research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1R,3aR,7aR)-1-{(S)-1-[(2R,5S)-5-(3-hy­dr­oxy­pentan-3-yl)tetra­hydro­furan-2-yl]eth­yl}-7a-methyl-2,3,3a,4,5,6,7,7a-octa­hydro-1H-inden-4-one

CROSSMARK_Color_square_no_text.svg

aDipartamento Química Orgínica, Facultade de Química, Universidade de Vigo, E-36310, Vigo, Spain, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
*Correspondence e-mail: mlgayeastou@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 December 2016; accepted 29 December 2016; online 6 January 2017)

The title compound, C21H36O3, contains an oxolane ring, and six defined stereocentres and may serve as a useful synthon for the synthesis of calcitriol analogues. The configurations of the chiral C atoms of the side chain were unambiguously established in the refinement. In the crystal, C—H⋯O and extremely weak O—H⋯O hydrogen bonds arising from the sterically hindered alcohol group link the mol­ecules into a three-dimensional network.

1. Chemical context

The discovery of vitamin D3 (calcitriol) and its biological activity had a very important impact in the search for analogues of Vitamin D. In the structure of vitamin D, it is recognized that the side chain is the main site of metabolic degradation. Synthetic chemists have devoted considerable efforts to varying this chain in order to prepare analogues of vitamin D (Dai & Posner, 1994[Dai, H. & Posner, G. H. (1994). Synthesis, pp. 1383-1398.]; Zhu et al., 1995[Zhu, G.-D. & Okamura, W. H. (1995). Chem. Rev. 95, 1877-1952.]; Posner & Kahraman, 2003[Posner, G. H. & Kahraman, M. (2003). Eur. J. Org. Chem. pp. 3889-3895.]) and study the degradation metabolisms of these new mol­ecules. Our ongoing inter­est in the chemistry of heterocyclic compounds, and particularly in the synthesis of vitamin D analogues, has led us to develop several methods for the synthesis of these compounds (Fernández et al., 2016[Fernández, C., Santalla, H., Garrido, F., Gómez, G. & Fall, Y. (2016). Tetrahedron Lett. 57, 2790-2792.]; Gándara et al., 2009[Gándara, Z., Pérez, M., Pérez-García, X., Gómez, G. & Fall, Y. (2009). Tetrahedron Lett. 50, 4874-4877.]). We have also looked at their biological activities which are reported in the literature (Maehr et al., 2004[Maehr, H., Uskokovic, M. R., Reddy, G. S. & Adorini, L. (2004). J. Steroid Biochem. Mol. Biol. 89-90, 35-38.]). Recently, we reported the synthesis of a new vitamin D2 analogue and the evaluation of its biological activity on colon cancer (Gándara et al., 2012[Gándara, Z., Pérez, M., Salomón, D. G., Ferronato, M. J., Fermento, M. E., Curino, A. C., Facchinetti, M. M., Gómez, G. & Fall, Y. (2012). Bioorg. Med. Chem. Lett. 22, 6276-6279.]). In a continuation of our work on the analogues of vitamin D, we synthesized two new mol­ecules of cacitriol from an oxolane ring and its side chains (Martínez et al., 2013[Martínez, A., Gándara, Z., González, M., Gómez, G. & Fall, Y. (2013). Tetrahedron Lett. 54, 3514-3517.]). In this study we present the structure of a new analog of calcitriol with six stereo centres.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]: the compound crystallizes in the non-centrosymmetric space group P21 and the absolute structure was unambiguously established. The mol­ecule contains a cyclo­pentane ring trans-fused to a cyclo­hexa­none ring. The lateral chain contains an oxolane ring. The cyclo­hexa­none ring adopts a chair conformation, the cyclo­pentane ring is an envelope (flap atom = C5) and the heterocyclic ring is twisted about C13—O2. The configurations of the stereogenic centres are C5(R), C6(R), C9(R), C11(S), C13(R) and C16(S). All bond distances and angles are within their expected ranges. The Csp3—Csp2 bonds involving C1 [1.499 (3) and 1.500 (3) Å) are naturally slightly shorter than the Csp3—Csp3 bonds [1.514 (3)–1.549 (5) Å]. The C1=O1 bond length [1.208 (3) Å] is typical of a C=O double bond, confirming oxidation of the starting alcohol.

[Figure 1]
Figure 1
An ORTEP view of the title compound with displacement ellipsoids plotted at the 50% probability level.

3. Supra­molecular features

In the crystal, C2—H2B⋯O1=C hydrogen bonds (Table 1[link], Fig. 2[link]) link the mol­ecules into C(4) chains, which propagate parallel to [101]. The chains are linked through very weak C(2) O3—H3O⋯O3 hydrogen bonds, giving rise to a three-dimensional supra­molecular architecture. The O—H⋯O hydrogen bond is very long, presumably due to steric hindrance of the –OH group.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O3i 0.82 2.67 3.4495 (9) 161
C2—H2B⋯O1ii 0.97 2.57 3.273 (3) 130
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) [-x+2, y-{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The packing of the title compound showing hydrogen bonds as dashed lines. [Symmetry codes: (i)-x + 2, y − [{1\over 2}], −z + 1, (ii)-x + 1, y + [{1\over 2}], −z + 2.]

4. Database survey

A survey of the Cambridge Structural Database (Version 5.38, last update Nov 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the bicyclic moiety fragment (1S,3aR,7aR)-1-ethyl-7a-methyl-octa­hydro­inden-4-one) of the title compound revealed just three matches, viz. EFEHEE (Pietraszek et al., 2013[Pietraszek, A., Malińska, M., Chodyński, M., Krupa, M., Krajewski, K., Cmoch, P., Woźniak, K. & Kutner, A. (2013). Steroids, 78, 1003-1014.]), LESNEE (Rivadulla et al., 2013[Rivadulla, M. L., Sene, M., González, M. & Covelo, B. (2013). Acta Cryst. E69, o218.]) and ZEBZIP (Schwarz et al., 1995[Schwarz, K., Neef, G., Kirsch, G., Müller-Fahrnow, A. & Steinmeyer, A. (1995). Tetrahedron, 51, 9543-9550.]). In each case, the shared C—C bond of the [4.3.0]-bicyclic moiety presents a trans configuration, as does the structure reported here.

5. Synthesis and crystallization

To a solution of diol 2 (0.18 mmol) in CH2Cl2 (5 ml), pyridinium dichromate (PDC) (0.37 mmol) was added, and the mixture stirred at room temperature for 12 h, then the solvent was evaporated and the residue was chromatographed on sílica gel using (10% EtOAc/hexa­ne) to afford ketone 1. The title compound was recrystallized as colourless blocks using a solvent mixture of hexa­ne/ethyl ether (1:1).

[Scheme 2]

Compound 1: white solid; m.p. 382–384 K. yield: 83%; Rf: 0.54 (30% EtOAc/hexa­ne). [α]20D = +31.39° (c 1.0, CDCl3). 1H NMR (CDCl3, δ): 3.87 (1H, m, H-5′), 3.72 (1H, m, H-2′), 2.44 (1H, dd, J = 11.2, 7.4 Hz), 2.49–1.8 (6H, m), 1.79–1.65 (4H, m), 1.65–1.28 (8H, m), 1.27 (3H, d, J = 9.7 Hz), 0.95 (3H, d, J = 6.7 Hz, CH3-21), 0.88 (6H,q, J = 7.6 Hz, CH3-Et), 0.67 (3H, S, CH3-18). 13C NMR (CDCl3, δ): 211.91 (C=O), 82.17 (CH-2′), 80.67 (CH-5′), 74.96 (C-3′′), 61.49 (CH-14), 54.50, 50.25 (CH-17, CH-13), 41.01 (CH2), 38.97 (CH2), 38.12 (CH-20), 28.65 (CH2), 26.93 (CH2), 26.23 (CH2), 24.98 (CH2), 24.52 (CH2), 24.04 (CH2), 19.21 (CH2), 12.70 (CH3-21), 12.55 (CH3-18), 8.02 (CH3-Et), 7.52 (CH3-Et). IR (NaCl, cm−1): 3532, 2964, 2939, 2881, 2347, 1714, 1460, 1381, 1246, 1136,1077, 958, 837. MS (ESI+) [m/z, (%)]: 359.25 [(M + Na)+, (54)]; 319.26 [(M − OH)+,(100)]; 301.25 (15). HRMS (ESI+): calculated for C21H36NaO3, 359.25567 g mol−1; found: 359.2556 g mol−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hy­droxy H atom was located from a difference Fourier map and relocated to an idealized (O—H = 0.82Å) location. The other H atoms (CH, CH2 and CH3 groups) were placed geometrically and refined as riding atoms with Uiso(H) = 1.2Ueq(C) (1.5 for CH3 groups).

Table 2
Experimental details

Crystal data
Chemical formula C21H36O3
Mr 336.50
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 9.4601 (3), 6.3779 (2), 16.7425 (4)
β (°) 104.196 (1)
V3) 979.32 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.58
Crystal size (mm) 0.25 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan SADABS (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.662, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 13069, 3679, 3594
Rint 0.036
(sin θ/λ)max−1) 0.613
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.097, 1.05
No. of reflections 3679
No. of parameters 222
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.14
Absolute structure Flack x determined using 1566 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.07 (7)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL-2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL-2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL-2014/7 (Sheldrick, 2015b).

(1R,3aR,7aR)-1-{(S)-1-[(2R,5S)-5-(3-Hydroxypentan-3-yl)tetrahydrofuran-2-yl]ethyl}-7a-methyl-2,3,3a,4,5,6,7,7a-octahydro-1H-inden-4-one top
Crystal data top
C21H36O3F(000) = 372
Mr = 336.50Dx = 1.141 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 9.4601 (3) ÅCell parameters from 9988 reflections
b = 6.3779 (2) Åθ = 2.4–28.6°
c = 16.7425 (4) ŵ = 0.58 mm1
β = 104.196 (1)°T = 296 K
V = 979.32 (5) Å3Block, colourless
Z = 20.25 × 0.12 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3679 independent reflections
Radiation source: fine-focus sealed tube3594 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.036
φ and ω scansθmax = 71.0°, θmin = 2.7°
Absorption correction: multi-scan
SADABS (Bruker, 2016)
h = 1111
Tmin = 0.662, Tmax = 0.753k = 77
13069 measured reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.0933P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.14 e Å3
3679 reflectionsΔρmin = 0.14 e Å3
222 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0034 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1566 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9190 (2)0.6570 (3)0.46585 (10)0.0761 (5)
O20.41676 (15)0.5028 (2)0.80627 (9)0.0555 (4)
O30.44001 (17)0.3383 (4)0.97018 (11)0.0768 (5)
H3O0.4801630.4531430.9750520.115*
C10.9416 (2)0.6116 (3)0.53792 (13)0.0552 (5)
C21.0862 (2)0.6426 (4)0.59799 (15)0.0651 (6)
H2A1.1478570.7273990.5722890.078*
H2B1.1330020.5073310.6110640.078*
C31.0739 (2)0.7482 (4)0.67748 (15)0.0630 (6)
H3A1.0545710.8963020.6670280.076*
H3B1.1663850.7354830.7179550.076*
C40.9536 (2)0.6548 (4)0.71321 (12)0.0523 (4)
H4A0.9813990.5140900.7328830.063*
H4B0.9439840.7385320.7599570.063*
C50.80678 (19)0.6465 (3)0.65022 (10)0.0412 (4)
C60.82896 (19)0.5162 (3)0.57614 (11)0.0456 (4)
H60.8683290.3804870.5986230.055*
C70.6765 (2)0.4733 (4)0.52444 (13)0.0626 (6)
H7A0.6731480.3433250.4939670.075*
H7B0.6426010.5868400.4859450.075*
C80.5838 (2)0.4576 (4)0.58867 (12)0.0562 (5)
H8A0.5026920.5549320.5752050.067*
H8B0.5454760.3167520.5894960.067*
C90.68560 (18)0.5124 (3)0.67337 (10)0.0422 (4)
H90.7318500.3808680.6962780.051*
C100.7521 (3)0.8691 (3)0.62341 (14)0.0589 (5)
H10A0.6536320.8620000.5904620.088*
H10B0.8132770.9306990.5917280.088*
H10C0.7552090.9533550.6713230.088*
C110.6037 (2)0.5963 (3)0.73561 (12)0.0474 (4)
H110.5531050.7245470.7122230.057*
C120.7015 (3)0.6528 (5)0.81908 (14)0.0695 (6)
H12A0.7663220.5381550.8390970.104*
H12B0.6426650.6805150.8571500.104*
H12C0.7574050.7753430.8137870.104*
C130.4871 (2)0.4371 (3)0.74389 (13)0.0500 (4)
H130.4138160.4295210.6912340.060*
C140.5382 (3)0.2155 (4)0.77004 (18)0.0672 (6)
H14A0.6333690.2172780.8084730.081*
H14B0.5432730.1308590.7226830.081*
C150.4227 (3)0.1314 (4)0.81102 (19)0.0726 (7)
H15A0.4673790.0667890.8635990.087*
H15B0.3610780.0289410.7761090.087*
C160.3342 (2)0.3267 (3)0.82279 (13)0.0532 (5)
H160.2406050.3238440.7816230.064*
C170.0673 (3)0.1360 (5)0.86855 (17)0.0792 (8)
H17A0.0772470.1155550.8133790.119*
H17B0.0098320.2590360.8704920.119*
H17C0.0201670.0161740.8851970.119*
C180.2170 (3)0.1631 (4)0.92637 (15)0.0613 (5)
H18A0.2728830.0363890.9245910.074*
H18B0.2053580.1775670.9820670.074*
C190.3051 (2)0.3499 (3)0.90802 (13)0.0506 (4)
C200.2324 (2)0.5598 (3)0.91465 (13)0.0543 (5)
H20A0.2985070.6706690.9076160.065*
H20B0.1458500.5705830.8696320.065*
C210.1888 (3)0.5971 (5)0.99509 (15)0.0750 (7)
H21A0.1530050.7376760.9959880.113*
H21B0.2721440.5775291.0405410.113*
H21C0.1138140.4995880.9995280.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1052 (13)0.0728 (11)0.0592 (9)0.0108 (10)0.0371 (9)0.0039 (8)
O20.0597 (8)0.0400 (7)0.0789 (9)0.0002 (6)0.0399 (7)0.0013 (6)
O30.0565 (8)0.0872 (12)0.0808 (11)0.0013 (9)0.0058 (8)0.0121 (10)
C10.0704 (12)0.0458 (10)0.0583 (11)0.0007 (9)0.0326 (10)0.0009 (9)
C20.0582 (11)0.0691 (14)0.0773 (14)0.0098 (11)0.0346 (11)0.0008 (12)
C30.0544 (11)0.0678 (14)0.0690 (13)0.0168 (10)0.0191 (10)0.0012 (10)
C40.0473 (9)0.0599 (11)0.0501 (9)0.0094 (9)0.0129 (8)0.0010 (9)
C50.0460 (8)0.0364 (9)0.0433 (8)0.0003 (7)0.0150 (7)0.0002 (7)
C60.0499 (9)0.0429 (9)0.0469 (9)0.0016 (8)0.0177 (7)0.0020 (8)
C70.0580 (11)0.0794 (16)0.0504 (10)0.0021 (11)0.0133 (9)0.0143 (10)
C80.0446 (9)0.0656 (13)0.0573 (11)0.0028 (9)0.0106 (8)0.0132 (10)
C90.0417 (8)0.0392 (9)0.0475 (9)0.0008 (7)0.0142 (7)0.0020 (7)
C100.0729 (13)0.0402 (10)0.0700 (13)0.0075 (9)0.0299 (11)0.0051 (9)
C110.0493 (9)0.0417 (9)0.0565 (10)0.0005 (7)0.0228 (8)0.0038 (8)
C120.0716 (13)0.0848 (17)0.0594 (12)0.0226 (13)0.0300 (10)0.0189 (12)
C130.0483 (9)0.0452 (10)0.0623 (11)0.0007 (8)0.0244 (8)0.0052 (8)
C140.0746 (14)0.0435 (11)0.0989 (18)0.0047 (10)0.0503 (14)0.0000 (11)
C150.0794 (15)0.0432 (11)0.1116 (19)0.0006 (11)0.0550 (15)0.0024 (12)
C160.0538 (10)0.0430 (10)0.0695 (12)0.0031 (9)0.0277 (9)0.0007 (9)
C170.0825 (16)0.0829 (18)0.0812 (15)0.0360 (14)0.0372 (13)0.0116 (14)
C180.0705 (13)0.0470 (11)0.0751 (13)0.0012 (10)0.0345 (11)0.0064 (10)
C190.0470 (9)0.0462 (10)0.0603 (11)0.0007 (8)0.0165 (8)0.0039 (8)
C200.0638 (11)0.0476 (10)0.0560 (11)0.0007 (9)0.0233 (9)0.0001 (8)
C210.1001 (18)0.0679 (15)0.0673 (14)0.0002 (13)0.0401 (14)0.0036 (12)
Geometric parameters (Å, º) top
O1—C11.208 (3)C10—H10C0.9600
O2—C131.432 (2)C11—C121.518 (3)
O2—C161.433 (2)C11—C131.531 (3)
O3—C191.437 (2)C11—H110.9800
O3—H3O0.8200C12—H12A0.9600
C1—C21.499 (3)C12—H12B0.9600
C1—C61.500 (3)C12—H12C0.9600
C2—C31.521 (3)C13—C141.523 (3)
C2—H2A0.9700C13—H130.9800
C2—H2B0.9700C14—C151.523 (3)
C3—C41.530 (3)C14—H14A0.9700
C3—H3A0.9700C14—H14B0.9700
C3—H3B0.9700C15—C161.540 (3)
C4—C51.525 (2)C15—H15A0.9700
C4—H4A0.9700C15—H15B0.9700
C4—H4B0.9700C16—C191.525 (3)
C5—C101.540 (3)C16—H160.9800
C5—C61.549 (2)C17—C181.517 (4)
C5—C91.553 (2)C17—H17A0.9600
C6—C71.514 (3)C17—H17B0.9600
C6—H60.9800C17—H17C0.9600
C7—C81.548 (3)C18—C191.527 (3)
C7—H7A0.9700C18—H18A0.9700
C7—H7B0.9700C18—H18B0.9700
C8—C91.546 (3)C19—C201.521 (3)
C8—H8A0.9700C20—C211.521 (3)
C8—H8B0.9700C20—H20A0.9700
C9—C111.539 (2)C20—H20B0.9700
C9—H90.9800C21—H21A0.9600
C10—H10A0.9600C21—H21B0.9600
C10—H10B0.9600C21—H21C0.9600
C13—O2—C16106.49 (15)C13—C11—H11107.3
C19—O3—H3O109.5C9—C11—H11107.3
O1—C1—C2123.2 (2)C11—C12—H12A109.5
O1—C1—C6123.6 (2)C11—C12—H12B109.5
C2—C1—C6113.21 (17)H12A—C12—H12B109.5
C1—C2—C3113.09 (18)C11—C12—H12C109.5
C1—C2—H2A109.0H12A—C12—H12C109.5
C3—C2—H2A109.0H12B—C12—H12C109.5
C1—C2—H2B109.0O2—C13—C14103.51 (17)
C3—C2—H2B109.0O2—C13—C11110.25 (15)
H2A—C2—H2B107.8C14—C13—C11117.17 (17)
C2—C3—C4113.19 (18)O2—C13—H13108.5
C2—C3—H3A108.9C14—C13—H13108.5
C4—C3—H3A108.9C11—C13—H13108.5
C2—C3—H3B108.9C13—C14—C15104.13 (17)
C4—C3—H3B108.9C13—C14—H14A110.9
H3A—C3—H3B107.8C15—C14—H14A110.9
C5—C4—C3112.45 (16)C13—C14—H14B110.9
C5—C4—H4A109.1C15—C14—H14B110.9
C3—C4—H4A109.1H14A—C14—H14B108.9
C5—C4—H4B109.1C14—C15—C16104.18 (18)
C3—C4—H4B109.1C14—C15—H15A110.9
H4A—C4—H4B107.8C16—C15—H15A110.9
C4—C5—C10110.68 (17)C14—C15—H15B110.9
C4—C5—C6107.05 (14)C16—C15—H15B110.9
C10—C5—C6111.29 (15)H15A—C15—H15B108.9
C4—C5—C9116.71 (14)O2—C16—C19109.67 (16)
C10—C5—C9111.36 (15)O2—C16—C15105.70 (15)
C6—C5—C999.07 (14)C19—C16—C15115.24 (19)
C1—C6—C7120.41 (17)O2—C16—H16108.7
C1—C6—C5111.94 (16)C19—C16—H16108.7
C7—C6—C5104.92 (15)C15—C16—H16108.7
C1—C6—H6106.2C18—C17—H17A109.5
C7—C6—H6106.2C18—C17—H17B109.5
C5—C6—H6106.2H17A—C17—H17B109.5
C6—C7—C8103.70 (16)C18—C17—H17C109.5
C6—C7—H7A111.0H17A—C17—H17C109.5
C8—C7—H7A111.0H17B—C17—H17C109.5
C6—C7—H7B111.0C17—C18—C19115.5 (2)
C8—C7—H7B111.0C17—C18—H18A108.4
H7A—C7—H7B109.0C19—C18—H18A108.4
C9—C8—C7106.92 (16)C17—C18—H18B108.4
C9—C8—H8A110.3C19—C18—H18B108.4
C7—C8—H8A110.3H18A—C18—H18B107.5
C9—C8—H8B110.3O3—C19—C20109.23 (18)
C7—C8—H8B110.3O3—C19—C16109.91 (16)
H8A—C8—H8B108.6C20—C19—C16110.00 (16)
C11—C9—C8113.34 (14)O3—C19—C18104.20 (17)
C11—C9—C5120.18 (15)C20—C19—C18113.14 (16)
C8—C9—C5103.14 (14)C16—C19—C18110.19 (17)
C11—C9—H9106.4C21—C20—C19115.33 (19)
C8—C9—H9106.4C21—C20—H20A108.4
C5—C9—H9106.4C19—C20—H20A108.4
C5—C10—H10A109.5C21—C20—H20B108.4
C5—C10—H10B109.5C19—C20—H20B108.4
H10A—C10—H10B109.5H20A—C20—H20B107.5
C5—C10—H10C109.5C20—C21—H21A109.5
H10A—C10—H10C109.5C20—C21—H21B109.5
H10B—C10—H10C109.5H21A—C21—H21B109.5
C12—C11—C13111.35 (17)C20—C21—H21C109.5
C12—C11—C9114.32 (16)H21A—C21—H21C109.5
C13—C11—C9108.95 (15)H21B—C21—H21C109.5
C12—C11—H11107.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O3i0.822.673.4495 (9)161
C2—H2B···O1ii0.972.573.273 (3)130
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+2, y1/2, z+1.
 

Acknowledgements

The work of the MS and X-ray divisions of the research support service of the University of Vigo (CACTI) is also gratefully acknowledged. Andrea Martínez thanks the University of Vigo for a PhD fellowship.

References

First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, H. & Posner, G. H. (1994). Synthesis, pp. 1383–1398.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernández, C., Santalla, H., Garrido, F., Gómez, G. & Fall, Y. (2016). Tetrahedron Lett. 57, 2790–2792.  Google Scholar
First citationGándara, Z., Pérez, M., Pérez-García, X., Gómez, G. & Fall, Y. (2009). Tetrahedron Lett. 50, 4874–4877.  Google Scholar
First citationGándara, Z., Pérez, M., Salomón, D. G., Ferronato, M. J., Fermento, M. E., Curino, A. C., Facchinetti, M. M., Gómez, G. & Fall, Y. (2012). Bioorg. Med. Chem. Lett. 22, 6276–6279.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaehr, H., Uskokovic, M. R., Reddy, G. S. & Adorini, L. (2004). J. Steroid Biochem. Mol. Biol. 89–90, 35–38.  Web of Science CrossRef CAS Google Scholar
First citationMartínez, A., Gándara, Z., González, M., Gómez, G. & Fall, Y. (2013). Tetrahedron Lett. 54, 3514–3517.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPietraszek, A., Malińska, M., Chodyński, M., Krupa, M., Krajewski, K., Cmoch, P., Woźniak, K. & Kutner, A. (2013). Steroids, 78, 1003–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationPosner, G. H. & Kahraman, M. (2003). Eur. J. Org. Chem. pp. 3889–3895.  Web of Science CrossRef Google Scholar
First citationRivadulla, M. L., Sene, M., González, M. & Covelo, B. (2013). Acta Cryst. E69, o218.  CSD CrossRef IUCr Journals Google Scholar
First citationSchwarz, K., Neef, G., Kirsch, G., Müller-Fahrnow, A. & Steinmeyer, A. (1995). Tetrahedron, 51, 9543–9550.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhu, G.-D. & Okamura, W. H. (1995). Chem. Rev. 95, 1877–1952.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds