research communications

Received 8 November 2016 Accepted 12 November 2016

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; acaricide; insecticide; nematicide; oxamyl.

CCDC reference: 1516996

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of oxamyl

Eunjin Kwon, Ki-Min Park,* Hyunjin Park and Tae Ho Kim*

Department of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea. *Correspondence e-mail: kmpark@gnu.ac.kr, thkim@gnu.ac.kr

The title compound, $C_7H_{13}N_3O_3S$ [systematic name: (*Z*)-methyl 2-dimethylamino-*N*-(methylcarbamoyloxy)-2-oxoethanimidothioate], is an oxime carbamate acaride, insecticide and nematicide. The asymmetric unit comprises two independent molecules, *A* and *B*. The dihedral angles between the mean planes [r.m.s. deviations = 0.0017 (*A*) and 0.0016 Å (*B*)] of the acetamide and oxyimino groups are 88.80 (8)° for *A* and 87.05 (8)° for *B*. In the crystal, N/C–H···O hydrogen bonds link adjacent molecules, forming chains along the *a* axis. The chains are further linked by C–H···O hydrogen bonds, resulting in a threedimensional network with alternating rows of *A* and *B* molecules in the *bc* plane stacked along the *a*-axis direction. The structure was refined as an inversion twin with a final BASF parameter of 0.16 (9).

1. Chemical context

Oxamyl [(N,N-dimethyl-2-methylcarbamoyloximino-2-(dimethylsulfanyl)acetamide] is a carbamate compound used in a wide range of agricultural situations. It is systemic and active as an insecticide or a nematicide. It is used for the control of nematodes in vegetables, bananas, pineapple, peanuts, cotton, soya beans, tobacco, potatoes, sugar beet, and other crops. It is also used in India for controlling the growth of nematodes on vegetable crops (Mohammad et al., 2015; Agarwal et al., 2016). In addition, oxamyl was classified by the World Health Organization (WHO) as highly hazardous (class IB) (Al-Dabbas et al., 2014). Oxamyl can be integrated with horse manure, sesame-oil-cake, or Bacillus thuringiensis to improve eggplant growth response and reduce development of the nematode Meloidogyne incognita (Osman et al., 2009). Also, oxamyl has a very high water solubility (280 g/L at 298 K) and low sorption solubility affinity to soils. As a result of these properties, oxamyl easily migrates into the water compartment (Mazellier et al., 2010). Herein, we report the molecular and crystal structure of oxamyl.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1N\cdotsO1^{i}$	0.88	2.13	2.871 (3)	142
$N4-H4N\cdots O4^{ii}$	0.88	2.04	2.794 (3)	142
$C4-H4B\cdots O6^{iii}$	0.98	2.54	3.075 (4)	114
$C6-H6B\cdots O2^{iv}$	0.98	2.60	3.518 (4)	156
$C7-H7B\cdots O1^{iv}$	0.98	2.52	3.431 (4)	155
$C11-H11B\cdots O3^{v}$	0.98	2.53	3.042 (4)	113
$C13-H13B\cdots O4^{iv}$	0.98	2.53	3.440 (4)	155
$C14-H14B\cdots O5^{iv}$	0.98	2.59	3.554 (4)	168

Symmetry codes: (i) $x - \frac{1}{2}, -y, z$; (ii) $x - \frac{1}{2}, -y + 1, z$; (iii) $-x + 1, -y + 1, z + \frac{1}{2}$; (iv) x - 1, y, z; (v) $-x + 1, -y, z - \frac{1}{2}$.

2. Structural commentary

The asymmetric unit of oxamyl comprises two independent molecules, A and B (Fig. 1). The compound consists of carbamate, acetamide, methylthio and oxyimino functional groups. The dihedral angles between the mean planes [r.m.s. deviations = 0.0017 (A) and 0.0016 Å (B)] of the acetamide and oxyimino groups are 88.80 (8) for A and 87.05 (8)° for B. All bond lengths and bond angles are normal and comparable to those observed in methomyl [systematic name: (E)-methyl N-(methylcarbamoyl)oxyethanimidothioate] which adopts similar crystal structure (Takusagawa & Jacobson, 1977).

3. Supramolecular features

The crystal structure is stabilized by several $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (Table 1). Adjacent *A* molecules form intermolecular $N1-H1N\cdots O1$ hydrogen bonds. In addition, $C6-H6B\cdots O2$ and $C7-H7B\cdots O1$ hydrogen bonds

4. Synthesis and crystallization

The title compound was purchased from Dr Ehrenstorfer GmbH. Slow evaporation of its solution in CH₃OH gave single crystals suitable for X-ray analysis.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound H atoms were positioned geometrically [with d(N-H) = 0.88 Å, $U_{iso} = 1.2U_{eq}(C)$ for N-H group, $U_{iso} = 1.5U_{eq}(C)$ for methyl group, d(C-H) =0.98 Å]. The crystal studied was an inversion twin with a 0.84 (9):0.16 (9) domain ratio.

Figure 1

The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2

The double chains formed through intermolecular $N-H\cdots O$ (black dashed lines) and $C-H\cdots O$ (sky-blue dashed lines) hydrogen bonds. The *A* and *B* molecules are shown in green and yellow, respectively. H atoms not involved in intermolecular interactions have been omitted for clarity.

research communications

Figure 3

The three-dimensional network made up of molecules A (green) and B (yellow). Black dashed lines represent intermolecular $N-H\cdots O$ hydrogen bonds. The $C-H\cdots O$ hydrogen bonds are shown as sky-blue (between each molecule A or B) and red (between molecules A and B) dashed lines, respectively. H atoms not involved in intermolecular interactions have been omitted for clarity.

Acknowledgements

This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).

Crystal data	
Chemical formula	$C_7H_{13}N_3O_3S$
M _r	219.26
Crystal system, space group	Orthorhombic, $Pca2_1$
Temperature (K)	173
a, b, c (Å)	8.3367 (4), 10.7752 (5), 24.1016 (12)
$V(Å^3)$	2165.04 (18)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.29
Crystal size (mm)	$0.50 \times 0.14 \times 0.11$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.665, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	19300, 5238, 4655
R _{int}	0.035
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.090, 1.04
No. of reflections	5238
No. of parameters	262
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.21, -0.23
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.16 (9)

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXS97* and *SHELXTL* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *DIAMOND* (Brandenburg, 2010) and *publCIF* (Westrip, 2010).

References

- Agarwal, S., Sadeghi, N., Tyagi, I., Gupta, V. K. & Fakhri, A. (2016). J. Colloid Interface Sci. 478, 430–438.
- Al-Dabbas, M. M., Shaderma, A. M. & Al-Antary, T. M. (2014). Life Sci. J. 11, 68–73.
- Brandenburg, K. (2010). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mazellier, P., Zamy, C. & Sarakha, M. (2010). Environ. Chem. Lett. 8, 19–24.
- Mohammad, S. G., Ahmed, S. M. & Badawi, A. F. M. (2015). Desalination Water Treatment, 55, 2109–2120.
- Osman, K. A., Al-Rehiayani, S. M., Al-Deghairi, M. A. & Salama, A. K. (2009). *Int. Biodeterior. Biodegradation*, **63**, 341–346.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Takusagawa, F. & Jacobson, R. A. (1977). J. Agric. Food Chem. 25, 577–581.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2016). E72, 1816-1818 [https://doi.org/10.1107/S2056989016018168]

Crystal structure of oxamyl

Eunjin Kwon, Ki-Min Park, Hyunjin Park and Tae Ho Kim

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

 $(Z)-[(Dimethylcarbamoyl)(methylsulfanyl)methylidene]amino \ N-methylcarbamate$

Crystal data	
$C_7H_{13}N_3O_3S$ $M_r = 219.26$ Orthorhombic, $Pca2_1$ a = 8.3367 (4) Å b = 10.7752 (5) Å c = 24.1016 (12) Å V = 2165.04 (18) Å ³ Z = 8 F(000) = 928	$D_x = 1.345 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6335 reflections $\theta = 2.5-27.8^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 173 K Plate, colourless $0.50 \times 0.14 \times 0.11 \text{ mm}$
Data collection Bruker APEXII CCD	5238 independent reflections
diffractometer	4655 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\text{int}} = 0.035$
Absorption correction: multi-scan	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
(SADABS; Bruker, 2014)	$h = -11 \rightarrow 11$
$T_{min} = 0.665$, $T_{max} = 0.746$	$k = -14 \rightarrow 14$
19300 measured reflections	$l = -32 \rightarrow 31$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
wR(F ²) = 0.090	$w = 1/[\sigma^2(F_o^2) + (0.0432P)^2 + 0.3998P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0432P)^{2} + 0.3998P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.21 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.23 \text{ e } \text{Å}^{-3}$ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.16 (9)

5238 reflections 262 parameters

1 restraint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.55678 (10)	0.32807 (7)	0.87717 (3)	0.0373 (2)	
S2	0.97239 (10)	0.16264 (7)	0.54545 (3)	0.0376 (2)	
01	0.8636 (3)	0.13823 (18)	0.74085 (9)	0.0308 (5)	
O2	0.6589 (2)	0.17413 (17)	0.79576 (8)	0.0270 (4)	
O3	0.2966 (3)	0.0966 (2)	0.91570 (10)	0.0431 (6)	
O4	1.2851 (3)	0.36802 (18)	0.67471 (9)	0.0307 (5)	
05	1.0771 (3)	0.32628 (17)	0.62210 (9)	0.0282 (5)	
O6	0.7167 (3)	0.3997 (2)	0.50123 (10)	0.0403 (6)	
N1	0.6479 (3)	0.0112 (2)	0.73350 (10)	0.0290 (5)	
H1N	0.5497	-0.0037	0.7451	0.035*	
N2	0.5009 (3)	0.1328 (2)	0.81132 (10)	0.0272 (5)	
N3	0.1571 (3)	0.2143 (2)	0.85463 (10)	0.0303 (6)	
N4	1.0729 (3)	0.4993 (2)	0.67852 (10)	0.0287 (5)	
H4N	0.9764	0.5151	0.6655	0.034*	
N5	0.9217 (3)	0.3683 (2)	0.60490 (10)	0.0261 (5)	
N6	0.5764 (3)	0.2808 (2)	0.56227 (10)	0.0291 (6)	
C1	0.7188 (4)	-0.0672 (3)	0.69115 (14)	0.0348 (7)	
H1A	0.7844	-0.0164	0.6662	0.052*	
H1B	0.6335	-0.1079	0.6699	0.052*	
H1C	0.7863	-0.1304	0.7088	0.052*	
C2	0.7298 (4)	0.1050 (2)	0.75477 (12)	0.0244 (6)	
C3	0.4493 (4)	0.2044 (3)	0.84969 (11)	0.0242 (6)	
C4	0.4197 (5)	0.3917 (4)	0.92805 (16)	0.0481 (10)	
H4A	0.3255	0.4260	0.9091	0.072*	
H4B	0.4736	0.4576	0.9490	0.072*	
H4C	0.3858	0.3259	0.9536	0.072*	
C5	0.2909 (3)	0.1659 (3)	0.87589 (13)	0.0271 (6)	
C6	0.0028 (4)	0.1835 (4)	0.88024 (16)	0.0398 (8)	
H6A	0.0171	0.1138	0.9059	0.060*	
H6B	-0.0742	0.1604	0.8513	0.060*	
H6C	-0.0376	0.2557	0.9007	0.060*	
C7	0.1526 (4)	0.3046 (3)	0.80973 (14)	0.0372 (7)	
H7A	0.1188	0.3853	0.8243	0.056*	
H7B	0.0764	0.2770	0.7813	0.056*	
H7C	0.2597	0.3122	0.7933	0.056*	
C8	1.1426 (4)	0.5816 (3)	0.71943 (13)	0.0348 (7)	
H8A	1.1834	0.5326	0.7507	0.052*	
H8B	1.0607	0.6396	0.7327	0.052*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H8C	1.2311	0.6281	0.7026	0.052*
C9	1.1516 (4)	0.4014 (2)	0.66055 (11)	0.0242 (6)
C10	0.8681 (4)	0.2936 (2)	0.56845 (11)	0.0240 (6)
C11	0.8379 (5)	0.0982 (3)	0.49430 (15)	0.0462 (9)
H11A	0.7431	0.0641	0.5129	0.069*
H11B	0.8928	0.0320	0.4739	0.069*
H11C	0.8049	0.1635	0.4684	0.069*
C12	0.7109 (4)	0.3295 (2)	0.54159 (13)	0.0267 (6)
C13	0.5720 (4)	0.1938 (3)	0.60790 (14)	0.0366 (7)
H13A	0.5364	0.1126	0.5944	0.055*
H13B	0.4972	0.2238	0.6363	0.055*
H13C	0.6795	0.1861	0.6240	0.055*
C14	0.4231 (4)	0.3106 (4)	0.53622 (15)	0.0420 (8)
H14A	0.4301	0.3922	0.5184	0.063*
H14B	0.3386	0.3120	0.5645	0.063*
H14C	0.3976	0.2476	0.5083	0.063*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0356 (4)	0.0368 (4)	0.0393 (4)	-0.0072 (3)	0.0091 (4)	-0.0137 (4)
S2	0.0352 (4)	0.0330 (4)	0.0447 (5)	0.0083 (3)	-0.0103 (4)	-0.0155 (4)
01	0.0210 (10)	0.0284 (10)	0.0428 (12)	-0.0018 (9)	0.0060 (9)	-0.0027 (9)
O2	0.0212 (10)	0.0271 (10)	0.0325 (11)	-0.0017 (8)	0.0047 (9)	-0.0055 (8)
O3	0.0392 (14)	0.0478 (13)	0.0423 (13)	0.0036 (11)	0.0085 (11)	0.0196 (11)
O4	0.0246 (11)	0.0275 (10)	0.0401 (12)	-0.0007 (9)	-0.0058 (10)	0.0029 (9)
O5	0.0211 (10)	0.0257 (10)	0.0379 (12)	0.0023 (8)	-0.0061 (9)	-0.0072 (9)
O6	0.0342 (13)	0.0476 (12)	0.0393 (12)	0.0008 (11)	-0.0035 (10)	0.0185 (11)
N1	0.0227 (12)	0.0282 (11)	0.0360 (13)	-0.0003 (10)	0.0061 (10)	-0.0077 (10)
N2	0.0233 (13)	0.0265 (12)	0.0318 (13)	-0.0011 (11)	0.0054 (11)	0.0001 (10)
N3	0.0269 (13)	0.0338 (13)	0.0303 (13)	-0.0022 (11)	0.0031 (11)	0.0026 (10)
N4	0.0259 (12)	0.0261 (11)	0.0343 (12)	0.0015 (10)	-0.0078 (10)	-0.0065 (10)
N5	0.0204 (12)	0.0268 (11)	0.0310 (13)	0.0025 (10)	-0.0039 (10)	-0.0028 (10)
N6	0.0242 (13)	0.0338 (12)	0.0293 (13)	-0.0019 (10)	-0.0014 (10)	-0.0019 (10)
C1	0.0351 (17)	0.0295 (15)	0.0398 (17)	0.0018 (13)	0.0061 (14)	-0.0103 (12)
C2	0.0232 (15)	0.0219 (12)	0.0281 (14)	0.0057 (11)	0.0031 (12)	0.0023 (11)
C3	0.0265 (15)	0.0235 (13)	0.0225 (13)	0.0020 (12)	0.0005 (11)	0.0021 (11)
C4	0.047 (2)	0.052 (2)	0.045 (2)	0.0018 (18)	0.0094 (18)	-0.0225 (17)
C5	0.0276 (15)	0.0256 (13)	0.0282 (14)	-0.0014 (11)	0.0051 (13)	-0.0014 (12)
C6	0.0255 (15)	0.055 (2)	0.0388 (17)	-0.0041 (15)	0.0053 (16)	-0.0005 (16)
C7	0.0364 (18)	0.0385 (17)	0.0368 (17)	0.0014 (14)	-0.0027 (15)	0.0072 (14)
C8	0.0439 (19)	0.0293 (14)	0.0311 (15)	-0.0019 (14)	-0.0055 (14)	-0.0050 (12)
C9	0.0236 (14)	0.0225 (13)	0.0266 (13)	-0.0036 (11)	-0.0002 (12)	0.0020 (11)
C10	0.0262 (15)	0.0210 (12)	0.0249 (13)	0.0001 (12)	0.0008 (11)	0.0001 (11)
C11	0.048 (2)	0.0461 (19)	0.045 (2)	0.0003 (17)	-0.0105 (17)	-0.0213 (16)
C12	0.0277 (15)	0.0253 (12)	0.0271 (14)	0.0005 (11)	-0.0025 (13)	-0.0024 (12)
C13	0.0346 (18)	0.0368 (16)	0.0383 (18)	-0.0050 (14)	0.0050 (14)	0.0040 (14)
C14	0.0240 (15)	0.057 (2)	0.045 (2)	0.0030 (15)	-0.0041 (15)	0.0001 (16)

Geometric parameters (Å, °)

S1—C3	1.737 (3)	C1—H1A	0.9800	
S1—C4	1.811 (3)	C1—H1B	0.9800	
S2—C10	1.748 (3)	C1—H1C	0.9800	
S2—C11	1.805 (3)	C3—C5	1.521 (4)	
O1—C2	1.218 (4)	C4—H4A	0.9800	
O2—C2	1.371 (3)	C4—H4B	0.9800	
O2—N2	1.440 (3)	C4—H4C	0.9800	
O3—C5	1.216 (4)	С6—Н6А	0.9800	
O4—C9	1.219 (4)	C6—H6B	0.9800	
О5—С9	1.378 (3)	С6—Н6С	0.9800	
O5—N5	1.434 (3)	C7—H7A	0.9800	
O6—C12	1.233 (4)	С7—Н7В	0.9800	
N1—C2	1.323 (4)	С7—Н7С	0.9800	
N1—C1	1.451 (4)	C8—H8A	0.9800	
N1—H1N	0.8800	C8—H8B	0.9800	
N2—C3	1.279 (4)	C8—H8C	0.9800	
N3—C5	1.334 (4)	C10—C12	1.512 (4)	
N3—C7	1.455 (4)	C11—H11A	0.9800	
N3—C6	1.464 (4)	C11—H11B	0.9800	
N4—C9	1.315 (4)	C11—H11C	0.9800	
N4—C8	1.448 (4)	C13—H13A	0.9800	
N4—H4N	0.8800	C13—H13B	0.9800	
N5—C10	1.272 (4)	C13—H13C	0.9800	
N6—C12	1.334 (4)	C14—H14A	0.9800	
N6—C13	1.445 (4)	C14—H14B	0.9800	
N6—C14	1.460 (4)	C14—H14C	0.9800	
C3—S1—C4	102.89 (16)	N3—C6—H6C	109.5	
C10—S2—C11	102.61 (16)	H6A—C6—H6C	109.5	
C2—O2—N2	114.5 (2)	H6B—C6—H6C	109.5	
C9—O5—N5	114.6 (2)	N3—C7—H7A	109.5	
C2—N1—C1	120.5 (2)	N3—C7—H7B	109.5	
C2—N1—H1N	119.8	H7A—C7—H7B	109.5	
C1—N1—H1N	119.8	N3—C7—H7C	109.5	
C3—N2—O2	108.1 (2)	H7A—C7—H7C	109.5	
C5—N3—C7	124.6 (3)	H7B—C7—H7C	109.5	
C5—N3—C6	118.9 (3)	N4—C8—H8A	109.5	
C7—N3—C6	116.3 (3)	N4—C8—H8B	109.5	
C9—N4—C8	121.0 (3)	H8A—C8—H8B	109.5	
C9—N4—H4N	119.5	N4—C8—H8C	109.5	
C8—N4—H4N	119.5	H8A—C8—H8C	109.5	
C10—N5—O5	108.5 (2)	H8B—C8—H8C	109.5	
C12—N6—C13	124.1 (3)	O4—C9—N4	126.9 (3)	
C12—N6—C14	119.2 (3)	O4—C9—O5	115.2 (2)	
C13—N6—C14	116.6 (3)	N4—C9—O5	117.9 (3)	
N1—C1—H1A	109.5	N5-C10-C12	116.0 (2)	

N1—C1—H1B	109.5	N5—C10—S2	123.7 (2)
H1A—C1—H1B	109.5	C12—C10—S2	120.1 (2)
N1—C1—H1C	109.5	S2—C11—H11A	109.5
H1A—C1—H1C	109.5	S2—C11—H11B	109.5
H1B—C1—H1C	109.5	H11A—C11—H11B	109.5
O1—C2—N1	126.2 (3)	S2—C11—H11C	109.5
O1—C2—O2	115.7 (2)	H11A—C11—H11C	109.5
N1-C2-O2	118.1 (3)	H11B—C11—H11C	109.5
N2—C3—C5	115.3 (2)	O6—C12—N6	124.7 (3)
N2—C3—S1	124.4 (2)	O6—C12—C10	117.4 (3)
C5—C3—S1	119.9 (2)	N6-C12-C10	117.9 (3)
S1—C4—H4A	109.5	N6—C13—H13A	109.5
S1—C4—H4B	109.5	N6—C13—H13B	109.5
H4A—C4—H4B	109.5	H13A—C13—H13B	109.5
S1—C4—H4C	109.5	N6—C13—H13C	109.5
H4A—C4—H4C	109.5	H13A—C13—H13C	109.5
H4B—C4—H4C	109.5	H13B—C13—H13C	109.5
O3—C5—N3	125.1 (3)	N6—C14—H14A	109.5
O3—C5—C3	117.4 (3)	N6—C14—H14B	109.5
N3—C5—C3	117.4 (3)	H14A—C14—H14B	109.5
N3—C6—H6A	109.5	N6—C14—H14C	109.5
N3—C6—H6B	109.5	H14A—C14—H14C	109.5
Н6А—С6—Н6В	109.5	H14B—C14—H14C	109.5
C2—O2—N2—C3	179.8 (2)	S1—C3—C5—N3	93.6 (3)
C9—O5—N5—C10	178.1 (2)	C8—N4—C9—O4	0.0 (5)
C1—N1—C2—O1	3.0 (5)	C8—N4—C9—O5	179.2 (2)
C1—N1—C2—O2	-178.2 (3)	N5—O5—C9—O4	-178.6 (2)
N2-02-C2-01	179.9 (2)	N5—O5—C9—N4	2.1 (3)
N2—O2—C2—N1	1.0 (3)	O5—N5—C10—C12	-174.7 (2)
O2—N2—C3—C5	-173.4 (2)	O5—N5—C10—S2	0.4 (3)
O2—N2—C3—S1	-0.5 (3)	C11—S2—C10—N5	-179.2 (3)
C4—S1—C3—N2	179.3 (3)	C11—S2—C10—C12	-4.2 (3)
C4—S1—C3—C5	-8.0 (3)	C13—N6—C12—O6	176.8 (3)
C7—N3—C5—O3	175.0 (3)	C14—N6—C12—O6	0.1 (4)
C6—N3—C5—O3	-0.1 (5)	C13—N6—C12—C10	-1.4 (4)
C7—N3—C5—C3	-2.4 (4)	C14—N6—C12—C10	-178.1 (3)
C6—N3—C5—C3	-177.5 (3)	N5-C10-C12-O6	85.8 (3)
N2—C3—C5—O3	89.3 (3)	S2—C10—C12—O6	-89.5 (3)
S1—C3—C5—O3	-84.0 (3)	N5-C10-C12-N6	-95.9 (3)
N2—C3—C5—N3	-93.1 (3)	S2—C10—C12—N6	88.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
N1—H1 <i>N</i> ···O1 ⁱ	0.88	2.13	2.871 (3)	142	
N4—H4 <i>N</i> ···O4 ⁱⁱ	0.88	2.04	2.794 (3)	142	
C4—H4 <i>B</i> ···O6 ⁱⁱⁱ	0.98	2.54	3.075 (4)	114	

Acta Cryst. (2016). E72, 1816-1818

supporting information

C6—H6B····O2 ^{iv}	0.98	2.60	3.518 (4)	156
C7—H7 <i>B</i> ···O1 ^{iv}	0.98	2.52	3.431 (4)	155
C11—H11 <i>B</i> ····O3 ^v	0.98	2.53	3.042 (4)	113
C13—H13 <i>B</i> ····O4 ^{iv}	0.98	2.53	3.440 (4)	155
C14—H14 B ····O5 ^{iv}	0.98	2.59	3.554 (4)	168

Symmetry codes: (i) *x*-1/2, -*y*, *z*; (ii) *x*-1/2, -*y*+1, *z*; (iii) -*x*+1, -*y*+1, *z*+1/2; (iv) *x*-1, *y*, *z*; (v) -*x*+1, -*y*, *z*-1/2.