research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­kis­(di­methyl sulfoxide-κO)manganese(II) tetra­iodide

CROSSMARK_Color_square_no_text.svg

aPhysical Sciences and Engineering Division, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
*Correspondence e-mail: azimul.mohammed@kaust.edu.sa, tao.wu@kaust.edu.sa

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 October 2016; accepted 8 November 2016; online 15 November 2016)

The title salt, [Mn(C2H6OS)6]I4, is made up from discrete [Mn(DMSO)6]2+ (DMSO is dimethyl sulfoxide) units connected through non-classical hydrogen bonds to linear I42− tetra­iodide anions. The MnII ion in the cation, situated on a position with site symmetry -3., is octa­hedrally coordinated by O atoms of the DMSO mol­ecule with an Mn—O distance of 2.1808 (12) Å. The I42− anion contains a neutral I2 mol­ecule weakly coordinated by two iodide ions, forming a linear centrosymmetric tetra­iodide anion. The title compound is isotypic with the Co, Ni, Cu, and Zn analogues.

1. Chemical context

Inorganic–organic hybrid compounds have attracted significant attention owing to their fascinating structural, optical and electrical properties (Stranks & Snaith, 2015[Stranks, S. D. & Snaith, H. J. (2015). Nature Nanotech, 10, 391-402.]). In particular, CH3NH3PbX3 hybrids obtained from PbX2 and CH3NH3X (X = I, Br, Cl) are inter­esting due to their high absorption coefficient and applications in optoelectronics (Stoumpos & Kanatzidis, 2015[Stoumpos, C. C. & Kanatzidis, M. G. (2015). Acc. Chem. Res. 48, 2791-2802.]). In general, this family of materials adopts the perovskite ABX3 structure type, where A is an organic cation, which is surrounded by twelve nearest X halide anions, and B is a metal cation (Grätzel, 2014[Grätzel, M. (2014). Nat. Mater. 13, 838-842.]). There are continuous efforts on replacing Pb in these hybrids due to its toxicity (Wang et al., 2015[Wang, K., Liang, Z., Wang, X. & Cui, X. (2015). Adv. Electron. Mater. 1, 1500089.]). In the present work, one such attempt was made to produce a hybrid between CH3NH3I and MnI2. However, we obtained instead the title salt [Mn(DMSO)6]I4 (DMSO is dimethyl sulfoxide), and report here its crystal structure.

[Scheme 1]

2. Structural commentary

The title salt is the first compound with a [Mn(DMSO]2+ cation and a linear tetra­iodide anion. The Mn2+ cation is bound to the O atoms of six DMSO mol­ecules arranged in an octa­hedral configuration (Fig. 1[link]). Owing to the [\overline{3}]. site symmetry of the metal cation, the deviations of corresponding angles from ideal values are minute [range cis O—Mn—O angles 86.28 (4)–93.73 (4)°; all trans angles 180°]. The Mn—O bond length is 2.1808 (12) Å. The four I atoms are arranged in a linear fashion. The bond length between the two central I atoms is 2.8460 (5) Å; this inner I2 moiety is rather weakly bonded to two terminal I anions with a bond lengths of 3.3251 (6) Å. This confirms the existence of a linear, centrosymmetric polyiodide ion I42−, consistent with previous reports (Long et al., 1999[Long, D.-L., Hu, H.-M., Chen, J.-T. & Huang, J.-S. (1999). Acta Cryst. C55, 339-341.]). Both inner and terminal bond lengths of the I42− anion are comparable with values found in [Cu(NH3)4]I4 (Dubler & Linowsky, 1975[Dubler, E. & Linowsky, L. (1975). Helv. Chim. Acta, 58, 2604-2609.]) or other [M(DMSO)6]I4 compounds (Long et al., 1999[Long, D.-L., Hu, H.-M., Chen, J.-T. & Huang, J.-S. (1999). Acta Cryst. C55, 339-341.]; Tkachev et al., 1994[Tkachev, V. V., Lavrent'eva, E. A., Rosschupkina, O. S., Lavrent'ev, I. P. & Atovmyan, L. O. (1994). Koord. Khim. 20, 674-676.]; Garzón-Tovar et al., 2013a[Garzón-Tovar, L., Duarte-Ruiz, A. & Wurst, K. (2013a). Inorg. Chem. Commun. 32, 64-67.],b[Garzón-Tovar, L., Duarte-Ruiz, Á. & Fanwick, P. E. (2013b). Acta Cryst. E69, m618.]).

[Figure 1]
Figure 1
The mol­ecular components of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (′) [{4\over 3}] − x, [{2\over 3}] − y, [{5\over 3}] − z.]

3. Supra­molecular features

Fig. 2[link] shows the unit-cell projection along [001]. The hexa­gonal rod packing of isolated [Mn(DMSO)6]2+ mol­ecules can be seen along [211]. The tetra­iodide counter-anions are located between the rows (Fig. 3[link]). An extended three-dimensional supra­molecular network is accomplished through non-classical hydrogen bonding between H atoms of the DMSO mol­ecules and the linear I42− polyiodide anions. Table 1[link] collates numerical details of these C—H⋯I inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯I2 0.98 3.10 3.954 (2) 147
C2—H2B⋯I1i 0.98 3.26 4.182 (2) 158
C2—H2C⋯I2ii 0.98 3.20 4.108 (2) 154
Symmetry codes: (i) [-x+{\script{5\over 3}}, -y+{\script{4\over 3}}, -z+{\script{4\over 3}}]; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The unit cell of [Mn(DMSO)6]I4 in a view approximately along [001]. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Packing diagram of the title compound. Non-classical hydrogen bonds are shown as dashed lines.

4. Database survey

A number of transition metals have been reported to form complexes with DMSO (Meek et al., 1960[Meek, D. W., Straub, D. K. & Drago, R. S. (1960). J. Am. Chem. Soc. 82, 6013-6016.]). However, reports on Mn complexes of DMSO with halide anions are scarce, as revealed by a search in the Cambridge Structural Database (Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Recently Glatz et al. (2016[Glatz, M., Schroffenegger, M., Weil, M. & Kirchner, K. (2016). Acta Cryst. E72, 904-906.]) reported the crystal structure of [Mn(DMSO)6]I2. In particular, polyiodide salts are inter­esting compounds owing to their high conductivity and non-linear properties that are predominantly observed in sulfur-rich compounds (Long et al., 1999[Long, D.-L., Hu, H.-M., Chen, J.-T. & Huang, J.-S. (1999). Acta Cryst. C55, 339-341.]). The structure of the title compound is isotypic with the Co, Ni, Cu, and Zn analogues: [Co(DMSO)6]I4 (Tkachev et al., 1994[Tkachev, V. V., Lavrent'eva, E. A., Rosschupkina, O. S., Lavrent'ev, I. P. & Atovmyan, L. O. (1994). Koord. Khim. 20, 674-676.]), [Ni(DMSO)6]I4 (Long et al., 1999[Long, D.-L., Hu, H.-M., Chen, J.-T. & Huang, J.-S. (1999). Acta Cryst. C55, 339-341.]), [Cu(DMSO)6]I4 (Garzón-Tovar et al., 2013a[Garzón-Tovar, L., Duarte-Ruiz, A. & Wurst, K. (2013a). Inorg. Chem. Commun. 32, 64-67.]), [Zn(DMSO)6]I4 (Garzón-Tovar et al., 2013b[Garzón-Tovar, L., Duarte-Ruiz, Á. & Fanwick, P. E. (2013b). Acta Cryst. E69, m618.]).

5. Synthesis and crystallization

The title manganese salt was formed in the course of the targeted synthesis of a hybrid compound between CH3NH3I and MnI2. Anhydrous MnI2 and dimethyl sulfoxide (DMSO) were purchased from Alfa–Aesar and Sigma–Aldrich, respectively. CH3NH3I was purchased from Dyesol. The precursors were used without further purification. The title manganese salt was synthesized by adding anhydrous MnI2 (308.7 mg) and CH3NH3I (158.9 mg) in a glass vial. Then 2 ml DMSO was added to the vial (capped afterwards) and stirred at 353 K for 24 h inside a nitro­gen glove box. A reddish-black solution was observed after 24 h which was cooled down to room temperature and left for 7 d undisturbed. Single crystals of the title compound were obtained as the only solid product after 7 d. The crystals were removed from the vial and dried under nitro­gen flow.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The methyl H atoms were treated as riding and Uiso(H) values set at 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C2H6OS)6]I4
Mr 1031.31
Crystal system, space group Trigonal, R[\overline{3}]
Temperature (K) 200
a, c (Å) 11.8702 (10), 19.3860 (18)
V3) 2365.6 (5)
Z 3
Radiation type Mo Kα
μ (mm−1) 4.75
Crystal size (mm) 0.16 × 0.12 × 0.05
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED32; Stoe & Cie, 2013[Stoe & Cie (2013). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.415, 0.615
No. of measured, independent and observed [I > 2σ(I)] reflections 7644, 1417, 1301
Rint 0.045
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.038, 1.06
No. of reflections 1417
No. of parameters 47
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.93
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2013[Stoe & Cie (2013). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2013); cell refinement: X-AREA (Stoe & Cie, 2013); data reduction: X-RED32 (Stoe & Cie, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Hexakis(dimethyl sulfoxide-κO)manganese(II) tetraiodide top
Crystal data top
[Mn(C2H6OS)6]I4Dx = 2.172 Mg m3
Mr = 1031.31Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3:HCell parameters from 10442 reflections
a = 11.8702 (10) Åθ = 2.2–29.5°
c = 19.3860 (18) ŵ = 4.75 mm1
V = 2365.6 (5) Å3T = 200 K
Z = 3Block, brown
F(000) = 14670.16 × 0.12 × 0.05 mm
Data collection top
Stoe IPDS-2
diffractometer
1417 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1301 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.045
rotation method scansθmax = 29.2°, θmin = 2.2°
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2013)
h = 1616
Tmin = 0.415, Tmax = 0.615k = 1616
7644 measured reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0105P)2 + 3.7009P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1417 reflectionsΔρmax = 0.34 e Å3
47 parametersΔρmin = 0.93 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.33330.66670.66670.01931 (12)
I10.66670.33330.75993 (2)0.03170 (6)
I20.66670.33330.58841 (2)0.03067 (6)
S10.54925 (4)0.62436 (4)0.58993 (2)0.02341 (9)
O10.50872 (12)0.72442 (12)0.60608 (6)0.0247 (2)
C10.67639 (18)0.65612 (19)0.64912 (11)0.0325 (4)
H1A0.71490.60230.63730.049*
H1B0.64100.63530.69600.049*
H1C0.74330.74820.64660.049*
C20.64415 (19)0.6821 (2)0.51353 (10)0.0343 (4)
H2A0.67850.62490.50150.051*
H2B0.71650.77060.52120.051*
H2C0.58970.68290.47570.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01701 (16)0.01701 (16)0.0239 (3)0.00851 (8)0.0000.000
I10.02446 (7)0.02446 (7)0.04619 (13)0.01223 (4)0.0000.000
I20.03185 (8)0.03185 (8)0.02833 (10)0.01592 (4)0.0000.000
S10.01918 (17)0.02122 (18)0.0279 (2)0.00868 (15)0.00044 (15)0.00439 (15)
O10.0219 (5)0.0245 (6)0.0294 (6)0.0128 (5)0.0038 (5)0.0002 (5)
C10.0318 (9)0.0368 (10)0.0344 (9)0.0212 (8)0.0054 (8)0.0033 (8)
C20.0298 (9)0.0447 (11)0.0283 (9)0.0185 (9)0.0040 (7)0.0047 (8)
Geometric parameters (Å, º) top
Mn1—O1i2.1808 (12)S1—C21.778 (2)
Mn1—O1ii2.1808 (12)S1—C11.7798 (19)
Mn1—O1iii2.1808 (12)C1—H1A0.9800
Mn1—O1iv2.1808 (12)C1—H1B0.9800
Mn1—O1v2.1809 (12)C1—H1C0.9800
Mn1—O12.1808 (12)C2—H2A0.9800
I1—I1vi2.8460 (5)C2—H2B0.9800
S1—O11.5204 (12)C2—H2C0.9800
O1i—Mn1—O1ii180.00 (6)O1—S1—C1105.53 (9)
O1i—Mn1—O1iii86.27 (4)C2—S1—C198.56 (10)
O1ii—Mn1—O1iii93.73 (4)S1—O1—Mn1119.38 (7)
O1i—Mn1—O1iv93.73 (4)S1—C1—H1A109.5
O1ii—Mn1—O1iv86.27 (4)S1—C1—H1B109.5
O1iii—Mn1—O1iv180.00 (5)H1A—C1—H1B109.5
O1i—Mn1—O1v93.73 (4)S1—C1—H1C109.5
O1ii—Mn1—O1v86.27 (4)H1A—C1—H1C109.5
O1iii—Mn1—O1v86.27 (5)H1B—C1—H1C109.5
O1iv—Mn1—O1v93.72 (4)S1—C2—H2A109.5
O1i—Mn1—O186.28 (4)S1—C2—H2B109.5
O1ii—Mn1—O193.73 (4)H2A—C2—H2B109.5
O1iii—Mn1—O193.73 (4)S1—C2—H2C109.5
O1iv—Mn1—O186.27 (5)H2A—C2—H2C109.5
O1v—Mn1—O1180.0H2B—C2—H2C109.5
O1—S1—C2104.90 (9)
Symmetry codes: (i) y1/3, x+y+1/3, z+4/3; (ii) y+1, xy+1, z; (iii) x+y, x+1, z; (iv) xy+2/3, x+1/3, z+4/3; (v) x+2/3, y+4/3, z+4/3; (vi) x+4/3, y+2/3, z+5/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···I20.983.103.954 (2)147
C2—H2B···I1vii0.983.264.182 (2)158
C2—H2C···I2viii0.983.204.108 (2)154
Symmetry codes: (vii) x+5/3, y+4/3, z+4/3; (viii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the King Abdullah University of Science and Technology (KAUST).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDubler, E. & Linowsky, L. (1975). Helv. Chim. Acta, 58, 2604–2609.  CrossRef CAS Web of Science Google Scholar
First citationGarzón-Tovar, L., Duarte-Ruiz, Á. & Fanwick, P. E. (2013b). Acta Cryst. E69, m618.  CSD CrossRef IUCr Journals Google Scholar
First citationGarzón-Tovar, L., Duarte-Ruiz, A. & Wurst, K. (2013a). Inorg. Chem. Commun. 32, 64–67.  Google Scholar
First citationGlatz, M., Schroffenegger, M., Weil, M. & Kirchner, K. (2016). Acta Cryst. E72, 904–906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrätzel, M. (2014). Nat. Mater. 13, 838–842.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLong, D.-L., Hu, H.-M., Chen, J.-T. & Huang, J.-S. (1999). Acta Cryst. C55, 339–341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeek, D. W., Straub, D. K. & Drago, R. S. (1960). J. Am. Chem. Soc. 82, 6013–6016.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2013). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoumpos, C. C. & Kanatzidis, M. G. (2015). Acc. Chem. Res. 48, 2791–2802.  Web of Science CrossRef CAS Google Scholar
First citationStranks, S. D. & Snaith, H. J. (2015). Nature Nanotech, 10, 391–402.  Web of Science CrossRef CAS Google Scholar
First citationTkachev, V. V., Lavrent'eva, E. A., Rosschupkina, O. S., Lavrent'ev, I. P. & Atovmyan, L. O. (1994). Koord. Khim. 20, 674–676.  CAS Google Scholar
First citationWang, K., Liang, Z., Wang, X. & Cui, X. (2015). Adv. Electron. Mater. 1, 1500089.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds