

Received 16 December 2016 Accepted 29 December 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; calcitriol; vitamin D; hydrogen bonding.

CCDC reference: 1522774

Supporting information: this article has supporting information at journals.iucr.org/e

Acta Cryst. (2017). E73, 115-117

Crystal structure of (1*R*,3a*R*,7a*R*)-1-{(*S*)-1-[(2*R*,5*S*)-5-(3-hydroxypentan-3-yl)tetrahydrofuran-2-yl]ethyl}-7a-methyl-2,3,3a,4,5,6,7,7a-octahydro-1*H*inden-4-one

Andrea Martínez,^a Hugo Santalla,^a Fátima Garrido,^a Aliou Hamady Barry,^b Mohamed Gaye^{c*} and Yagamare Fall Diop^a

^aDipartamento Química Orgínica, Facultade de Química, Universidade de Vigo, E-36310, Vigo, Spain, ^bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and ^cDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal. *Correspondence e-mail: mlgayeastou@yahoo.fr

The title compound, $C_{21}H_{36}O_3$, contains an oxolane ring, and six defined stereocentres and may serve as a useful synthon for the synthesis of calcitriol analogues. The configurations of the chiral C atoms of the side chain were unambiguously established in the refinement. In the crystal, $C-H\cdots O$ and extremely weak $O-H\cdots O$ hydrogen bonds arising from the sterically hindered alcohol group link the molecules into a three-dimensional network.

1. Chemical context

The discovery of vitamin D3 (calcitriol) and its biological activity had a very important impact in the search for analogues of Vitamin D. In the structure of vitamin D, it is recognized that the side chain is the main site of metabolic degradation. Synthetic chemists have devoted considerable efforts to varying this chain in order to prepare analogues of vitamin D (Dai & Posner, 1994; Zhu et al., 1995; Posner & Kahraman, 2003) and study the degradation metabolisms of these new molecules. Our ongoing interest in the chemistry of heterocyclic compounds, and particularly in the synthesis of vitamin D analogues, has led us to develop several methods for the synthesis of these compounds (Fernández et al., 2016; Gándara et al., 2009). We have also looked at their biological activities which are reported in the literature (Maehr et al., 2004). Recently, we reported the synthesis of a new vitamin D2 analogue and the evaluation of its biological activity on colon cancer (Gándara et al., 2012). In a continuation of our work on the analogues of vitamin D, we synthesized two new molecules of cacitriol from an oxolane ring and its side chains (Martínez et al., 2013). In this study we present the structure of a new analog of calcitriol with six stereo centres.

research communications

Figure 1

An *ORTEP* view of the title compound with displacement ellipsoids plotted at the 50% probability level.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1: the compound crystallizes in the non-centrosymmetric space group $P2_1$ and the absolute structure was unambiguously established. The molecule contains a cyclopentane ring *trans*-fused to a cyclohexanone ring. The lateral chain contains an oxolane ring. The cyclohexanone ring adopts a chair conformation, the cyclopentane ring is an envelope (flap atom = C5) and the heterocyclic ring is twisted about C13-O2. The configurations of the stereogenic centres are C5(*R*), C6(*R*), C9(*R*), C11(*S*), C13(*R*) and C16(*S*). All bond distances and angles are within their expected ranges. The Csp³-Csp² bonds involving C1 [1.499 (3) and 1.500 (3) Å) are naturally slightly shorter than the Csp³-Csp³ bonds [1.514 (3)-1.549 (5) Å]. The C1=O1 bond length [1.208 (3) Å] is typical of a C=O double bond, confirming oxidation of the starting alcohol.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O3 - H3O \cdots O3^{i} \\ C2 - H2B \cdots O1^{ii} \end{array}$	0.82	2.67	3.4495 (9)	161
	0.97	2.57	3.273 (3)	130

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 2; (ii) -x + 2, $y - \frac{1}{2}$, -z + 1.

3. Supramolecular features

In the crystal, C2-H2B···O1=C hydrogen bonds (Table 1, Fig. 2) link the molecules into C(4) chains, which propagate parallel to [101]. The chains are linked through very weak C(2) O3-H3O···O3 hydrogen bonds, giving rise to a three-dimensional supramolecular architecture. The O-H···O hydrogen bond is very long, presumably due to steric hindrance of the -OH group.

4. Database survey

A survey of the Cambridge Structural Database (Version 5.38, last update Nov 2016; Groom *et al.*, 2016) for the bicyclic moiety fragment (1S,3aR,7aR)-1-ethyl-7a-methyl-octahydroinden-4-one) of the title compound revealed just three matches, *viz*. EFEHEE (Pietraszek *et al.*, 2013), LESNEE (Rivadulla *et al.*, 2013) and ZEBZIP (Schwarz *et al.*, 1995). In each case, the shared C—C bond of the [4.3.0]-bicyclic moiety presents a *trans* configuration, as does the structure reported here.

Figure 2

The packing of the title compound showing hydrogen bonds as dashed lines. [Symmetry codes: (i)-x + 2, $y - \frac{1}{2}$, -z + 1, (ii)-x + 1, $y + \frac{1}{2}$, -z + 2.]

5. Synthesis and crystallization

To a solution of diol 2 (0.18 mmol) in CH₂Cl₂ (5 ml), pyridinium dichromate (PDC) (0.37 mmol) was added, and the mixture stirred at room temperature for 12 h, then the solvent was evaporated and the residue was chromatographed on sílica gel using (10% EtOAc/hexane) to afford ketone 1. The title compound was recrystallized as colourless blocks using a solvent mixture of hexane/ethyl ether (1:1).

Compound 1: white solid; m.p. 382-384 K. yield: 83%; R_f: 0.54 (30% EtOAc/hexane). $[\alpha]_{20}^{D} = +31.39^{\circ}$ (c 1.0, CDCl₃). ¹H NMR (CDCl₃, δ): 3.87 (1H, m, H-5'), 3.72 (1H, m, H-2'), 2.44 (1H, dd, J = 11.2, 7.4 Hz), 2.49–1.8 (6H, m), 1.79–1.65 (4H, m), 1.65–1.28 (8H, m), 1.27 (3H, d, J = 9.7 Hz), 0.95 (3H, d, J =6.7 Hz, CH₃-21), 0.88 (6H,q, J = 7.6 Hz, CH₃-Et), 0.67 (3H, S, CH₃-18). ¹³C NMR (CDCl₃, δ): 211.91 (C=O), 82.17 (CH-2'), 80.67 (CH-5'), 74.96 (C-3"), 61.49 (CH-14), 54.50, 50.25 (CH-17, CH-13), 41.01 (CH₂), 38.97 (CH₂), 38.12 (CH-20), 28.65 (CH₂), 26.93 (CH₂), 26.23 (CH₂), 24.98 (CH₂), 24.52 (CH₂), 24.04 (CH₂), 19.21 (CH₂), 12.70 (CH₃-21), 12.55 (CH₃-18), 8.02 (CH₃-Et), 7.52 (CH₃-Et). IR (NaCl, cm⁻¹): 3532, 2964, 2939, 2881, 2347, 1714, 1460, 1381, 1246, 1136,1077, 958, 837. MS (ESI⁺) [m/z, (%)]: 359.25 $[(M + Na)^+, (54)]$; 319.26 $[(M - OH)^+, (100)];$ 301.25 (15). HRMS (ESI⁺): calculated for $C_{21}H_{36}NaO_3$, 359.25567 g mol⁻¹; found: 359.2556 g mol⁻¹.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxy H atom was located from a difference Fourier map and relocated to an idealized $(O-H = 0.82\text{\AA})$ location. The other H atoms (CH, CH₂ and CH₃ groups) were placed geometrically and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ (1.5 for CH₃ groups).

Acknowledgements

The work of the MS and X-ray divisions of the research support service of the University of Vigo (CACTI) is also gratefully acknowledged. Andrea Martínez thanks the University of Vigo for a PhD fellowship.

References

Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dai, H. & Posner, G. H. (1994). Synthesis, pp. 1383-1398. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Table 2
Experimental details.

Crystal data	
Chemical formula	$C_{21}H_{36}O_3$
M _r	336.50
Crystal system, space group	Monoclinic, P2 ₁
Temperature (K)	296
a, b, c (Å)	9.4601 (3), 6.3779 (2), 16.7425 (4)
β (°)	104.196 (1)
$V(Å^3)$	979.32 (5)
Ζ	2
Radiation type	Cu Kα
$\mu \text{ (mm}^{-1})$	0.58
Crystal size (mm)	$0.25 \times 0.12 \times 0.10$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan SADABS (Bruker, 2016)
T_{\min}, T_{\max}	0.662, 0.753
No. of measured, independent and	13069, 3679, 3594
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.036
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.613
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.097, 1.05
No. of reflections	3679
No. of parameters	222
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.140.14
Absolute structure	Flack x determined using 1566
	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al. 2013)
Absolute structure parameter	-0.07(7)
resolute structure parameter	0.07 (7)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL-2014/7 (Sheldrick, 2015b) and ORTEP-3 for Windows (Farrugia, 2012).

- Fernández, C., Santalla, H., Garrido, F., Gómez, G. & Fall, Y. (2016). Tetrahedron Lett. 57, 2790-2792.
- Gándara, Z., Pérez, M., Pérez-García, X., Gómez, G. & Fall, Y. (2009). Tetrahedron Lett. 50, 4874-4877.
- Gándara, Z., Pérez, M., Salomón, D. G., Ferronato, M. J., Fermento, M. E., Curino, A. C., Facchinetti, M. M., Gómez, G. & Fall, Y. (2012). Bioorg. Med. Chem. Lett. 22, 6276-6279.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.
- Maehr, H., Uskokovic, M. R., Reddy, G. S. & Adorini, L. (2004). J. Steroid Biochem. Mol. Biol. 89-90, 35-38.
- Martínez, A., Gándara, Z., González, M., Gómez, G. & Fall, Y. (2013). Tetrahedron Lett. 54, 3514-3517.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Pietraszek, A., Malińska, M., Chodyński, M., Krupa, M., Krajewski, K., Cmoch, P., Woźniak, K. & Kutner, A. (2013). Steroids, 78, 1003-1014
- Posner, G. H. & Kahraman, M. (2003). Eur. J. Org. Chem. pp. 3889-3895.
- Rivadulla, M. L., Sene, M., González, M. & Covelo, B. (2013). Acta Cryst. E69, o218.
- Schwarz, K., Neef, G., Kirsch, G., Müller-Fahrnow, A. & Steinmeyer, A. (1995). Tetrahedron, 51, 9543–9550.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Zhu, G.-D. & Okamura, W. H. (1995). Chem. Rev. 95, 1877-1952.

supporting information

Acta Cryst. (2017). E73, 115-117 [https://doi.org/10.1107/S2056989016020648]

Crystal structure of (1*R*,3a*R*,7a*R*)-1-{(*S*)-1-[(2*R*,5*S*)-5-(3-hydroxypentan-3-yl)tetrahydrofuran-2-yl]ethyl}-7a-methyl-2,3,3a,4,5,6,7,7a-octahydro-1*H*-inden-4-one

Andrea Martínez, Hugo Santalla, Fátima Garrido, Aliou Hamady Barry, Mohamed Gaye and Yagamare Fall Diop

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL-2014/7* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL-2014/7* (Sheldrick, 2015b).

 $(1R,3aR,7aR)-1-{(S)-1-[(2R,5S)-5-(3-Hydroxypentan-3-yl)tetrahydrofuran-2-yl]ethyl}-7a-methyl-2,3,3a,4,5,6,7,7a-octahydro-1H-inden-4-one$

Crystal data

 $C_{21}H_{36}O_3$ $M_r = 336.50$ Monoclinic, $P2_1$ a = 9.4601 (3) Å b = 6.3779 (2) Å c = 16.7425 (4) Å $\beta = 104.196$ (1)° V = 979.32 (5) Å³ Z = 2

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan *SADABS* (Bruker, 2016) $T_{\min} = 0.662, T_{\max} = 0.753$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.097$ F(000) = 372 $D_x = 1.141 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9988 reflections $\theta = 2.4-28.6^{\circ}$ $\mu = 0.58 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.25 \times 0.12 \times 0.10 \text{ mm}$

13069 measured reflections 3679 independent reflections 3594 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 71.0^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -11 \rightarrow 11$ $k = -7 \rightarrow 7$ $l = -20 \rightarrow 20$

S = 1.053679 reflections 222 parameters 1 restraint

Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.14 \ { m e} \ { m \AA}^{-3}$ $\Delta ho_{ m min} = -0.14 \ { m e} \ { m \AA}^{-3}$
Secondary atom site location: difference Fourier map	Extinction correction: SHELXL-2014/7 (Sheldrick 2015b),
Hydrogen site location: inferred from neighbouring sites	$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0034 (10)
H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0549P)^2 + 0.0933P]$	Absolute structure: Flack x determined using 1566 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)
where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$	Absolute structure parameter: -0.07 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.9190 (2)	0.6570 (3)	0.46585 (10)	0.0761 (5)	
O2	0.41676 (15)	0.5028 (2)	0.80627 (9)	0.0555 (4)	
O3	0.44001 (17)	0.3383 (4)	0.97018 (11)	0.0768 (5)	
H3O	0.480163	0.453143	0.975052	0.115*	
C1	0.9416 (2)	0.6116 (3)	0.53792 (13)	0.0552 (5)	
C2	1.0862 (2)	0.6426 (4)	0.59799 (15)	0.0651 (6)	
H2A	1.147857	0.727399	0.572289	0.078*	
H2B	1.133002	0.507331	0.611064	0.078*	
C3	1.0739 (2)	0.7482 (4)	0.67748 (15)	0.0630 (6)	
H3A	1.054571	0.896302	0.667028	0.076*	
H3B	1.166385	0.735483	0.717955	0.076*	
C4	0.9536 (2)	0.6548 (4)	0.71321 (12)	0.0523 (4)	
H4A	0.981399	0.514090	0.732883	0.063*	
H4B	0.943984	0.738532	0.759957	0.063*	
C5	0.80678 (19)	0.6465 (3)	0.65022 (10)	0.0412 (4)	
C6	0.82896 (19)	0.5162 (3)	0.57614 (11)	0.0456 (4)	
H6	0.868329	0.380487	0.598623	0.055*	
C7	0.6765 (2)	0.4733 (4)	0.52444 (13)	0.0626 (6)	
H7A	0.673148	0.343325	0.493967	0.075*	
H7B	0.642601	0.586840	0.485945	0.075*	
C8	0.5838 (2)	0.4576 (4)	0.58867 (12)	0.0562 (5)	
H8A	0.502692	0.554932	0.575205	0.067*	
H8B	0.545476	0.316752	0.589496	0.067*	
C9	0.68560 (18)	0.5124 (3)	0.67337 (10)	0.0422 (4)	
Н9	0.731850	0.380868	0.696278	0.051*	
C10	0.7521 (3)	0.8691 (3)	0.62341 (14)	0.0589 (5)	
H10A	0.653632	0.862000	0.590462	0.088*	
H10B	0.813277	0.930699	0.591728	0.088*	
H10C	0.755209	0.953355	0.671323	0.088*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C11	0.6037 (2)	0.5963 (3)	0.73561 (12)	0.0474 (4)	
H11	0.553105	0.724547	0.712223	0.057*	
C12	0.7015 (3)	0.6528 (5)	0.81908 (14)	0.0695 (6)	
H12A	0.766322	0.538155	0.839097	0.104*	
H12B	0.642665	0.680515	0.857150	0.104*	
H12C	0.757405	0.775343	0.813787	0.104*	
C13	0.4871 (2)	0.4371 (3)	0.74389 (13)	0.0500 (4)	
H13	0.413816	0.429521	0.691234	0.060*	
C14	0.5382 (3)	0.2155 (4)	0.77004 (18)	0.0672 (6)	
H14A	0.633369	0.217278	0.808473	0.081*	
H14B	0.543273	0.130859	0.722683	0.081*	
C15	0.4227 (3)	0.1314 (4)	0.81102 (19)	0.0726 (7)	
H15A	0.467379	0.066789	0.863599	0.087*	
H15B	0.361078	0.028941	0.776109	0.087*	
C16	0.3342 (2)	0.3267 (3)	0.82279 (13)	0.0532 (5)	
H16	0.240605	0.323844	0.781623	0.064*	
C17	0.0673 (3)	0.1360 (5)	0.86855 (17)	0.0792 (8)	
H17A	0.077247	0.115555	0.813379	0.119*	
H17B	0.009832	0.259036	0.870492	0.119*	
H17C	0.020167	0.016174	0.885197	0.119*	
C18	0.2170 (3)	0.1631 (4)	0.92637 (15)	0.0613 (5)	
H18A	0.272883	0.036389	0.924591	0.074*	
H18B	0.205358	0.177567	0.982067	0.074*	
C19	0.3051 (2)	0.3499 (3)	0.90802 (13)	0.0506 (4)	
C20	0.2324 (2)	0.5598 (3)	0.91465 (13)	0.0543 (5)	
H20A	0.298507	0.670669	0.907616	0.065*	
H20B	0.145850	0.570583	0.869632	0.065*	
C21	0.1888 (3)	0.5971 (5)	0.99509 (15)	0.0750 (7)	
H21A	0.153005	0.737676	0.995988	0.113*	
H21B	0.272144	0.577529	1.040541	0.113*	
H21C	0.113814	0.499588	0.999528	0.113*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1052 (13)	0.0728 (11)	0.0592 (9)	-0.0108 (10)	0.0371 (9)	0.0039 (8)
O2	0.0597 (8)	0.0400 (7)	0.0789 (9)	0.0002 (6)	0.0399 (7)	-0.0013 (6)
O3	0.0565 (8)	0.0872 (12)	0.0808 (11)	0.0013 (9)	0.0058 (8)	0.0121 (10)
C1	0.0704 (12)	0.0458 (10)	0.0583 (11)	0.0007 (9)	0.0326 (10)	-0.0009 (9)
C2	0.0582 (11)	0.0691 (14)	0.0773 (14)	-0.0098 (11)	0.0346 (11)	0.0008 (12)
C3	0.0544 (11)	0.0678 (14)	0.0690 (13)	-0.0168 (10)	0.0191 (10)	-0.0012 (10)
C4	0.0473 (9)	0.0599 (11)	0.0501 (9)	-0.0094 (9)	0.0129 (8)	-0.0010 (9)
C5	0.0460 (8)	0.0364 (9)	0.0433 (8)	0.0003 (7)	0.0150 (7)	0.0002 (7)
C6	0.0499 (9)	0.0429 (9)	0.0469 (9)	0.0016 (8)	0.0177 (7)	-0.0020 (8)
C7	0.0580 (11)	0.0794 (16)	0.0504 (10)	-0.0021 (11)	0.0133 (9)	-0.0143 (10)
C8	0.0446 (9)	0.0656 (13)	0.0573 (11)	-0.0028 (9)	0.0106 (8)	-0.0132 (10)
С9	0.0417 (8)	0.0392 (9)	0.0475 (9)	-0.0008 (7)	0.0142 (7)	-0.0020 (7)
C10	0.0729 (13)	0.0402 (10)	0.0700 (13)	0.0075 (9)	0.0299 (11)	0.0051 (9)

supporting information

C11	0.0493 (9)	0.0417 (9)	0.0565 (10)	-0.0005 (7)	0.0228 (8)	-0.0038 (8)
C12	0.0716 (13)	0.0848 (17)	0.0594 (12)	-0.0226 (13)	0.0300 (10)	-0.0189 (12)
C13	0.0483 (9)	0.0452 (10)	0.0623 (11)	-0.0007 (8)	0.0244 (8)	-0.0052 (8)
C14	0.0746 (14)	0.0435 (11)	0.0989 (18)	0.0047 (10)	0.0503 (14)	0.0000 (11)
C15	0.0794 (15)	0.0432 (11)	0.1116 (19)	-0.0006 (11)	0.0550 (15)	-0.0024 (12)
C16	0.0538 (10)	0.0430 (10)	0.0695 (12)	-0.0031 (9)	0.0277 (9)	-0.0007 (9)
C17	0.0825 (16)	0.0829 (18)	0.0812 (15)	-0.0360 (14)	0.0372 (13)	-0.0116 (14)
C18	0.0705 (13)	0.0470 (11)	0.0751 (13)	-0.0012 (10)	0.0345 (11)	0.0064 (10)
C19	0.0470 (9)	0.0462 (10)	0.0603 (11)	0.0007 (8)	0.0165 (8)	0.0039 (8)
C20	0.0638 (11)	0.0476 (10)	0.0560 (11)	0.0007 (9)	0.0233 (9)	0.0001 (8)
C21	0.1001 (18)	0.0679 (15)	0.0673 (14)	0.0002 (13)	0.0401 (14)	-0.0036 (12)

Geometric parameters (Å, °)

01—C1	1.208 (3)	C10—H10C	0.9600	
O2—C13	1.432 (2)	C11—C12	1.518 (3)	
O2—C16	1.433 (2)	C11—C13	1.531 (3)	
O3—C19	1.437 (2)	C11—H11	0.9800	
O3—H3O	0.8200	C12—H12A	0.9600	
C1—C2	1.499 (3)	C12—H12B	0.9600	
C1—C6	1.500 (3)	C12—H12C	0.9600	
C2—C3	1.521 (3)	C13—C14	1.523 (3)	
C2—H2A	0.9700	C13—H13	0.9800	
C2—H2B	0.9700	C14—C15	1.523 (3)	
C3—C4	1.530 (3)	C14—H14A	0.9700	
С3—НЗА	0.9700	C14—H14B	0.9700	
С3—Н3В	0.9700	C15—C16	1.540 (3)	
C4—C5	1.525 (2)	C15—H15A	0.9700	
C4—H4A	0.9700	C15—H15B	0.9700	
C4—H4B	0.9700	C16—C19	1.525 (3)	
C5—C10	1.540 (3)	C16—H16	0.9800	
C5—C6	1.549 (2)	C17—C18	1.517 (4)	
С5—С9	1.553 (2)	C17—H17A	0.9600	
C6—C7	1.514 (3)	C17—H17B	0.9600	
С6—Н6	0.9800	C17—H17C	0.9600	
С7—С8	1.548 (3)	C18—C19	1.527 (3)	
С7—Н7А	0.9700	C18—H18A	0.9700	
С7—Н7В	0.9700	C18—H18B	0.9700	
С8—С9	1.546 (3)	C19—C20	1.521 (3)	
C8—H8A	0.9700	C20—C21	1.521 (3)	
C8—H8B	0.9700	C20—H20A	0.9700	
C9—C11	1.539 (2)	C20—H20B	0.9700	
С9—Н9	0.9800	C21—H21A	0.9600	
C10—H10A	0.9600	C21—H21B	0.9600	
C10—H10B	0.9600	C21—H21C	0.9600	
C13—O2—C16	106.49 (15)	C13—C11—H11	107.3	
С19—О3—НЗО	109.5	C9—C11—H11	107.3	

01—C1—C2	123.2 (2)	C11—C12—H12A	109.5
O1—C1—C6	123.6 (2)	C11—C12—H12B	109.5
C2—C1—C6	113.21 (17)	H12A—C12—H12B	109.5
C1—C2—C3	113.09 (18)	C11—C12—H12C	109.5
C1—C2—H2A	109.0	H12A—C12—H12C	109.5
C3—C2—H2A	109.0	H12B—C12—H12C	109.5
C1—C2—H2B	109.0	02-C13-C14	103.51 (17)
C3-C2-H2B	109.0	02-C13-C11	110.25(15)
$H^2A - C^2 - H^2B$	107.8	C14-C13-C11	117 17 (17)
$C_{2} - C_{3} - C_{4}$	113 19 (18)	02-C13-H13	108 5
$C_2 = C_3 = H_3 \Delta$	108.9	C_{14} C_{13} H_{13}	108.5
$C_2 = C_3 = H_3 \Lambda$	108.9	C11_C13_H13	108.5
$C_2 = C_3 = H_3 R$	108.0	C_{13} C_{14} C_{15}	100.5 104.13(17)
$C_2 = C_3 = H_3 B$	108.9	$C_{13} = C_{14} = C_{13}$	104.13(17)
$H_{2} = C_{2} = H_{2} = H_{2}$	107.9	$C_{15} = C_{14} = 114A$	110.9
$H_{A} = C_{A} = C_{A}$	107.8	C12 - C14 - H14A	110.9
$C_5 = C_4 = U_4$	112.43 (10)	С15—С14—Н14В	110.9
C_{3} C_{4} H_{4}	109.1	C15—C14—H14B	110.9
C3—C4—H4A	109.1	H14A - C14 - H14B	108.9
C5—C4—H4B	109.1	C14—C15—C16	104.18 (18)
C3—C4—H4B	109.1	С14—С15—Н15А	110.9
H4A—C4—H4B	107.8	С16—С15—Н15А	110.9
C4—C5—C10	110.68 (17)	C14—C15—H15B	110.9
C4—C5—C6	107.05 (14)	C16—C15—H15B	110.9
C10—C5—C6	111.29 (15)	H15A—C15—H15B	108.9
C4—C5—C9	116.71 (14)	O2—C16—C19	109.67 (16)
C10—C5—C9	111.36 (15)	O2—C16—C15	105.70 (15)
C6—C5—C9	99.07 (14)	C19—C16—C15	115.24 (19)
C1—C6—C7	120.41 (17)	O2—C16—H16	108.7
C1—C6—C5	111.94 (16)	C19—C16—H16	108.7
C7—C6—C5	104.92 (15)	C15—C16—H16	108.7
С1—С6—Н6	106.2	C18—C17—H17A	109.5
С7—С6—Н6	106.2	C18—C17—H17B	109.5
С5—С6—Н6	106.2	H17A—C17—H17B	109.5
C6—C7—C8	103.70 (16)	C18—C17—H17C	109.5
С6—С7—Н7А	111.0	H17A—C17—H17C	109.5
С8—С7—Н7А	111.0	H17B—C17—H17C	109.5
C6—C7—H7B	111.0	C17—C18—C19	115.5 (2)
C8—C7—H7B	111.0	C17—C18—H18A	108.4
H7A-C7-H7B	109.0	C19—C18—H18A	108.4
C9-C8-C7	106.92 (16)	C17—C18—H18B	108.4
C9-C8-H8A	110.3	C19-C18-H18B	108.4
C7 - C8 - H8A	110.3	H18A - C18 - H18B	107.5
C_{9} C_{8} H_{8B}	110.3	03-C19-C20	109.23 (18)
C7-C8-H8B	110.3	03-C19-C16	109.23 (16)
	108.6	C_{20} C_{19} C_{16}	110.00 (16)
$C_{11} - C_{9} - C_{8}$	113 34 (14)	03 - C19 - C18	104.20(17)
$C_{11} = C_{2} = C_{3}$	120.18 (15)	C_{20} C_{10} C_{18}	107.20(17) 113 14 (16)
$C_{1} = C_{2} = C_{2}$	120.10(13) 103 14(14)	$C_{10} = C_{10} = C_{10}$	110.14(10)
-0	103.17(17)	-019 - 019 - 010	110.12(1/)

С11—С9—Н9	106.4	C21—C20—C19	115.33 (19)
С8—С9—Н9	106.4	C21—C20—H20A	108.4
С5—С9—Н9	106.4	C19—C20—H20A	108.4
C5-C10-H10A	109.5	C21—C20—H20B	108.4
C5-C10-H10B	109.5	С19—С20—Н20В	108.4
H10A—C10—H10B	109.5	H20A—C20—H20B	107.5
C5-C10-H10C	109.5	C20—C21—H21A	109.5
H10A—C10—H10C	109.5	C20—C21—H21B	109.5
H10B—C10—H10C	109.5	H21A—C21—H21B	109.5
C12—C11—C13	111.35 (17)	C20—C21—H21C	109.5
C12—C11—C9	114.32 (16)	H21A—C21—H21C	109.5
C13—C11—C9	108.95 (15)	H21B—C21—H21C	109.5
C12—C11—H11	107.3		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
O3—H3 <i>O</i> ····O3 ⁱ	0.82	2.67	3.4495 (9)	161
$C2$ — $H2B$ ···· $O1^{ii}$	0.97	2.57	3.273 (3)	130

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+2; (ii) -*x*+2, *y*-1/2, -*z*+1.