.-S., Cho, D.-H., Jeong, Y.-K., Park, C., Soh, S. F., Lai, C. S. & Tiekink, E. R. T. (2010). *Cryst. Growth Des.* 10, 1247– 1256.
- Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252.
- Malik, M. A., Motevalli, M., O'Brien, P. & Walsh, J. R. (1997). Inorg. Chem. 36, 1263–1264.
- Manohar, A., Venkatachalam, V., Ramalingam, K., Thirumaran, S., Bocelli, G. & Cantoni, A. (1998). J. Chem. Crystallogr. 28, 861–866.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Molecular Structure Corporation & Rigaku (2005). *CrystalClear*. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Poplaukhin, P. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1176.
- Safbri, S. A. M., Halim, S. N. A. & Tiekink, E. R. T. (2016). *Acta Cryst.* E72, 203–208.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tan, Y. S., Halim, S. N. A., Molloy, K. C., Sudlow, A. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016a). *CrystEngComm*, 18, 1105– 1117.
- Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016b). Z. Kristallogr. 231, 113–126.
- Tan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). *J. Inorg. Biochem.* 150, 48–62.
- Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). *Cryst. Growth Des.* **13**, 3046–3056.
- Tiekink, E. R. T. (2000). Z. Kristallogr. New Cryst. Struct. 215, 445–446.
- Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.
- Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). *Chem. Commun.* **47**, 6623–6625.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zeng, D., Hampden-Smith, M. J. & Larson, E. M. (1994). Acta Cryst. C50, 1000–1002.
- Zha, M.-Q., Li, X., Bing, Y. & Lu, Y. (2010). Acta Cryst. E66, m1465.
- Zukerman-Schpector, J., Sousa Madureira, L., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2015). Z. Kristallogr. 230, 531– 541.

## supporting information

### Acta Cryst. (2016). E72, 1700-1709 [https://doi.org/10.1107/S205698901601728X]

Bis(*N*,*N*-diethyldithiocarbamato- $\kappa^2 S$ ,*S'*)(3-hydroxypyridine- $\kappa N$ )zinc and bis-[*N*-(2-hydroxyethyl)-*N*-methyldithiocarbamato- $\kappa^2 S$ ,*S'*](3-hydroxypyridine- $\kappa N$ )zinc: crystal structures and Hirshfeld surface analysis

### Mukesh M. Jotani, Hadi D. Arman, Pavel Poplaukhin and Edward R. T. Tiekink

#### **Computing details**

For both compounds, data collection: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); cell refinement: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); data reduction: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015). Molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *QMol* (Gans & Shalloway, 2001), *DIAMOND* (Brandenburg, 2006) for (I); *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006) for (II). For both compounds, software used to prepare material for publication: *publCIF* (Westrip, 2010).

(I) Bis(N,N-diethyldithiocarbamato- $\kappa^2 S$ ,S')(3-hydroxypyridine- $\kappa N$ )zinc

Crystal data

 $[Zn(C_5H_{10}NS_2)_2(C_5H_5NO)]$   $M_r = 456.99$ Monoclinic,  $P2_1/c$  a = 10.032 (2) Å b = 31.955 (7) Å c = 13.233 (3) Å  $\beta = 105.920$  (2)° V = 4079.4 (15) Å<sup>3</sup> Z = 8

#### Data collection

Rigaku AFC12 $\kappa$ /SATURN724 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\omega$  scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995)  $T_{min} = 0.687, T_{max} = 1.000$  F(000) = 1904  $D_x = 1.488 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 16430 reflections  $\theta = 2.5-40.7^{\circ}$   $\mu = 1.62 \text{ mm}^{-1}$  T = 98 KSlab, pink  $0.50 \times 0.40 \times 0.15 \text{ mm}$ 

25139 measured reflections 9202 independent reflections 8401 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.037$  $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.5^{\circ}$  $h = -10 \rightarrow 13$  $k = -41 \rightarrow 41$  $l = -17 \rightarrow 17$  Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant         |
|---------------------------------|---------------------------------------------------------|
| Least-squares matrix: full      | direct methods                                          |
| $R[F^2 > 2\sigma(F^2)] = 0.041$ | Secondary atom site location: difference Fourier        |
| $wR(F^2) = 0.106$               | map                                                     |
| <i>S</i> = 1.06                 | Hydrogen site location: mixed                           |
| 9202 reflections                | $w = 1/[\sigma^2(F_o^2) + (0.0477P)^2 + 4.2267P]$       |
| 447 parameters                  | where $P = (F_0^2 + 2F_c^2)/3$                          |
| 2 restraints                    | $(\Delta/\sigma)_{\rm max} = 0.002$                     |
|                                 | $\Delta  ho_{ m max} = 0.73 \ { m e} \ { m \AA}^{-3}$   |
|                                 | $\Delta \rho_{\min} = -0.45 \text{ e } \text{\AA}^{-3}$ |
| Special details                 |                                                         |

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| Zn1 | 0.22939 (3)  | 0.51145 (2)  | 0.27529 (3)  | 0.02233 (8)                 |  |
| S1  | 0.06711 (7)  | 0.51485 (2)  | 0.37067 (5)  | 0.02470 (14)                |  |
| S2  | -0.01500 (6) | 0.54220 (2)  | 0.14827 (5)  | 0.02127 (13)                |  |
| S3  | 0.27656 (6)  | 0.46663 (2)  | 0.14937 (5)  | 0.02206 (13)                |  |
| S4  | 0.42106 (7)  | 0.46582 (2)  | 0.37705 (5)  | 0.02349 (14)                |  |
| 01  | 0.5087 (2)   | 0.64627 (6)  | 0.45759 (17) | 0.0305 (4)                  |  |
| H1O | 0.524 (4)    | 0.6717 (4)   | 0.449 (3)    | 0.046*                      |  |
| N1  | -0.1829 (2)  | 0.54510 (7)  | 0.27436 (17) | 0.0206 (4)                  |  |
| N2  | 0.4941 (2)   | 0.41780 (7)  | 0.23507 (18) | 0.0218 (4)                  |  |
| N3  | 0.3333 (2)   | 0.56740 (7)  | 0.27551 (18) | 0.0209 (4)                  |  |
| C1  | -0.0580 (3)  | 0.53538 (8)  | 0.2645 (2)   | 0.0194 (5)                  |  |
| C2  | -0.2190 (3)  | 0.54050 (9)  | 0.3748 (2)   | 0.0257 (5)                  |  |
| H2A | -0.1631      | 0.5176       | 0.4162       | 0.031*                      |  |
| H2B | -0.3180      | 0.5327       | 0.3602       | 0.031*                      |  |
| C3  | -0.1933 (3)  | 0.58063 (10) | 0.4389 (2)   | 0.0339 (7)                  |  |
| H3A | -0.0933      | 0.5856       | 0.4649       | 0.051*                      |  |
| H3B | -0.2330      | 0.5780       | 0.4985       | 0.051*                      |  |
| H3C | -0.2371      | 0.6041       | 0.3946       | 0.051*                      |  |
| C4  | -0.2961 (3)  | 0.55989 (9)  | 0.1855 (2)   | 0.0265 (5)                  |  |
| H4A | -0.2567      | 0.5750       | 0.1350       | 0.032*                      |  |
| H4B | -0.3553      | 0.5796       | 0.2114       | 0.032*                      |  |
| C5  | -0.3837 (3)  | 0.52333 (10) | 0.1301 (2)   | 0.0334 (6)                  |  |
| H5A | -0.3275      | 0.5054       | 0.0978       | 0.050*                      |  |
| H5B | -0.4634      | 0.5340       | 0.0756       | 0.050*                      |  |
| H5C | -0.4166      | 0.5071       | 0.1813       | 0.050*                      |  |
| C6  | 0.4075 (3)   | 0.44668 (8)  | 0.2532 (2)   | 0.0203 (5)                  |  |
| C7  | 0.4939 (3)   | 0.40561 (9)  | 0.1276 (2)   | 0.0268 (6)                  |  |
| H7A | 0.5897       | 0.3983       | 0.1272       | 0.032*                      |  |
| H7B | 0.4644       | 0.4299       | 0.0804       | 0.032*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C8   | 0.3997 (3)  | 0.36900 (10) | 0.0850 (3)   | 0.0353 (7)   |
|------|-------------|--------------|--------------|--------------|
| H8A  | 0.4218      | 0.3457       | 0.1350       | 0.053*       |
| H8B  | 0.4134      | 0.3602       | 0.0177       | 0.053*       |
| H8C  | 0.3030      | 0.3774       | 0.0748       | 0.053*       |
| C9   | 0.6003 (3)  | 0.39774 (8)  | 0.3208 (2)   | 0.0261 (5)   |
| H9A  | 0.6182      | 0.3691       | 0.2992       | 0.031*       |
| H9B  | 0.5651      | 0.3954       | 0.3836       | 0.031*       |
| C10  | 0.7353 (3)  | 0.42242 (10) | 0.3491 (2)   | 0.0313 (6)   |
| H10A | 0.7667      | 0.4266       | 0.2860       | 0.047*       |
| H10B | 0.8060      | 0.4069       | 0.4015       | 0.047*       |
| H10C | 0.7201      | 0.4497       | 0.3782       | 0.047*       |
| C11  | 0.3950 (3)  | 0.58787 (8)  | 0.3647 (2)   | 0.0236 (5)   |
| H11  | 0.4004      | 0.5749       | 0.4303       | 0.028*       |
| C12  | 0.4514 (3)  | 0.62776 (8)  | 0.3636 (2)   | 0.0236 (5)   |
| C13  | 0.4457 (3)  | 0.64633 (8)  | 0.2680 (2)   | 0.0242 (5)   |
| H13  | 0.4834      | 0.6734       | 0.2653       | 0.029*       |
| C14  | 0.3839(3)   | 0.62468 (9)  | 0.1761 (2)   | 0.0266 (5)   |
| H14  | 0.3798      | 0.6366       | 0.1096       | 0.032*       |
| C15  | 0.3287 (3)  | 0.58556 (9)  | 0.1827 (2)   | 0.0233 (5)   |
| H15  | 0.2859      | 0.5709       | 0.1197       | 0.028*       |
| Zn2  | 0.68820(3)  | 0.27217 (2)  | 0.19561 (3)  | 0.02217 (8)  |
| S5   | 0.75317 (6) | 0.32449 (2)  | 0.09483 (5)  | 0.02196 (13) |
| S6   | 0.89261 (7) | 0.30961 (2)  | 0.31945 (5)  | 0.02480 (14) |
| S7   | 0.52971 (7) | 0.26483 (2)  | 0.29651 (5)  | 0.02464 (14) |
| S8   | 0.45448 (6) | 0.24765 (2)  | 0.06815 (5)  | 0.02173 (13) |
| 02   | 0.9810 (2)  | 0.13960 (6)  | 0.36656 (16) | 0.0293 (4)   |
| H2O  | 0.997 (4)   | 0.1141 (4)   | 0.358 (3)    | 0.044*       |
| N4   | 0.9764 (2)  | 0.36702 (7)  | 0.20279 (18) | 0.0214 (4)   |
| N5   | 0.2806 (2)  | 0.23709 (7)  | 0.18746 (18) | 0.0218 (4)   |
| N6   | 0.7917 (2)  | 0.21685 (7)  | 0.18654 (18) | 0.0214 (4)   |
| C16  | 0.8854 (3)  | 0.33725 (8)  | 0.2066 (2)   | 0.0196 (5)   |
| C17  | 1.0857 (3)  | 0.37985 (9)  | 0.2973 (2)   | 0.0270 (6)   |
| H17A | 1.0512      | 0.3764       | 0.3601       | 0.032*       |
| H17B | 1.1075      | 0.4098       | 0.2914       | 0.032*       |
| C18  | 1.2165 (3)  | 0.35417 (10) | 0.3110 (3)   | 0.0358 (7)   |
| H18A | 1.1964      | 0.3247       | 0.3211       | 0.054*       |
| H18B | 1.2880      | 0.3642       | 0.3725       | 0.054*       |
| H18C | 1.2497      | 0.3570       | 0.2482       | 0.054*       |
| C19  | 0.9748 (3)  | 0.38995 (8)  | 0.1058 (2)   | 0.0246 (5)   |
| H19A | 0.9319      | 0.3722       | 0.0442       | 0.030*       |
| H19B | 1.0713      | 0.3959       | 0.1050       | 0.030*       |
| C20  | 0.8951 (3)  | 0.43075 (9)  | 0.0970 (2)   | 0.0284 (6)   |
| H20A | 0.7968      | 0.4248       | 0.0881       | 0.043*       |
| H20B | 0.9056      | 0.4466       | 0.0362       | 0.043*       |
| H20C | 0.9315      | 0.4473       | 0.1610       | 0.043*       |
| C21  | 0.4063 (3)  | 0.24864 (8)  | 0.1840 (2)   | 0.0206 (5)   |
| C22  | 0.2413 (3)  | 0.23388 (9)  | 0.2868 (2)   | 0.0247 (5)   |
| H22A | 0.1416      | 0.2405       | 0.2736       | 0.030*       |

| H22B | 0.2948     | 0.2546       | 0.3377     | 0.030*     |
|------|------------|--------------|------------|------------|
| C23  | 0.2691 (3) | 0.19034 (10) | 0.3332 (2) | 0.0310 (6) |
| H23A | 0.2249     | 0.1696       | 0.2800     | 0.047*     |
| H23B | 0.2311     | 0.1879       | 0.3937     | 0.047*     |
| H23C | 0.3693     | 0.1853       | 0.3559     | 0.047*     |
| C24  | 0.1702 (3) | 0.22577 (9)  | 0.0921 (2) | 0.0262 (6) |
| H24A | 0.1135     | 0.2028       | 0.1086     | 0.031*     |
| H24B | 0.2125     | 0.2158       | 0.0371     | 0.031*     |
| C25  | 0.0776 (3) | 0.26349 (11) | 0.0511 (3) | 0.0371 (7) |
| H25A | 0.0353     | 0.2732       | 0.1053     | 0.056*     |
| H25B | 0.0047     | 0.2554       | -0.0118    | 0.056*     |
| H25C | 0.1335     | 0.2860       | 0.0333     | 0.056*     |
| C26  | 0.8547 (3) | 0.19591 (8)  | 0.2743 (2) | 0.0225 (5) |
| H26  | 0.8552     | 0.2078       | 0.3402     | 0.027*     |
| C27  | 0.9194 (3) | 0.15755 (8)  | 0.2729 (2) | 0.0223 (5) |
| C28  | 0.9185 (3) | 0.14053 (8)  | 0.1761 (2) | 0.0249 (5) |
| H28  | 0.9612     | 0.1143       | 0.1720     | 0.030*     |
| C29  | 0.8541 (3) | 0.16261 (9)  | 0.0855 (2) | 0.0261 (5) |
| H29  | 0.8533     | 0.1517       | 0.0185     | 0.031*     |
| C30  | 0.7912 (3) | 0.20054 (9)  | 0.0932 (2) | 0.0242 (5) |
| H30  | 0.7466     | 0.2154       | 0.0308     | 0.029*     |
|      |            |              |            |            |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|------------|--------------|--------------|--------------|---------------|--------------|---------------|
| Zn1        | 0.02198 (15) | 0.01845 (15) | 0.02877 (17) | -0.00025 (11) | 0.01071 (12) | -0.00238 (12) |
| <b>S</b> 1 | 0.0212 (3)   | 0.0328 (3)   | 0.0206 (3)   | 0.0046 (2)    | 0.0065 (2)   | 0.0053 (3)    |
| S2         | 0.0235 (3)   | 0.0222 (3)   | 0.0186 (3)   | -0.0006 (2)   | 0.0066 (2)   | -0.0003 (2)   |
| S3         | 0.0209 (3)   | 0.0226 (3)   | 0.0217 (3)   | 0.0009 (2)    | 0.0042 (2)   | -0.0024 (2)   |
| S4         | 0.0270 (3)   | 0.0237 (3)   | 0.0202 (3)   | 0.0043 (2)    | 0.0073 (2)   | -0.0009(2)    |
| O1         | 0.0391 (11)  | 0.0230 (10)  | 0.0248 (10)  | -0.0026 (8)   | 0.0011 (9)   | -0.0029 (8)   |
| N1         | 0.0190 (10)  | 0.0225 (10)  | 0.0192 (11)  | 0.0006 (8)    | 0.0032 (8)   | 0.0007 (8)    |
| N2         | 0.0232 (10)  | 0.0208 (10)  | 0.0222 (11)  | 0.0011 (8)    | 0.0074 (9)   | -0.0022 (8)   |
| N3         | 0.0192 (10)  | 0.0210 (10)  | 0.0222 (11)  | 0.0010 (8)    | 0.0052 (8)   | 0.0012 (8)    |
| C1         | 0.0226 (12)  | 0.0163 (11)  | 0.0192 (12)  | -0.0006 (9)   | 0.0054 (9)   | -0.0002 (9)   |
| C2         | 0.0212 (12)  | 0.0324 (14)  | 0.0251 (14)  | 0.0000 (10)   | 0.0090 (10)  | 0.0014 (11)   |
| C3         | 0.0349 (15)  | 0.0411 (17)  | 0.0294 (15)  | -0.0047 (13)  | 0.0148 (13)  | -0.0096 (13)  |
| C4         | 0.0208 (12)  | 0.0296 (14)  | 0.0270 (14)  | 0.0024 (10)   | 0.0031 (10)  | 0.0054 (11)   |
| C5         | 0.0261 (13)  | 0.0419 (17)  | 0.0280 (15)  | -0.0048 (12)  | 0.0002 (11)  | 0.0000 (13)   |
| C6         | 0.0201 (11)  | 0.0168 (11)  | 0.0256 (13)  | -0.0016 (9)   | 0.0088 (10)  | 0.0004 (10)   |
| C7         | 0.0258 (13)  | 0.0278 (13)  | 0.0286 (14)  | 0.0034 (10)   | 0.0108 (11)  | -0.0057 (11)  |
| C8         | 0.0338 (15)  | 0.0347 (16)  | 0.0362 (17)  | -0.0002 (12)  | 0.0075 (13)  | -0.0166 (13)  |
| C9         | 0.0273 (13)  | 0.0213 (12)  | 0.0293 (14)  | 0.0061 (10)   | 0.0069 (11)  | 0.0023 (11)   |
| C10        | 0.0265 (13)  | 0.0316 (15)  | 0.0326 (16)  | 0.0047 (11)   | 0.0028 (12)  | 0.0020 (12)   |
| C11        | 0.0240 (12)  | 0.0229 (12)  | 0.0226 (13)  | 0.0019 (10)   | 0.0040 (10)  | 0.0006 (10)   |
| C12        | 0.0181 (11)  | 0.0239 (13)  | 0.0263 (14)  | 0.0028 (9)    | 0.0020 (10)  | -0.0041 (10)  |
| C13        | 0.0223 (12)  | 0.0202 (12)  | 0.0312 (15)  | -0.0001 (9)   | 0.0090 (11)  | 0.0007 (10)   |
| C14        | 0.0278 (13)  | 0.0280 (14)  | 0.0250 (14)  | 0.0036 (10)   | 0.0087 (11)  | 0.0039 (11)   |

## supporting information

| ~          |              |              |              |               |              |              |
|------------|--------------|--------------|--------------|---------------|--------------|--------------|
| C15        | 0.0218 (12)  | 0.0263 (13)  | 0.0211 (13)  | 0.0003 (10)   | 0.0045 (10)  | -0.0001 (10) |
| Zn2        | 0.02096 (15) | 0.01850 (15) | 0.02802 (17) | -0.00040 (10) | 0.00836 (12) | 0.00219 (11) |
| S5         | 0.0212 (3)   | 0.0211 (3)   | 0.0224 (3)   | -0.0027 (2)   | 0.0039 (2)   | 0.0019 (2)   |
| <b>S</b> 6 | 0.0299 (3)   | 0.0234 (3)   | 0.0208 (3)   | -0.0021 (2)   | 0.0064 (3)   | 0.0019 (2)   |
| <b>S</b> 7 | 0.0225 (3)   | 0.0297 (3)   | 0.0209 (3)   | -0.0035 (2)   | 0.0046 (2)   | -0.0031 (3)  |
| <b>S</b> 8 | 0.0221 (3)   | 0.0229 (3)   | 0.0200 (3)   | -0.0008 (2)   | 0.0055 (2)   | 0.0026 (2)   |
| O2         | 0.0397 (11)  | 0.0231 (10)  | 0.0245 (10)  | 0.0017 (8)    | 0.0078 (9)   | 0.0027 (8)   |
| N4         | 0.0217 (10)  | 0.0207 (10)  | 0.0210 (11)  | -0.0033 (8)   | 0.0043 (8)   | -0.0025 (8)  |
| N5         | 0.0224 (10)  | 0.0221 (10)  | 0.0209 (11)  | 0.0000 (8)    | 0.0059 (9)   | 0.0010 (9)   |
| N6         | 0.0186 (10)  | 0.0204 (10)  | 0.0247 (11)  | -0.0032 (8)   | 0.0053 (8)   | 0.0005 (9)   |
| C16        | 0.0222 (11)  | 0.0186 (11)  | 0.0195 (12)  | 0.0002 (9)    | 0.0083 (9)   | -0.0007 (9)  |
| C17        | 0.0295 (13)  | 0.0257 (13)  | 0.0222 (13)  | -0.0072 (10)  | 0.0010 (11)  | -0.0053 (10) |
| C18        | 0.0297 (14)  | 0.0371 (16)  | 0.0357 (17)  | -0.0021 (12)  | 0.0008 (13)  | -0.0001 (13) |
| C19        | 0.0286 (13)  | 0.0251 (13)  | 0.0223 (13)  | -0.0056 (10)  | 0.0104 (11)  | 0.0005 (10)  |
| C20        | 0.0348 (14)  | 0.0229 (13)  | 0.0280 (15)  | -0.0049 (11)  | 0.0094 (12)  | 0.0033 (11)  |
| C21        | 0.0228 (12)  | 0.0173 (11)  | 0.0203 (12)  | 0.0024 (9)    | 0.0038 (10)  | 0.0031 (9)   |
| C22        | 0.0224 (12)  | 0.0294 (13)  | 0.0241 (14)  | 0.0006 (10)   | 0.0097 (10)  | 0.0002 (11)  |
| C23        | 0.0300 (14)  | 0.0353 (15)  | 0.0291 (15)  | 0.0021 (12)   | 0.0102 (12)  | 0.0061 (12)  |
| C24        | 0.0191 (12)  | 0.0310 (14)  | 0.0252 (14)  | -0.0042 (10)  | 0.0006 (10)  | -0.0010 (11) |
| C25        | 0.0282 (14)  | 0.0408 (17)  | 0.0348 (17)  | 0.0039 (12)   | -0.0037 (13) | 0.0059 (14)  |
| C26        | 0.0235 (12)  | 0.0221 (12)  | 0.0214 (13)  | -0.0022 (9)   | 0.0052 (10)  | -0.0016 (10) |
| C27        | 0.0241 (12)  | 0.0186 (12)  | 0.0242 (13)  | -0.0030 (9)   | 0.0068 (10)  | 0.0014 (10)  |
| C28        | 0.0284 (13)  | 0.0197 (12)  | 0.0288 (14)  | 0.0000 (10)   | 0.0113 (11)  | -0.0013 (10) |
| C29        | 0.0335 (14)  | 0.0259 (13)  | 0.0200 (13)  | -0.0018 (11)  | 0.0091 (11)  | -0.0006 (10) |
| C30        | 0.0244 (12)  | 0.0252 (13)  | 0.0227 (13)  | -0.0014 (10)  | 0.0063 (10)  | 0.0038 (10)  |
|            |              |              |              |               |              |              |

### Geometric parameters (Å, °)

| Zn1—N3 | 2.069 (2)  | Zn2—N6  | 2.070 (2)  |
|--------|------------|---------|------------|
| Zn1—S1 | 2.3201 (8) | Zn2—S5  | 2.3399 (8) |
| Zn1—S3 | 2.3417 (8) | Zn2—S7  | 2.3517 (8) |
| Zn1—S4 | 2.4932 (8) | Zn2—S6  | 2.5453 (8) |
| Zn1—S2 | 2.7461 (8) | Zn2—S8  | 2.6051 (8) |
| S1—C1  | 1.736 (3)  | S5—C16  | 1.743 (3)  |
| S2—C1  | 1.721 (3)  | S6—C16  | 1.720 (3)  |
| S3—C6  | 1.741 (3)  | S7—C21  | 1.734 (3)  |
| S4—C6  | 1.720 (3)  | S8—C21  | 1.730 (3)  |
| O1—C12 | 1.355 (3)  | O2—C27  | 1.352 (3)  |
| 01—H10 | 0.842 (10) | O2—H2O  | 0.844 (10) |
| N1-C1  | 1.332 (3)  | N4—C16  | 1.328 (3)  |
| N1-C4  | 1.470 (3)  | N4—C19  | 1.474 (3)  |
| N1-C2  | 1.477 (3)  | N4—C17  | 1.478 (3)  |
| N2-C6  | 1.333 (3)  | N5-C21  | 1.326 (3)  |
| N2-C9  | 1.473 (3)  | N5-C22  | 1.476 (3)  |
| N2C7   | 1.474 (3)  | N5-C24  | 1.478 (3)  |
| N3—C11 | 1.343 (3)  | N6-C26  | 1.339 (3)  |
| N3—C15 | 1.347 (3)  | N6—C30  | 1.340 (4)  |
| C2—C3  | 1.520 (4)  | C17—C18 | 1.515 (4)  |
|        |            |         |            |

## supporting information

| C2—H2A          | 0.9900     | C17—H17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900     |
|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| C2—H2B          | 0.9900     | C17—H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900     |
| С3—НЗА          | 0.9800     | C18—H18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800     |
| С3—Н3В          | 0.9800     | C18—H18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800     |
| С3—Н3С          | 0.9800     | C18—H18C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800     |
| C4—C5           | 1.524 (4)  | C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.517 (4)  |
| C4—H4A          | 0.9900     | С19—Н19А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900     |
| C4—H4B          | 0.9900     | C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900     |
| C5—H5A          | 0.9800     | С20—Н20А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800     |
| C5—H5B          | 0.9800     | С20—Н20В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800     |
| C5—H5C          | 0.9800     | C20—H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800     |
| C7—C8           | 1 512 (4)  | $C_{22} = C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.515(4)   |
| C7—H7A          | 0.9900     | С22—Н22А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900     |
| C7—H7B          | 0.9900     | С22—Н22В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900     |
| C8 - H8A        | 0.9800     | C23_H23A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900     |
| C8—H8B          | 0.9800     | C23—H23R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800     |
|                 | 0.9800     | C23_H23C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800     |
| $C_0 = C_1 O_1$ | 1.523(4)   | $C_{23}$ $C_{23}$ $C_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.528(4)   |
| $C_{2}$         | 0.0000     | $C_{24} = C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000     |
|                 | 0.9900     | $C_{24}$ $H_{24}$ $H$ | 0.9900     |
| C10 H10A        | 0.9900     | $C_{24}$ $H_{25A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9900     |
| C10—H10A        | 0.9800     | C25—H25A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800     |
| C10—H10B        | 0.9800     | С25—П25В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800     |
| C10—H10C        | 1.207(4)   | $C_{23}$ $C$ | 0.9600     |
|                 | 1.397 (4)  | $C_{20} = C_{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.390 (4)  |
|                 | 0.9500     | C20—H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500     |
| C12 - C13       | 1.384 (4)  | $C_2/-C_{28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.389 (4)  |
| C13—C14         | 1.388 (4)  | $C_{28} = C_{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.389 (4)  |
| С13—Н13         | 0.9500     | C28—H28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500     |
| C14—C15         | 1.380 (4)  | $C_{29} = C_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.383 (4)  |
| C14—H14         | 0.9500     | C29—H29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500     |
| С15—Н15         | 0.9500     | С30—Н30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500     |
| N3—Zn1—S1       | 112.77 (6) | N6—Zn2—S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.78 (6) |
| N3—Zn1—S3       | 109.24 (6) | N6—Zn2—S7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.06 (6) |
| S1—Zn1—S3       | 136.44 (3) | S5—Zn2—S7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 137.08 (3) |
| N3—Zn1—S4       | 101.02 (6) | N6—Zn2—S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 96.34 (6)  |
| S1—Zn1—S4       | 106.61 (3) | S5—Zn2—S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74.34 (3)  |
| S3—Zn1—S4       | 75.54 (3)  | S7—Zn2—S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103.42 (3) |
| N3—Zn1—S2       | 93.23 (6)  | N6—Zn2—S8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94.71 (6)  |
| S1—Zn1—S2       | 70.99 (3)  | S5—Zn2—S8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.83 (3) |
| S3—Zn1—S2       | 95.97 (3)  | S7—Zn2—S8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73.08 (3)  |
| S4—Zn1—S2       | 165.17 (2) | S6—Zn2—S8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 168.91 (2) |
| C1—S1—Zn1       | 92.11 (9)  | C16—S5—Zn2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87.12 (9)  |
| C1—S2—Zn1       | 78.96 (9)  | C16—S6—Zn2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81.24 (9)  |
| C6—S3—Zn1       | 85.32 (9)  | C21—S7—Zn2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88.69 (9)  |
| C6—S4—Zn1       | 81.11 (9)  | C21—S8—Zn2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80.88 (9)  |
| C12—O1—H1O      | 110 (3)    | С27—О2—Н2О                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110 (3)    |
| C1—N1—C4        | 122.5 (2)  | C16—N4—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123.1 (2)  |

| C1—N1—C2            | 122.3 (2)                | C16—N4—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.7 (2)              |
|---------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| C4—N1—C2            | 115.2 (2)                | C19—N4—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115.3 (2)              |
| C6—N2—C9            | 122.1 (2)                | C21—N5—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.6 (2)              |
| C6—N2—C7            | 121.9 (2)                | C21—N5—C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.4 (2)              |
| C9—N2—C7            | 116.0 (2)                | C22—N5—C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115.0(2)               |
| C11 - N3 - C15      | 118.9(2)                 | $C_{26} - N_{6} - C_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.1(2)               |
| C11 - N3 - 7n1      | 122 19 (18)              | $C_{26} - N_{6} - Z_{n}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.10(18)             |
| C15 = N3 = 7n1      | 118 67 (18)              | $C_{30}$ N6 $Z_{n2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.10(18)             |
| N1-C1-S2            | 1221(2)                  | N4-C16-S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.70(10)<br>122.3(2) |
| N1 - C1 - S1        | 122.1(2)<br>110.08(10)   | N4_C16_\$5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.3(2)<br>120.4(2)   |
| $S_2 = C_1 = S_1$   | 117.90(17)<br>117.91(14) | S6 C16 S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.4(2)<br>117.23(14) |
| $S_2 = C_1 = S_1$   | 117.91(14)<br>111.8(2)   | N4 C17 C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.23(14)<br>111.6(2) |
| N1 = C2 = C3        | 100.2                    | N4 - C17 - C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.3                  |
| N1 = C2 = H2A       | 109.2                    | $N_{+-} C_{1} C_{$ | 109.3                  |
| $C_{3}$             | 109.2                    | $C_{10}$ $C_{17}$ $H_{17D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.3                  |
| $NI = C_2 = H_2 B$  | 109.2                    | $N4 - C17 - \Pi17D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.3                  |
|                     | 109.2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                  |
| $H_2A - C_2 - H_2B$ | 107.9                    | HI/A - CI/-HI/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.0                  |
| $C_2 = C_3 = H_3 A$ | 109.5                    | C17 - C18 - H18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.5                  |
| $C_2 = C_3 = H_3 B$ | 109.5                    | C1/C18H18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                  |
| H3A—C3—H3B          | 109.5                    | H18A—C18—H18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                  |
| C2—C3—H3C           | 109.5                    | C17—C18—H18C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                  |
| H3A—C3—H3C          | 109.5                    | H18A—C18—H18C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                  |
| H3B—C3—H3C          | 109.5                    | H18B—C18—H18C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                  |
| N1—C4—C5            | 110.8 (2)                | N4—C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.9 (2)              |
| N1—C4—H4A           | 109.5                    | N4—C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.2                  |
| C5—C4—H4A           | 109.5                    | С20—С19—Н19А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.2                  |
| N1—C4—H4B           | 109.5                    | N4—C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.2                  |
| C5—C4—H4B           | 109.5                    | C20—C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.2                  |
| H4A—C4—H4B          | 108.1                    | H19A—C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.9                  |
| C4—C5—H5A           | 109.5                    | C19—C20—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                  |
| C4—C5—H5B           | 109.5                    | C19—C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                  |
| H5A—C5—H5B          | 109.5                    | H20A-C20-H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                  |
| C4—C5—H5C           | 109.5                    | С19—С20—Н20С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                  |
| H5A—C5—H5C          | 109.5                    | H20A-C20-H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                  |
| H5B—C5—H5C          | 109.5                    | H20B—C20—H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                  |
| N2—C6—S4            | 122.2 (2)                | N5—C21—S8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.7 (2)              |
| N2—C6—S3            | 120.0 (2)                | N5—C21—S7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.0 (2)              |
| S4—C6—S3            | 117.86 (14)              | S8—C21—S7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117.32 (15)            |
| N2—C7—C8            | 113.5 (2)                | N5—C22—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.1 (2)              |
| N2—C7—H7A           | 108.9                    | N5—C22—H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.4                  |
| С8—С7—Н7А           | 108.9                    | C23—C22—H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.4                  |
| N2—C7—H7B           | 108.9                    | N5—C22—H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.4                  |
| С8—С7—Н7В           | 108.9                    | C23—C22—H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.4                  |
| H7A—C7—H7B          | 107.7                    | H22A—C22—H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.0                  |
| С7—С8—Н8А           | 109.5                    | С22—С23—Н23А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                  |
| С7—С8—Н8В           | 109.5                    | C22—C23—H23B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                  |
| H8A—C8—H8B          | 109.5                    | H23A—C23—H23B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                  |
| С7—С8—Н8С           | 109.5                    | С22—С23—Н23С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                  |

| H8A—C8—H8C                 | 109.5                | H23A—C23—H23C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
|----------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| H8B—C8—H8C                 | 109.5                | H23B—C23—H23C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| N2—C9—C10                  | 111.8 (2)            | N5—C24—C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.5 (2)            |
| N2—C9—H9A                  | 109.3                | N5—C24—H24A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| С10—С9—Н9А                 | 109.3                | C25—C24—H24A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| N2—C9—H9B                  | 109.3                | N5—C24—H24B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| С10—С9—Н9В                 | 109.3                | C25—C24—H24B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| Н9А—С9—Н9В                 | 107.9                | H24A—C24—H24B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.1                |
| С9—С10—Н10А                | 109.5                | С24—С25—Н25А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| C9—C10—H10B                | 109.5                | C24—C25—H25B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| H10A—C10—H10B              | 109.5                | H25A—C25—H25B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| C9—C10—H10C                | 109.5                | $C_{24}$ $C_{25}$ $H_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                |
| H10A—C10—H10C              | 109.5                | $H_{25A} - C_{25} - H_{25C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| H10B— $C10$ — $H10C$       | 109.5                | $H_{25B} = C_{25} = H_{25C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| $N_{3}$ - C11 - C12        | 121 7 (3)            | N6-C26-C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.7(3)             |
| N3-C11-H11                 | 119.2                | N6-C26-H26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118 7                |
| C12— $C11$ — $H11$         | 119.2                | $C_{27}$ $C_{26}$ $H_{26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.7                |
| 01 $012$ $013$             | 123 6 (3)            | $C_{27} = C_{20} = H_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1244(2)              |
| 01 - C12 - C13             | 123.0(3)<br>117.4(3) | 02 - 027 - 028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124.4(2)<br>117.3(2) |
| $C_{12} = C_{12} = C_{11}$ | 117.4(3)             | $C_2 = C_2 - C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 117.3(2)<br>118.3(2) |
| $C_{13} = C_{12} = C_{14}$ | 119.1(3)<br>118.0(2) | $C_{28} = C_{27} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.5(3)<br>118.7(2) |
| $C_{12} = C_{13} = C_{14}$ | 110.9 (5)            | $C_{27} = C_{28} = C_{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.7 (5)            |
| C12 - C13 - H13            | 120.5                | $C_{2} = C_{2} = C_{2$ | 120.0                |
| С14—С13—П13                | 120.3                | С29—С28—Н28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0                |
| C15 - C14 - C13            | 119.1 (3)            | $C_{30}$ $C_{29}$ $C_{28}$ $C_{20}$ $C$ | 119.7 (3)            |
| C15—C14—H14                | 120.5                | C30—C29—H29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.2                |
| C13—C14—H14                | 120.5                | C28—C29—H29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.2                |
| N3-C15-C14                 | 122.3 (3)            | N6—C30—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.5 (3)            |
| N3-C15-H15                 | 118.8                | N6—C30—H30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.3                |
| C14—C15—H15                | 118.8                | С29—С30—Н30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.3                |
|                            | 2.0.(2)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177 (0 (10)          |
| C4—NI— $C1$ — $S2$         | 3.9 (3)              | C19 - N4 - C16 - S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1//.68 (19)          |
| C2—NI—CI—S2                | -178.13 (19)         | C17 - N4 - C16 - S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.3(3)              |
| C4—NI—CI—SI                | -175.75 (19)         | C19—N4—C16—S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.8 (3)             |
| C2—N1—C1—S1                | 2.2 (3)              | C17—N4—C16—S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 177.20 (19)          |
| Zn1—S2—C1—N1               | 179.1 (2)            | Zn2—S6—C16—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -177.2 (2)           |
| Zn1—S2—C1—S1               | -1.28 (12)           | Zn2—S6—C16—S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.33 (12)            |
| Zn1— $S1$ — $C1$ — $N1$    | -178.9 (2)           | Zn2—S5—C16—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 177.0 (2)            |
| Zn1— $S1$ — $C1$ — $S2$    | 1.49 (14)            | Zn2—S5—C16—S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.51 (13)           |
| C1—N1—C2—C3                | 92.4 (3)             | C16—N4—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.7 (3)             |
| C4—N1—C2—C3                | -89.5 (3)            | C19—N4—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -91.2 (3)            |
| C1—N1—C4—C5                | 91.2 (3)             | C16—N4—C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94.5 (3)             |
| C2—N1—C4—C5                | -86.9 (3)            | C17—N4—C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -84.6 (3)            |
| C9—N2—C6—S4                | 5.1 (3)              | C22—N5—C21—S8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 174.11 (19)          |
| C7—N2—C6—S4                | -171.71 (19)         | C24—N5—C21—S8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4.8 (3)             |
| C9—N2—C6—S3                | -175.58 (19)         | C22—N5—C21—S7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -5.2 (3)             |
| C7—N2—C6—S3                | 7.6 (3)              | C24—N5—C21—S7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 175.93 (19)          |
| Zn1—S4—C6—N2               | 175.6 (2)            | Zn2—S8—C21—N5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -177.8 (2)           |
| Zn1—S4—C6—S3               | -3.74 (12)           | Zn2—S8—C21—S7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.50 (12)            |

| Zn1—S3—C6—N2    | -175.4 (2)   | Zn2—S7—C21—N5   | 177.7 (2)    |
|-----------------|--------------|-----------------|--------------|
| Zn1—S3—C6—S4    | 3.94 (13)    | Zn2—S7—C21—S8   | -1.64 (14)   |
| C6—N2—C7—C8     | -91.5 (3)    | C21—N5—C22—C23  | -90.3 (3)    |
| C9—N2—C7—C8     | 91.5 (3)     | C24—N5—C22—C23  | 88.7 (3)     |
| C6—N2—C9—C10    | -88.5 (3)    | C21—N5—C24—C25  | -95.2 (3)    |
| C7—N2—C9—C10    | 88.5 (3)     | C22—N5—C24—C25  | 85.8 (3)     |
| C15—N3—C11—C12  | 1.5 (4)      | C30—N6—C26—C27  | -0.4 (4)     |
| Zn1—N3—C11—C12  | -172.77 (19) | Zn2—N6—C26—C27  | 176.51 (19)  |
| N3-C11-C12-O1   | 178.6 (2)    | N6-C26-C27-O2   | 179.3 (2)    |
| N3—C11—C12—C13  | -1.2 (4)     | N6-C26-C27-C28  | 0.2 (4)      |
| O1-C12-C13-C14  | -179.7 (2)   | O2—C27—C28—C29  | -178.6 (2)   |
| C11—C12—C13—C14 | 0.0 (4)      | C26—C27—C28—C29 | 0.4 (4)      |
| C12—C13—C14—C15 | 0.8 (4)      | C27—C28—C29—C30 | -0.8 (4)     |
| C11—N3—C15—C14  | -0.7 (4)     | C26—N6—C30—C29  | 0.1 (4)      |
| Zn1—N3—C15—C14  | 173.8 (2)    | Zn2—N6—C30—C29  | -176.88 (19) |
| C13—C14—C15—N3  | -0.4 (4)     | C28—C29—C30—N6  | 0.6 (4)      |
|                 |              |                 |              |

### Hydrogen-bond geometry (Å, °)

 $Cg1 \ and \ Cg2 \ are \ the \ centroids \ of \ the \ (Zn1,S1,S2,C1) \ and \ (Zn2,S7,S8,C21) \ chelate \ rings, \ respectively.$ 

| <i>D</i> —H··· <i>A</i>                         | D—H      | H…A      | D···A     | D—H···A |
|-------------------------------------------------|----------|----------|-----------|---------|
| O1—H1O····S8 <sup>i</sup>                       | 0.84 (2) | 2.45(1)  | 3.289 (2) | 173 (4) |
| O2—H2O···S2 <sup>ii</sup>                       | 0.84 (2) | 2.31 (1) | 3.143 (2) | 170 (4) |
| C8—H8 <i>A</i> ··· <i>Cg</i> 2                  | 0.98     | 2.98     | 3.855 (3) | 150     |
| C13—H13··· $Cg2^i$                              | 0.95     | 2.79     | 3.631 (3) | 148     |
| C20—H20 <i>C</i> ··· <i>Cg</i> 1 <sup>iii</sup> | 0.98     | 2.97     | 3.850 (3) | 150     |
| C28—H28···· <i>Cg</i> 1 <sup>ii</sup>           | 0.95     | 2.96     | 3.738 (3) | 140     |
| C19—H19 <i>A</i> ···O2 <sup>iv</sup>            | 0.99     | 2.56     | 3.321 (3) | 134     |

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) x+1, y, z; (iv) x, -y+1/2, z-1/2.

(II) Bis[N-(2-hydroxyethyl)-N-methyldithiocarbamato- $\kappa^2 S_r S'$ ](3-hydroxypyridine- $\kappa N$ )zinc

| Crystal data                              |                                                              |
|-------------------------------------------|--------------------------------------------------------------|
| $[Zn(C_4H_8NOS_2)_2(C_5H_5NO)]$           | Z = 2                                                        |
| $M_r = 460.94$                            | F(000) = 476                                                 |
| Triclinic, $P\overline{1}$                | $D_{\rm x} = 1.631 {\rm Mg} {\rm m}^{-3}$                    |
| a = 8.8645 (19)  Å                        | Mo Ka radiation, $\lambda = 0.71073$ Å                       |
| b = 9.956 (2) Å                           | Cell parameters from 4145 reflections                        |
| c = 11.473 (3) Å                          | $\theta = 2.5 - 40.6^{\circ}$                                |
| $\alpha = 102.154 (4)^{\circ}$            | $\mu = 1.77 \text{ mm}^{-1}$                                 |
| $\beta = 106.989 \ (4)^{\circ}$           | T = 98  K                                                    |
| $\gamma = 93.466 \ (3)^{\circ}$           | Slab, colourless                                             |
| V = 938.6 (4) Å <sup>3</sup>              | $0.37 \times 0.25 \times 0.25$ mm                            |
| Data collection                           |                                                              |
| Rigaku AFC12κ/SATURN724<br>diffractometer | Absorption correction: multi-scan<br>(ABSCOR; Higashi, 1995) |
| Radiation source: fine-focus sealed tube  | $T_{\rm min} = 0.860, \ T_{\rm max} = 1.000$                 |
| Graphite monochromator                    | 6836 measured reflections                                    |
| $\omega$ scans                            | 4249 independent reflections                                 |

| 4133 reflections with $I > 2\sigma(I)$                             | $h = -11 \rightarrow 11$                                   |
|--------------------------------------------------------------------|------------------------------------------------------------|
| $R_{\rm int} = 0.026$                                              | $k = -12 \rightarrow 12$                                   |
| $\theta_{\rm max} = 27.5^{\circ},  \theta_{\rm min} = 2.4^{\circ}$ | $l = -14 \rightarrow 14$                                   |
| Refinement                                                         |                                                            |
| Refinement on $F^2$                                                | Primary atom site location: structure-invariant            |
| Least-squares matrix: full                                         | direct methods                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.032$                                    | Secondary atom site location: difference Fourier           |
| $wR(F^2) = 0.080$                                                  | map                                                        |
| S = 1.06                                                           | Hydrogen site location: mixed                              |
| 4249 reflections                                                   | $w = 1/[\sigma^2(F_o^2) + (0.037P)^2 + 0.6872P]$           |
| 228 parameters                                                     | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 3 restraints                                                       | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
|                                                                    | $\Delta  ho_{ m max} = 0.43 \ { m e} \ { m \AA}^{-3}$      |
|                                                                    | $\Delta \rho_{\rm min} = -0.60 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ             | $U_{ m iso}*/U_{ m eq}$ |
|-----|--------------|--------------|---------------|-------------------------|
| Zn  | 0.76357 (3)  | 0.49975 (2)  | 0.25271 (2)   | 0.01863 (8)             |
| S1  | 0.97385 (5)  | 0.65936 (5)  | 0.26357 (4)   | 0.01674 (11)            |
| S2  | 0.69910 (6)  | 0.58080 (5)  | 0.03011 (5)   | 0.01835 (11)            |
| S3  | 0.64889 (6)  | 0.27205 (5)  | 0.14638 (4)   | 0.01739 (11)            |
| S4  | 0.90377 (6)  | 0.34805 (5)  | 0.38990 (4)   | 0.01782 (11)            |
| 01  | 0.74043 (18) | 0.85049 (17) | -0.09808 (15) | 0.0260 (3)              |
| H1O | 0.695 (3)    | 0.783 (2)    | -0.083 (3)    | 0.039*                  |
| O2  | 0.45844 (17) | 0.01078 (16) | 0.24736 (13)  | 0.0218 (3)              |
| H2O | 0.413 (3)    | 0.051 (3)    | 0.193 (2)     | 0.033*                  |
| O3  | 0.67339 (19) | 0.91603 (16) | 0.57620 (15)  | 0.0285 (3)              |
| H3O | 0.624 (3)    | 0.945 (3)    | 0.627 (2)     | 0.043*                  |
| N1  | 0.98304 (19) | 0.70602 (17) | 0.04700 (15)  | 0.0176 (3)              |
| N2  | 0.78664 (19) | 0.08741 (16) | 0.26777 (15)  | 0.0161 (3)              |
| N3  | 0.62518 (19) | 0.59446 (17) | 0.35049 (15)  | 0.0169 (3)              |
| C1  | 0.8924 (2)   | 0.65371 (18) | 0.10539 (18)  | 0.0149 (3)              |
| C2  | 0.9350 (2)   | 0.6846 (2)   | -0.09003 (18) | 0.0191 (4)              |
| H2A | 0.8502       | 0.6046       | -0.1285       | 0.023*                  |
| H2B | 1.0271       | 0.6612       | -0.1190       | 0.023*                  |
| C3  | 0.8749 (2)   | 0.8097 (2)   | -0.1355 (2)   | 0.0221 (4)              |
| H3A | 0.9619       | 0.8882       | -0.1017       | 0.027*                  |
| H3B | 0.8450       | 0.7881       | -0.2282       | 0.027*                  |
| C4  | 1.1446 (2)   | 0.7770 (2)   | 0.1154 (2)    | 0.0252 (4)              |
| H4A | 1.1454       | 0.8372       | 0.1951        | 0.038*                  |
| H4B | 1.1789       | 0.8330       | 0.0647        | 0.038*                  |
| H4C | 1.2175       | 0.7081       | 0.1321        | 0.038*                  |

| C5  | 0.7800 (2) | 0.22057 (19)  | 0.26907 (17) | 0.0143 (3) |  |
|-----|------------|---------------|--------------|------------|--|
| C6  | 0.6826 (2) | -0.02451 (19) | 0.16625 (18) | 0.0181 (4) |  |
| H6A | 0.7468     | -0.0971       | 0.1421       | 0.022*     |  |
| H6B | 0.6353     | 0.0126        | 0.0920       | 0.022*     |  |
| C7  | 0.5502 (2) | -0.0887 (2)   | 0.20439 (18) | 0.0193 (4) |  |
| H7A | 0.4796     | -0.1595       | 0.1316       | 0.023*     |  |
| H7B | 0.5972     | -0.1359       | 0.2718       | 0.023*     |  |
| C8  | 0.8976 (2) | 0.0451 (2)    | 0.3718 (2)   | 0.0232 (4) |  |
| H8A | 1.0069     | 0.0797        | 0.3796       | 0.035*     |  |
| H8B | 0.8852     | -0.0562       | 0.3554       | 0.035*     |  |
| H8C | 0.8751     | 0.0837        | 0.4499       | 0.035*     |  |
| C9  | 0.6861 (2) | 0.7161 (2)    | 0.43240 (18) | 0.0175 (4) |  |
| H9  | 0.7921     | 0.7530        | 0.4436       | 0.021*     |  |
| C10 | 0.6007 (2) | 0.7911 (2)    | 0.50204 (18) | 0.0194 (4) |  |
| C11 | 0.4471 (2) | 0.7342 (2)    | 0.48828 (19) | 0.0226 (4) |  |
| H11 | 0.3855     | 0.7818        | 0.5347       | 0.027*     |  |
| C12 | 0.3863 (2) | 0.6063 (2)    | 0.4053 (2)   | 0.0249 (4) |  |
| H12 | 0.2826     | 0.5646        | 0.3953       | 0.030*     |  |
| C13 | 0.4768 (2) | 0.5400 (2)    | 0.33723 (19) | 0.0221 (4) |  |
| H13 | 0.4331     | 0.4534        | 0.2794       | 0.027*     |  |
|     |            |               |              |            |  |

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$     | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | <i>U</i> <sup>13</sup> | U <sup>23</sup> |
|-----|--------------|-----------------|-----------------|--------------|------------------------|-----------------|
| Zn  | 0.02010 (13) | 0.01232 (12)    | 0.02810 (14)    | 0.00449 (9)  | 0.01447 (10)           | 0.00421 (9)     |
| S1  | 0.0155 (2)   | 0.0171 (2)      | 0.0178 (2)      | 0.00248 (17) | 0.00462 (17)           | 0.00523 (17)    |
| S2  | 0.0154 (2)   | 0.0194 (2)      | 0.0201 (2)      | 0.00046 (17) | 0.00437 (18)           | 0.00651 (18)    |
| S3  | 0.0217 (2)   | 0.0157 (2)      | 0.0149 (2)      | 0.00533 (17) | 0.00362 (18)           | 0.00587 (17)    |
| S4  | 0.0180 (2)   | 0.0143 (2)      | 0.0184 (2)      | 0.00276 (16) | 0.00247 (18)           | 0.00227 (17)    |
| 01  | 0.0257 (8)   | 0.0311 (8)      | 0.0317 (8)      | 0.0137 (6)   | 0.0166 (7)             | 0.0160 (7)      |
| O2  | 0.0232 (7)   | 0.0268 (8)      | 0.0184 (7)      | 0.0090 (6)   | 0.0094 (6)             | 0.0064 (6)      |
| O3  | 0.0326 (8)   | 0.0227 (8)      | 0.0321 (8)      | 0.0011 (6)   | 0.0208 (7)             | -0.0037 (6)     |
| N1  | 0.0157 (7)   | 0.0191 (8)      | 0.0198 (8)      | 0.0025 (6)   | 0.0077 (6)             | 0.0058 (6)      |
| N2  | 0.0165 (7)   | 0.0140 (7)      | 0.0165 (7)      | 0.0040 (6)   | 0.0024 (6)             | 0.0043 (6)      |
| N3  | 0.0157 (7)   | 0.0179 (8)      | 0.0192 (7)      | 0.0071 (6)   | 0.0063 (6)             | 0.0062 (6)      |
| C1  | 0.0160 (8)   | 0.0107 (8)      | 0.0193 (8)      | 0.0053 (6)   | 0.0071 (7)             | 0.0037 (7)      |
| C2  | 0.0236 (10)  | 0.0199 (9)      | 0.0181 (9)      | 0.0071 (7)   | 0.0114 (8)             | 0.0058 (7)      |
| C3  | 0.0250 (10)  | 0.0261 (10)     | 0.0232 (9)      | 0.0091 (8)   | 0.0140 (8)             | 0.0118 (8)      |
| C4  | 0.0167 (9)   | 0.0301 (11)     | 0.0295 (11)     | -0.0018 (8)  | 0.0078 (8)             | 0.0093 (9)      |
| C5  | 0.0151 (8)   | 0.0149 (8)      | 0.0154 (8)      | 0.0046 (6)   | 0.0076 (7)             | 0.0038 (7)      |
| C6  | 0.0217 (9)   | 0.0125 (8)      | 0.0177 (8)      | 0.0037 (7)   | 0.0053 (7)             | -0.0004 (7)     |
| C7  | 0.0215 (9)   | 0.0157 (9)      | 0.0195 (9)      | 0.0036 (7)   | 0.0047 (7)             | 0.0038 (7)      |
| C8  | 0.0228 (10)  | 0.0181 (9)      | 0.0257 (10)     | 0.0065 (8)   | -0.0005 (8)            | 0.0091 (8)      |
| С9  | 0.0176 (9)   | 0.0180 (9)      | 0.0195 (9)      | 0.0059 (7)   | 0.0077 (7)             | 0.0066 (7)      |
| C10 | 0.0221 (9)   | 0.0212 (10)     | 0.0173 (9)      | 0.0065 (8)   | 0.0080 (8)             | 0.0060 (7)      |
| C11 | 0.0204 (9)   | 0.0311 (11)     | 0.0196 (9)      | 0.0094 (8)   | 0.0101 (8)             | 0.0058 (8)      |
| C12 | 0.0139 (9)   | 0.0333 (12)     | 0.0256 (10)     | 0.0040 (8)   | 0.0061 (8)             | 0.0026 (9)      |
| C13 | 0.0177 (9)   | 0.0264 (10)     | 0.0201 (9)      | 0.0037 (8)   | 0.0053 (8)             | 0.0016 (8)      |

Geometric parameters (Å, °)

| Zn—N3      | 2.0375 (16)  | C2—H2A     | 0.9900      |
|------------|--------------|------------|-------------|
| Zn—S1      | 2.3319 (6)   | C2—H2B     | 0.9900      |
| Zn—S3      | 2.3437 (7)   | С3—НЗА     | 0.9900      |
| Zn—S4      | 2.5275 (6)   | С3—Н3В     | 0.9900      |
| Zn—S2      | 2.7514 (8)   | C4—H4A     | 0.9800      |
| S1—C1      | 1.733 (2)    | C4—H4B     | 0.9800      |
| S2—C1      | 1.7119 (19)  | C4—H4C     | 0.9800      |
| S3—C5      | 1.7364 (19)  | C6—C7      | 1.518 (3)   |
| S4—C5      | 1.7140 (19)  | C6—H6A     | 0.9900      |
| O1—C3      | 1.433 (2)    | С6—Н6В     | 0.9900      |
| 01—H10     | 0.833 (10)   | C7—H7A     | 0.9900      |
| O2—C7      | 1.418 (2)    | С7—Н7В     | 0.9900      |
| O2—H2O     | 0.833 (10)   | C8—H8A     | 0.9800      |
| O3—C10     | 1.350 (2)    | C8—H8B     | 0.9800      |
| O3—H3O     | 0.834 (10)   | C8—H8C     | 0.9800      |
| N1—C1      | 1.333 (2)    | C9—C10     | 1.393 (3)   |
| N1—C4      | 1.468 (2)    | С9—Н9      | 0.9500      |
| N1—C2      | 1.468 (2)    | C10—C11    | 1.394 (3)   |
| N2—C5      | 1.328 (2)    | C11—C12    | 1.387 (3)   |
| N2—C8      | 1.464 (2)    | C11—H11    | 0.9500      |
| N2—C6      | 1.466 (2)    | C12—C13    | 1.379 (3)   |
| N3—C9      | 1.337 (3)    | C12—H12    | 0.9500      |
| N3—C13     | 1.345 (3)    | С13—Н13    | 0.9500      |
| C2—C3      | 1.516 (3)    |            |             |
| N3—Zn—S1   | 109.72 (5)   | N1—C4—H4B  | 109.5       |
| N3—Zn—S3   | 110.80 (5)   | H4A—C4—H4B | 109.5       |
| S1—Zn—S3   | 139.04 (2)   | N1—C4—H4C  | 109.5       |
| N3—Zn—S4   | 103.07 (5)   | H4A—C4—H4C | 109.5       |
| S1—Zn—S4   | 102.00 (2)   | H4B—C4—H4C | 109.5       |
| S3—Zn—S4   | 74.41 (2)    | N2—C5—S4   | 121.34 (14) |
| N3—Zn—S2   | 107.89 (5)   | N2—C5—S3   | 121.19 (14) |
| S1—Zn—S2   | 70.825 (18)  | S4—C5—S3   | 117.46 (11) |
| S3—Zn—S2   | 91.20 (2)    | N2—C6—C7   | 112.02 (16) |
| S4—Zn—S2   | 148.839 (18) | N2—C6—H6A  | 109.2       |
| C1—S1—Zn   | 90.54 (6)    | С7—С6—Н6А  | 109.2       |
| C1—S2—Zn   | 77.85 (7)    | N2—C6—H6B  | 109.2       |
| C5—S3—Zn   | 86.67 (6)    | C7—C6—H6B  | 109.2       |
| C5—S4—Zn   | 81.43 (7)    | H6A—C6—H6B | 107.9       |
| C3—O1—H1O  | 109 (2)      | O2—C7—C6   | 112.50 (16) |
| С7—О2—Н2О  | 113 (2)      | O2—C7—H7A  | 109.1       |
| C10—O3—H3O | 110 (2)      | С6—С7—Н7А  | 109.1       |
| C1—N1—C4   | 121.53 (17)  | O2—C7—H7B  | 109.1       |
| C1—N1—C2   | 122.52 (16)  | С6—С7—Н7В  | 109.1       |
| C4—N1—C2   | 115.68 (16)  | H7A—C7—H7B | 107.8       |
| C5—N2—C8   | 120.74 (16)  | N2—C8—H8A  | 109.5       |

| C5—N2—C6    | 122.91 (16)  | N2—C8—H8B       | 109.5        |
|-------------|--------------|-----------------|--------------|
| C8—N2—C6    | 116.33 (15)  | H8A—C8—H8B      | 109.5        |
| C9—N3—C13   | 118.73 (17)  | N2—C8—H8C       | 109.5        |
| C9—N3—Zn    | 118.04 (13)  | H8A—C8—H8C      | 109.5        |
| C13—N3—Zn   | 123.22 (14)  | H8B—C8—H8C      | 109.5        |
| N1—C1—S2    | 122.54 (15)  | N3—C9—C10       | 122.79 (18)  |
| N1—C1—S1    | 118.66 (14)  | N3—C9—H9        | 118.6        |
| S2—C1—S1    | 118.79 (11)  | С10—С9—Н9       | 118.6        |
| N1—C2—C3    | 113.44 (16)  | O3—C10—C9       | 116.64 (18)  |
| N1—C2—H2A   | 108.9        | O3—C10—C11      | 125.07 (18)  |
| C3—C2—H2A   | 108.9        | C9—C10—C11      | 118.27 (19)  |
| N1—C2—H2B   | 108.9        | C12-C11-C10     | 118.52 (19)  |
| C3—C2—H2B   | 108.9        | C12—C11—H11     | 120.7        |
| H2A—C2—H2B  | 107.7        | C10—C11—H11     | 120.7        |
| O1—C3—C2    | 112.64 (16)  | C13—C12—C11     | 119.77 (19)  |
| O1—C3—H3A   | 109.1        | C13—C12—H12     | 120.1        |
| С2—С3—НЗА   | 109.1        | C11—C12—H12     | 120.1        |
| O1—C3—H3B   | 109.1        | N3—C13—C12      | 121.87 (19)  |
| С2—С3—Н3В   | 109.1        | N3—C13—H13      | 119.1        |
| НЗА—СЗ—НЗВ  | 107.8        | С12—С13—Н13     | 119.1        |
| N1—C4—H4A   | 109.5        |                 |              |
|             |              |                 |              |
| C4—N1—C1—S2 | 175.51 (15)  | Zn—S4—C5—S3     | -1.66 (9)    |
| C2—N1—C1—S2 | -10.8 (2)    | Zn—S3—C5—N2     | -176.68 (15) |
| C4—N1—C1—S1 | -4.7 (2)     | Zn—S3—C5—S4     | 1.77 (10)    |
| C2—N1—C1—S1 | 169.02 (14)  | C5—N2—C6—C7     | -103.9 (2)   |
| Zn—S2—C1—N1 | 167.26 (16)  | C8—N2—C6—C7     | 74.4 (2)     |
| Zn—S2—C1—S1 | -12.55 (9)   | N2—C6—C7—O2     | 55.4 (2)     |
| Zn—S1—C1—N1 | -165.30 (14) | C13—N3—C9—C10   | -2.0 (3)     |
| Zn—S1—C1—S2 | 14.52 (10)   | Zn—N3—C9—C10    | 178.55 (14)  |
| C1—N1—C2—C3 | 102.8 (2)    | N3—C9—C10—O3    | -176.43 (17) |
| C4—N1—C2—C3 | -83.2 (2)    | N3—C9—C10—C11   | 2.1 (3)      |
| N1-C2-C3-O1 | -58.9 (2)    | O3—C10—C11—C12  | 177.9 (2)    |
| C8—N2—C5—S4 | 1.6 (3)      | C9—C10—C11—C12  | -0.5 (3)     |
| C6—N2—C5—S4 | 179.87 (14)  | C10-C11-C12-C13 | -1.1 (3)     |
| C8—N2—C5—S3 | -179.97 (15) | C9—N3—C13—C12   | 0.2 (3)      |
| C6—N2—C5—S3 | -1.7 (3)     | Zn-N3-C13-C12   | 179.67 (16)  |
| Zn—S4—C5—N2 | 176.79 (16)  | C11—C12—C13—N3  | 1.3 (3)      |

#### *Hydrogen-bond geometry (Å, °)*

Cg1 is the centroid of the (Zn,S3,S4,C5) chelate ring.

| D—H···A                   | D—H      | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|---------------------------|----------|----------|-----------|-------------------------|
| 01—H1 <i>O</i> …S2        | 0.84 (2) | 2.61 (2) | 3.371 (2) | 152 (3)                 |
| O2—H2O····O1 <sup>i</sup> | 0.83 (3) | 1.94 (3) | 2.734 (2) | 161 (3)                 |

|                                               |          |          | supporting information |         |  |
|-----------------------------------------------|----------|----------|------------------------|---------|--|
| O3—H3 <i>O</i> ···O2 <sup>ii</sup>            | 0.84 (3) | 1.79 (2) | 2.619 (2)              | 170 (3) |  |
| C2—H2 <i>B</i> ··· <i>Cg</i> 1 <sup>iii</sup> | 0.99     | 2.76     | 3.689 (2)              | 156     |  |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+2, -*y*+1, -*z*.