research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (perchlorato-κO)(1,4,7,10-tetra­aza­cyclo­do­decane-κ4N)copper(II) perchlorate

aDepartment of Chemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487-0336, USA
*Correspondence e-mail: etpapish@ua.edu

Edited by M. Zeller, Purdue University, USA (Received 30 November 2016; accepted 6 December 2016; online 1 January 2017)

The crystal structure of the title salt, [Cu(ClO4)(C8H20N4)]ClO4, is reported. The CuII ion exhibits a square-pyramidal geometry and is coordinated by the four N atoms of the neutral 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) ligand and an O atom from one perchlorate anion, with the second perchlorate ion hydrogen-bonded to one of the amine N atoms of the cyclen ligand. Additional N—H⋯O hydrogen bonds between the amine H atoms and the coordinating and non-coordinating perchlorate groups create a three-dimensional network structure. Crystals were grown from a concentrated methanol solution at ambient temperature, resulting in no co-crystallization of solvent.

1. Chemical context

Aza­macrocycle ligands, including 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen), are of significant importance in research due to their ability to form stable metal complexes, allowing for their use in a wide range of applications. Some of these complexes have been studied for their use as chemical sensors, contrast agents in MRI and PET, anti­microbial agents and as biomimetic catalysts (De León-Rodríguez et al., 2010[De León-Rodríguez, L. M., Viswanathan, S. & Sherry, A. D. (2010). Contrast Media Mol. Imaging, 5, 121-125.]; Yoo et al., 2005[Yoo, S. H., Lee, B. J., Kim, H. & Suh, J. (2005). J. Am. Chem. Soc. 127, 9593-9602.]). Copper–cyclen complexes have been studied extensively for their ability to perform catalytic DNA cleavage and peptide hydrolysis (Zhang et al., 2016[Zhang, X., Liu, X., Phillips, D. L. & Zhao, C. (2016). ACS Catal. 6, 248-257.]; Li et al. 2014[Li, S., Chen, J.-X., Xiang, Q.-X., Zhang, L.-Q., Zhou, C.-H., Xie, J.-Q., Yu, L. & Li, F.-Z. (2014). Eur. J. Med. Chem. 84, 677-686.]; Hormann et al., 2015[Hormann, J., van der Meer, M., Sarkar, B. & Kulak, N. (2015). Eur. J. Inorg. Chem. pp. 4722-4730.]). Although the synthesis of a similar CuII complex has been reported previously, no crystal structure of the complex, [Cu(1,4,7,10-tetra­aza­cyclo­dodeca­ne)](ClO4)2, has previously been published (Kruppa et al., 2006[Kruppa, M., Frank, D., Leffler-Schuster, H. & König, B. (2006). Inorg. Chim. Acta, 359, 1159-1168.]).

[Scheme 1]

2. Structural commentary

In the title complex (Fig. 1[link]), the copper(II) ion coordinated by the four nitro­gen atoms of the cyclen ligand and one oxygen atom of a perchlorate ligand. The five-coordinate cupric ion shows a nearly ideal square-pyramidal geometry (τ5 = 0.049; Addison et al., 1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The Cu—N bond lengths range from 2.004 (1) to 2.015 (1) Å, which are typical values. The CuII ion exhibits a tetra­gonal distortion that leads to a longer apical bond with Cu1—O1 = 2.266 (1) Å, which is 0.12 Å longer than the average Cu—O distance (Clay et al., 1979[Clay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894-1895.]; Rohde & Merzweiler, 2010[Rohde, D. & Merzweiler, K. (2010). Acta Cryst. E66, m894.]). The average N—Cu—O bond angle is 103.8 (8)°. Three hydrogen bonds are present within the asymmetric unit, with two extending from O2 and O3 of the bound perchlorate anion to N1—H1 and N2—H2, respectively. The third hydrogen bond extends from N2—H2 to O8 of the unbound anion; the numerical details are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 (1) 2.50 (2) 3.171 (1) 135 (1)
N1—H1⋯O2 0.86 (1) 2.39 (1) 3.093 (1) 139 (1)
N2—H2⋯O8ii 0.88 (2) 2.31 (2) 3.050 (1) 142 (1)
N2—H2⋯O3 0.88 (2) 2.44 (2) 3.052 (2) 127 (1)
N3—H3⋯O1ii 0.86 (2) 2.40 (1) 3.245 (1) 169 (2)
N3—H3⋯O4ii 0.86 (2) 2.55 (2) 3.132 (1) 126 (1)
N4—H4⋯O5 0.86 (2) 2.36 (1) 3.096 (1) 143 (1)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
Side (left) and top (right) views, as defined by the cyclen ligand ring, of [Cu(cyclen)](ClO4)2 represented with ellipsoids at the 50% probability level. Hydrogen bonds are drawn in blue.

3. Supra­molecular features

The crystal structure exhibits three unique symmetry elements: an inversion center, a twofold screw axis and a glide plane. The complex cations of two asymmetric units hydrogen-bond across an inversion center, which is clearly visible when viewed along the a axis (Fig. 2[link]), creating a dimer. These hydrogen bonds (N3—H3⋯O1, N3—H3⋯O4, N4—H4⋯O5) have an average N⋯O distance of 3.16 Å (Fig. 3[link]). The complexes assemble in rows parallel to the b axis (Fig. 4[link]) due in part to weak electrostatic inter­actions between the bound perchlorate anion and a neighboring cyclen ligand. A hydrogen bond between the cyclen ligand and a neighboring perchlorate anion (N1—H1⋯O3) allows the building units to assemble parallel to the a axis (Fig. 5[link]).

[Figure 2]
Figure 2
View of the unit cell along the a axis. An inversion center (yellow dots) exists between two asymmetric units, creating the dimeric unit defined at the center of the unit cell. Hydrogen bonds are drawn in blue.
[Figure 3]
Figure 3
A view of hydrogen bonding within a dimer pair. Hydrogen bonds are drawn in blue. Carbon and hydrogen atom labels have been omitted for clarity.
[Figure 4]
Figure 4
Packing of the complex cations, as viewed along the c axis of the unit cell. The a axis is drawn in red and the b axis is drawn in green.
[Figure 5]
Figure 5
Hydrogen bonding between complex cations and anions, as viewed along the c axis. Hydrogen bonds are drawn in blue. The a axis is drawn in red and the b axis is drawn in green.

4. Database survey

A database survey resulted in several similar Cu–cyclen complexes with five-coordinate copper(II). Four structures chosen for further analysis contained a copper(II) ion coordinated by either five nitro­gen atoms or four nitro­gen atoms and one oxygen atom (Rohde & Merzweiler, 2010[Rohde, D. & Merzweiler, K. (2010). Acta Cryst. E66, m894.]; Sarma et al., 2010[Sarma, M., Chatterjee, T. & Das, S. K. (2010). Inorg. Chem. Commun. 13, 1114-1117.]; Péréz-Toro et al., 2015[Pérez-Toro, I., Domínguez-Martín, A., Choquesillo-Lazarte, D., Vílchez-Rodríguez, E., González-Pérez, J. M., Castiñeiras, A. & Niclós-Gutiérrez, J. (2015). J. Inorg. Biochem. 148, 84-92.]; Guo et al., 2008[Guo, J.-F., Yeung, W.-F., Gao, S., Lee, G.-H., Peng, S.-M., Lam, M. H.-W. & Lau, T.-C. (2008). Eur. J. Inorg. Chem. pp. 158-163.]). Where applicable, the complexes have similar Cu—O bond lengths to that of the title complex, with only slight deviations. The title complex and surveyed complexes have similar Cu—N distances with a standard deviation of 0.018 Å.

5. Synthesis and crystallization

The title complex was synthesized by a modified method as reported by Kruppa et al. (2006[Kruppa, M., Frank, D., Leffler-Schuster, H. & König, B. (2006). Inorg. Chim. Acta, 359, 1159-1168.]). Under a nitro­gen atmos­phere, 1,4,7,10-tetra­aza­cyclo­dodecane (247 mg, 1.4 mmol) and copper(II) perchlorate hexa­hydrate (527 mg, 1.4 mmol) were separately dissolved in 2.8 mL anhydrous methanol each and combined. The resulting purple solution formed a precipitate. The reaction mixture was heated to reflux for 30 min then filtered. The filtrate was evaporated to dryness to yield a purple amorphous solid. X-ray quality crystals were grown by dissolving the solid in a minimum amount of methanol followed by slow evaporation at ambient temperature. The title complex [Cu(cyclen)](ClO4)2 was isolated as purple crystals in 84% yield (1.2 mmol, 526 mg). IR [ATR, ν (cm−1)]: 3281, 2939, 1478, 1072, 617. MS (MALDI–TOF, MeOH): m/z = 334.2 [Cu(cyclen)2+ + ClO4].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to carbon were positioned geometrically and constrained to ride on their parent atoms. The H atoms attached to nitro­gen were located in a difference map and restrained to have comparable bond lengths. Uiso(H) values were set to 1.2Ueq(C/N).

Table 2
Experimental details

Crystal data
Chemical formula [Cu(ClO4)(C8H20N4)]ClO4
Mr 434.72
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 8.9387 (2), 15.0607 (4), 11.9235 (3)
β (°) 92.949 (1)
V3) 1603.05 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.74
Crystal size (mm) 0.23 × 0.21 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2014[Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.667, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 43306, 7519, 6655
Rint 0.021
(sin θ/λ)max−1) 0.830
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.02
No. of reflections 7519
No. of parameters 221
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.60, −0.44
Computer programs: APEX2 and SAINT-Plus (Bruker, 2013[Bruker (2013). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT-Plus (Bruker, 2013); data reduction: SAINT-Plus (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011).

(Perchlorato-κO)(1,4,7,10-tetraazacyclododecane-κ4N)copper(II) perchlorate top
Crystal data top
[Cu(ClO4)(C8H20N4)]ClO4F(000) = 892
Mr = 434.72Dx = 1.801 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9387 (2) ÅCell parameters from 9899 reflections
b = 15.0607 (4) Åθ = 2.3–35.9°
c = 11.9235 (3) ŵ = 1.74 mm1
β = 92.949 (1)°T = 173 K
V = 1603.05 (7) Å3Block, purple
Z = 40.23 × 0.21 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
6655 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.021
phi and ω scansθmax = 36.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014)
h = 1413
Tmin = 0.667, Tmax = 0.747k = 2424
43306 measured reflectionsl = 1912
7519 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.4526P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
7519 reflectionsΔρmax = 0.60 e Å3
221 parametersΔρmin = 0.44 e Å3
6 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42855 (13)0.41595 (9)0.83806 (10)0.0315 (2)
H1A0.52400.42770.88130.038*
H1B0.40430.35210.84500.038*
C20.30439 (15)0.47211 (10)0.88238 (9)0.0341 (2)
H2A0.28500.45400.96010.041*
H2B0.33440.53540.88350.041*
C30.07219 (14)0.38402 (9)0.83922 (11)0.0330 (2)
H3A0.01980.39770.90830.040*
H3B0.13530.33080.85330.040*
C40.04050 (12)0.36717 (8)0.74254 (13)0.0353 (3)
H4A0.09450.31100.75540.042*
H4B0.11480.41600.73780.042*
C50.08786 (13)0.27094 (7)0.60632 (10)0.0297 (2)
H5A0.00060.23340.58360.036*
H5B0.14150.24310.67200.036*
C60.19107 (16)0.27947 (8)0.51035 (10)0.0345 (2)
H6A0.23560.22090.49430.041*
H6B0.13350.29980.44200.041*
C70.44486 (13)0.30541 (7)0.60226 (11)0.0302 (2)
H7A0.50460.27070.55000.036*
H7B0.41260.26510.66200.036*
C80.53867 (12)0.38048 (8)0.65356 (12)0.0315 (2)
H8A0.62010.35580.70370.038*
H8B0.58470.41470.59340.038*
H10.4734 (19)0.4937 (9)0.7172 (14)0.038*
H20.1146 (18)0.5097 (10)0.8063 (14)0.038*
H30.0155 (19)0.3802 (12)0.5781 (13)0.038*
H40.3389 (19)0.3719 (11)0.4820 (12)0.038*
N10.44205 (10)0.43993 (6)0.71871 (8)0.02310 (15)
N20.16614 (10)0.46012 (7)0.80849 (8)0.02595 (16)
N30.03746 (11)0.36146 (6)0.63546 (9)0.02866 (19)
N40.31208 (12)0.34444 (6)0.54087 (8)0.02774 (18)
O10.19181 (10)0.55583 (5)0.55695 (6)0.02513 (14)
O20.40695 (9)0.63197 (6)0.62923 (8)0.03461 (19)
O30.17927 (13)0.64843 (8)0.71488 (9)0.0461 (3)
O40.21084 (11)0.71021 (6)0.53609 (9)0.0388 (2)
O50.24547 (13)0.44353 (6)0.31635 (7)0.0375 (2)
O60.36978 (11)0.40926 (8)0.15317 (8)0.0381 (2)
O70.21333 (13)0.30342 (6)0.23229 (9)0.0411 (2)
O80.10864 (11)0.42926 (7)0.14227 (8)0.0380 (2)
Cl10.24776 (3)0.63777 (2)0.61025 (2)0.02082 (4)
Cl20.23354 (3)0.39588 (2)0.21099 (2)0.02216 (5)
Cu10.23119 (2)0.42802 (2)0.65438 (2)0.01773 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0265 (5)0.0390 (6)0.0278 (5)0.0022 (4)0.0100 (4)0.0095 (4)
C20.0368 (6)0.0465 (7)0.0184 (4)0.0037 (5)0.0038 (4)0.0015 (4)
C30.0296 (5)0.0328 (5)0.0375 (6)0.0004 (4)0.0110 (4)0.0077 (4)
C40.0176 (4)0.0285 (5)0.0600 (8)0.0005 (4)0.0049 (5)0.0049 (5)
C50.0299 (5)0.0191 (4)0.0386 (5)0.0049 (3)0.0117 (4)0.0052 (4)
C60.0523 (7)0.0237 (5)0.0266 (5)0.0087 (5)0.0064 (5)0.0022 (4)
C70.0307 (5)0.0206 (4)0.0402 (6)0.0008 (4)0.0099 (4)0.0013 (4)
C80.0199 (4)0.0252 (5)0.0501 (7)0.0006 (3)0.0081 (4)0.0014 (4)
N10.0190 (3)0.0217 (3)0.0282 (4)0.0023 (3)0.0021 (3)0.0033 (3)
N20.0241 (4)0.0280 (4)0.0259 (4)0.0011 (3)0.0030 (3)0.0013 (3)
N30.0236 (4)0.0208 (4)0.0400 (5)0.0022 (3)0.0134 (3)0.0065 (3)
N40.0403 (5)0.0208 (4)0.0224 (4)0.0040 (3)0.0032 (3)0.0018 (3)
O10.0361 (4)0.0155 (3)0.0227 (3)0.0025 (3)0.0091 (3)0.0012 (2)
O20.0213 (4)0.0348 (4)0.0466 (5)0.0019 (3)0.0095 (3)0.0080 (4)
O30.0542 (6)0.0452 (6)0.0408 (5)0.0136 (5)0.0192 (4)0.0216 (4)
O40.0420 (5)0.0181 (3)0.0538 (5)0.0016 (3)0.0219 (4)0.0084 (3)
O50.0614 (6)0.0281 (4)0.0222 (3)0.0054 (4)0.0054 (4)0.0058 (3)
O60.0258 (4)0.0516 (6)0.0371 (4)0.0021 (4)0.0033 (3)0.0019 (4)
O70.0536 (6)0.0203 (4)0.0493 (5)0.0032 (4)0.0031 (5)0.0015 (4)
O80.0302 (4)0.0538 (6)0.0295 (4)0.0164 (4)0.0042 (3)0.0005 (4)
Cl10.02111 (9)0.01695 (8)0.02384 (9)0.00122 (7)0.00426 (7)0.00201 (7)
Cl20.02481 (10)0.02058 (9)0.02081 (9)0.00237 (7)0.00149 (7)0.00166 (7)
Cu10.01806 (5)0.01641 (5)0.01824 (5)0.00136 (3)0.00382 (4)0.00267 (3)
Geometric parameters (Å, º) top
C1—N11.4791 (14)C7—H7A0.9900
C1—C21.5122 (19)C7—H7B0.9900
C1—H1A0.9900C8—N11.4901 (15)
C1—H1B0.9900C8—H8A0.9900
C2—N21.4913 (15)C8—H8B0.9900
C2—H2A0.9900N1—Cu12.0061 (9)
C2—H2B0.9900N1—H10.858 (14)
C3—N21.4781 (16)N2—Cu12.0145 (9)
C3—C41.513 (2)N2—H20.876 (14)
C3—H3A0.9900N3—Cu12.0036 (9)
C3—H3B0.9900N3—H30.859 (13)
C4—N31.4881 (18)N4—Cu12.0099 (10)
C4—H4A0.9900N4—H40.859 (13)
C4—H4B0.9900O1—Cl11.4644 (7)
C5—N31.4826 (15)O1—Cu12.2664 (7)
C5—C61.5118 (19)O2—Cl11.4320 (8)
C5—H5A0.9900O3—Cl11.4267 (10)
C5—H5B0.9900O4—Cl11.4321 (9)
C6—N41.4898 (15)O5—Cl21.4459 (9)
C6—H6A0.9900O6—Cl21.4441 (10)
C6—H6B0.9900O7—Cl21.4285 (9)
C7—N41.4835 (16)O8—Cl21.4409 (9)
C7—C81.5174 (17)
N1—C1—C2107.30 (9)C1—N1—C8115.66 (9)
N1—C1—H1A110.3C1—N1—Cu1102.97 (7)
C2—C1—H1A110.3C8—N1—Cu1107.77 (7)
N1—C1—H1B110.3C1—N1—H1107.1 (11)
C2—C1—H1B110.3C8—N1—H1110.9 (12)
H1A—C1—H1B108.5Cu1—N1—H1112.2 (11)
N2—C2—C1109.06 (9)C3—N2—C2114.31 (10)
N2—C2—H2A109.9C3—N2—Cu1103.55 (7)
C1—C2—H2A109.9C2—N2—Cu1107.38 (7)
N2—C2—H2B109.9C3—N2—H2111.3 (12)
C1—C2—H2B109.9C2—N2—H2109.4 (12)
H2A—C2—H2B108.3Cu1—N2—H2110.7 (11)
N2—C3—C4107.81 (10)C5—N3—C4114.55 (9)
N2—C3—H3A110.1C5—N3—Cu1102.42 (7)
C4—C3—H3A110.1C4—N3—Cu1108.34 (7)
N2—C3—H3B110.1C5—N3—H3106.1 (12)
C4—C3—H3B110.1C4—N3—H3113.6 (12)
H3A—C3—H3B108.5Cu1—N3—H3111.3 (12)
N3—C4—C3109.92 (9)C7—N4—C6114.37 (9)
N3—C4—H4A109.7C7—N4—Cu1102.84 (7)
C3—C4—H4A109.7C6—N4—Cu1107.10 (8)
N3—C4—H4B109.7C7—N4—H4110.1 (12)
C3—C4—H4B109.7C6—N4—H4110.2 (12)
H4A—C4—H4B108.2Cu1—N4—H4112.0 (12)
N3—C5—C6107.69 (9)Cl1—O1—Cu1116.92 (4)
N3—C5—H5A110.2O3—Cl1—O2109.65 (7)
C6—C5—H5A110.2O3—Cl1—O4111.02 (7)
N3—C5—H5B110.2O2—Cl1—O4109.85 (6)
C6—C5—H5B110.2O3—Cl1—O1108.78 (6)
H5A—C5—H5B108.5O2—Cl1—O1109.36 (5)
N4—C6—C5109.55 (9)O4—Cl1—O1108.14 (5)
N4—C6—H6A109.8O7—Cl2—O8109.87 (7)
C5—C6—H6A109.8O7—Cl2—O6109.78 (7)
N4—C6—H6B109.8O8—Cl2—O6109.12 (6)
C5—C6—H6B109.8O7—Cl2—O5109.49 (6)
H6A—C6—H6B108.2O8—Cl2—O5109.95 (6)
N4—C7—C8108.37 (9)O6—Cl2—O5108.61 (6)
N4—C7—H7A110.0N3—Cu1—N1151.33 (4)
C8—C7—H7A110.0N3—Cu1—N487.11 (4)
N4—C7—H7B110.0N1—Cu1—N487.14 (4)
C8—C7—H7B110.0N3—Cu1—N286.24 (4)
H7A—C7—H7B108.4N1—Cu1—N286.52 (4)
N1—C8—C7109.56 (9)N4—Cu1—N2153.54 (4)
N1—C8—H8A109.8N3—Cu1—O1104.87 (3)
C7—C8—H8A109.8N1—Cu1—O1103.78 (3)
N1—C8—H8B109.8N4—Cu1—O1103.79 (3)
C7—C8—H8B109.8N2—Cu1—O1102.66 (3)
H8A—C8—H8B108.2
N1—C1—C2—N254.05 (13)C6—C5—N3—C4168.48 (9)
N2—C3—C4—N350.52 (13)C6—C5—N3—Cu151.42 (9)
N3—C5—C6—N453.24 (12)C3—C4—N3—C589.53 (11)
N4—C7—C8—N151.48 (13)C3—C4—N3—Cu124.09 (11)
C2—C1—N1—C8169.09 (9)C8—C7—N4—C6165.51 (10)
C2—C1—N1—Cu151.82 (10)C8—C7—N4—Cu149.77 (10)
C7—C8—N1—C189.34 (12)C5—C6—N4—C787.24 (12)
C7—C8—N1—Cu125.21 (11)C5—C6—N4—Cu126.00 (11)
C4—C3—N2—C2166.49 (10)Cu1—O1—Cl1—O358.89 (8)
C4—C3—N2—Cu150.00 (10)Cu1—O1—Cl1—O260.85 (7)
C1—C2—N2—C387.01 (12)Cu1—O1—Cl1—O4179.55 (6)
C1—C2—N2—Cu127.24 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.86 (1)2.50 (2)3.171 (1)135 (1)
N1—H1···O20.86 (1)2.39 (1)3.093 (1)139 (1)
N2—H2···O8ii0.88 (2)2.31 (2)3.050 (1)142 (1)
N2—H2···O30.88 (2)2.44 (2)3.052 (2)127 (1)
N3—H3···O1ii0.86 (2)2.40 (1)3.245 (1)169 (2)
N3—H3···O4ii0.86 (2)2.55 (2)3.132 (1)126 (1)
N4—H4···O50.86 (2)2.36 (1)3.096 (1)143 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

Special thanks to The University of Alabama Department of Chemistry for funding and facilities. We also thank the Undergraduate Creativity and Research Academy (UCRA) at UA, the Research Grants Committee (RGC) at UA, and acknowledge the NSF EPSCoR Track 2 Seed Grant to ETP (PI N. Hammer, grant No. OIA-1539035) for generous financial support.

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Google Scholar
First citationBruker (2013). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894–1895.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDe León-Rodríguez, L. M., Viswanathan, S. & Sherry, A. D. (2010). Contrast Media Mol. Imaging, 5, 121–125.  Google Scholar
First citationGuo, J.-F., Yeung, W.-F., Gao, S., Lee, G.-H., Peng, S.-M., Lam, M. H.-W. & Lau, T.-C. (2008). Eur. J. Inorg. Chem. pp. 158–163.  Web of Science CSD CrossRef Google Scholar
First citationHormann, J., van der Meer, M., Sarkar, B. & Kulak, N. (2015). Eur. J. Inorg. Chem. pp. 4722–4730.  CSD CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKruppa, M., Frank, D., Leffler-Schuster, H. & König, B. (2006). Inorg. Chim. Acta, 359, 1159–1168.  CrossRef CAS Google Scholar
First citationLi, S., Chen, J.-X., Xiang, Q.-X., Zhang, L.-Q., Zhou, C.-H., Xie, J.-Q., Yu, L. & Li, F.-Z. (2014). Eur. J. Med. Chem. 84, 677–686.  CrossRef CAS Google Scholar
First citationPérez-Toro, I., Domínguez-Martín, A., Choquesillo-Lazarte, D., Vílchez-Rodríguez, E., González-Pérez, J. M., Castiñeiras, A. & Niclós-Gutiérrez, J. (2015). J. Inorg. Biochem. 148, 84–92.  Google Scholar
First citationRohde, D. & Merzweiler, K. (2010). Acta Cryst. E66, m894.  CSD CrossRef IUCr Journals Google Scholar
First citationSarma, M., Chatterjee, T. & Das, S. K. (2010). Inorg. Chem. Commun. 13, 1114–1117.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYoo, S. H., Lee, B. J., Kim, H. & Suh, J. (2005). J. Am. Chem. Soc. 127, 9593–9602.  CrossRef CAS Google Scholar
First citationZhang, X., Liu, X., Phillips, D. L. & Zhao, C. (2016). ACS Catal. 6, 248–257.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds