research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three 3-chloro-3-methyl-2,6-di­aryl­piperidin-4-ones

CROSSMARK_Color_square_no_text.svg

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, bDepartment of Chemistry, Thiruvalluvar Arts and Science College, Kurinjipadi 607 302, Tamilnadu, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and dPrincipal, Government College for Women (Autonomous), Kumbakonam 612 001, Tamilnadu, India
*Correspondence e-mail: sivakumar.phd2015@gmail.com, jjasinski@keene.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 December 2016; accepted 29 December 2016; online 6 January 2017)

The syntheses and crystal structure of 3-chloro-3-methyl-r-2,c-6-di­phenyl­piperidin-4-one, C18H18ClNO, (I), 3-chloro-3-methyl-r-2,c-6-di-p-tolyl­piperidin-4-one, C20H22ClNO, (II), and 3-chloro-3-methyl-r-2,c-6-bis­(4-chloro­phen­yl)piperidin-4-one, C18H16Cl3NO, (III), are described. In each structure, the piperidine ring adopts a chair conformation and dihedral angles between the mean planes of the phenyl rings are 58.4 (2), 73.5 (5) and 78.6 (2)° in (I), (II) and (III), respectively. In the crystals, mol­ecules are linked into C(6) chains by weak N—H⋯O hydrogen bonds and C—H⋯π inter­actions are also observed.

1. Chemical context

The piperidine ring is a ubiquitous structural feature of many alkaloid natural products and drug candidates: Watson et al. (2000[Watson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679-3681.]) asserted that during a recent 10-year period there were thousands of piperidine compounds mentioned in clinical and preclinical studies. Piperidin-4-ones are reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anti­cancer and anti­microbial activities (Perumal et al., 2001[Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]; Dimmock et al., 2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). As part of our ongoing structural studies of piperidin-4-ones (Arulraj et al., 2016[Arulraj, R., Sivakumar, S., Thiruvalluvar, A., Kaur, M. & Jasinski, J. P. (2016). IUCrData, 1, x161580.]), the syntheses and crystal structures of three 3-chloro-3-methyl-2,6-di­aryl­piperidin-4-ones are now reported.

[Scheme 1]

2. Structural commentary

The title compound containing the 2,6-diaryl-piperidin-4-one moiety, C18H18NOCl, (I)[link], crystallizes in the triclinic space group P[\overline{1}] (Fig. 1[link]) whereas compounds C20H22NOCl, (II)[link] (Fig. 2[link]) and C18H16NOCl3, (III)[link] (Fig. 3[link]) both crystallize in the ortho­rhom­bic space group Pna21. The piperidin-4-one ring in all three compounds exhibits a distorted chair conformation [puckering parameters Q = 0.559 (3) Å (I)[link], 0.568 (2) Å (II)[link], 0.557 (3) Å (III)[link]; θ = 173.3 (3)° (I)[link], 168.5 (2)° (II)[link], 167.8 (3)° (III)[link] and φ = 180 (2)° (I)[link], 156.9 (12)° (II)[link], 206.8 (13)° (III)]. The methyl substituent on position 3 of the piperidine ring takes up a syn-periplanar orientation [C18—C2—C1—O1 = −3.4 (3)° (I)[link], −7.4 (3)° (II)[link], 8.6 (4)° (III)] while the chloro substituent takes up an anti-clinical orientation [Cl1—C2—C1—O1 = 113.3 (2)° (I)[link], 109.0 (2)° (II)[link], −106.9 (3)° (III)] owing to the repulsion from a nearby oxygen atom. The phenyl rings bonded to the piperidine moiety occupy equatorial positions in all three compounds: the dihedral angles between the mean planes of the phenyl rings are 58.4 (2), 73.5 (5) and 78.6 (2)° in (I)[link], (II)[link] and (III)[link], respectively. The increase in the dihedral angles between the phenyl rings from (I)[link] to (III)[link] might be attributed to the steric repulsion resulting from the substituents on the phenyl rings. The sum of bond angles around N1 in each structure [333.1° (I)[link], 332.0° (II)[link], 337.3° (III)] is consistent with sp3 hybridization (Beddoes et al., 1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of (I)[link], showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
A view of the mol­ecular structure of (II)[link], showing displacement ellipsoids drawn at the 30% probability level.
[Figure 3]
Figure 3
A view of the mol­ecular structure of (III)[link], showing displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

For each structure, the crystal packing is influenced by weak N1—H1⋯O1 hydrogen bonds, forming infinite chains along the a axis direction (Figs. 4[link], 5[link] and 6[link]). In (III)[link], additional weak C10—H10⋯O1 inter­actions are observed. Weak C—H⋯π inter­actions are observed in all three compounds (Tables 1[link], 2[link] and 3[link]). In all three compounds, ππ inter­actions must be extremely weak, with centroid–centroid separations greater than 4 Å.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.83 (3) 2.49 (3) 3.257 (3) 154 (3)
C9—H9⋯Cg3ii 0.95 2.97 3.662 (3) 131
C15—H15⋯Cg2iii 0.96 2.98 3.861 (3) 155
C18—H18ACg2iv 0.98 2.73 3.497 (3) 136
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) x-1, y+1, z; (iv) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (3) 2.27 (3) 3.057 (2) 154 (3)
C18—H18ACg3ii 0.98 2.92 3.686 (3) 135
C20—H20ACg2iii 0.97 2.81 3.724 (3) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x-{\script{1\over 2}}, y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{3\over 2}}, -y-{\script{1\over 2}}, z-1].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg3 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.74 (3) 2.40 (3) 3.071 (3) 151 (3)
C10—H10⋯O1ii 0.95 2.56 3.374 (3) 144
C18—H18CCg3iii 0.98 2.98 3.725 (3) 134
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
A partial view along the c axis of the crystal packing for (I)[link], showing the chains formed along [100] by a weak N—H⋯O hydrogen bond. H atoms not involved in this weak hydrogen-bonding activity have been omitted for clarity.
[Figure 5]
Figure 5
A partial view along the c axis of the crystal packing for (II)[link] showing the chains formed along [100] by a weak N—H⋯O hydrogen bond. H atoms not involved in this weak hydrogen-bonding activity have been omitted for clarity.
[Figure 6]
Figure 6
A partial view along the c axis of the crystal packing for (III)[link] showing the chains formed along [100] by a single weak N—H⋯O inter­action, which is consolidated by a C—H⋯O bond. H atoms not involved in this weak hydrogen-bonding activity have been omitted for clarity.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.37, update February 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2,6-di­phenyl­piperidin-4-one skeleton gave 221 hits. Three closely related structures, viz. c-3,t-3-dimethyl-r-2,c-6-diphenyl-piperidin-4-one (CSD refcode: PUGNEL; Thenmozhi et al., 2009[Thenmozhi, M., Ponnuswamy, S., Umamaheshwari, J., Jamesh, M. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o2794.]); r-2,c-6-bis-(4-chloro­phen­yl)-3,3-di­methyl­piperidin-4-one (CSD refcode: OGEJEQ; Ilango et al., 2008[Ilango, S. S., Ponnuswamy, S., Gayathri, P., Thiruvalluvar, A. & Butcher, R. J. (2008). Acta Cryst. E64, o2312.]) and 3,3-dimethyl-cis-2,6-di-p-tolyl­piperidin-4-one (CSD refcode: PUFHAA; Gayathri et al., 2009[Gayathri, P., Ilango, S. S., Ponnuswamy, S., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o2445.]) may be briefly compared to the three structures reported here: the distorted chair conformations of the piperidine rings are also observed in PUGNEL, OGEJEQ and PUFHAA. The packing in (I)[link],(II) and (III)[link] and and PUGNEL, PUFHAA and OGEJEQ all feature N—H⋯O hydrogen bonds and C—H⋯π inter­actions. Both (III)[link] and OGEJEQ also exhibit additional weak C—H⋯O inter­actions.

5. Synthesis and crystallization

A mixture of ammonium acetate (0.1 mol, 7.71 g), the respective aldehyde (0.2 mol) (benzaldehyde/p-methyl­benzaldehyde/p-chloro­benzaldehyde, 20.4 ml, 24.0 g and 28.1 ml) and 3-chloro-2-butanone (0.1 mol, 10.1 ml) in distilled ethanol was heated first to boiling. After cooling, the viscous liquid obtained was dissolved in diethyl ether (200 ml) and shaken with 100 ml concentrated hydro­chloric acid. The precipitated hydro­chloride of the 3-chloro, 3-methyl-r(6),c(6)-di­aryl­piperidin-4-one was removed by filtration and washed first with a 40 ml mixture of ethanol and diethyl ether (1:1) and then with diethyl ether to remove most of the coloured impurities. The base was liberated from an alcoholic solution by adding aqueous ammonia and then diluted with water. Each compound was recrystallized twice from distilled ethanol solution: single crystals of (I)[link], (II)[link] and (III)[link] were obtained after two days.

3-Chloro-3-methyl-r(2),c(6)-di­phenyl­piperidin-4-one, (C18H18ClNO) (I) IR (KBr): 3333.64 (υN—H), 3063.43, 3007.40 (υC—H), 1713.51 (υC=O), 1602.76, 1495.15 (υC=C), 749.57 (υC—Cl) cm−1. 1H NMR (500 MHz, CDCl3): δ 7.41–7.16 (m, aromatic protons), 4.00–3.97 [dd, H(6) proton], 3.87 [s, H(2) proton] , 3.44–3.39 [t, H(5e) proton], 2.50–2.45 [dd, H(5a) proton], 1.66 (s, NH proton), 1.38 (s, CH3 proton). 13C NMR (CDCl3, 500 MHz): δ 202.69 (C=O), 142.27, 137.32 (aromatic ipso carbon atoms), 129.52–126.89 (aromatic carbon atoms), 72.02 (C-3 carbon), 69.88 (C-2 carbon), 61.49 (C-6 carbon), 45.60 (C-5 carbon), 22.25 (methyl carbon).

3-Chloro-3-methyl-r(2),c(6)-di-p-tolyl-piperidin-4-one, (C20H22ClNO) (II) IR (KBr): 3332.57 (υN—H), 3095.35, 3007.79 (υC—H), 1715.40 (υC=O), 1615.57, 1513.79 (υC=C), 738.68 (υC—Cl) cm−1. 1H NMR (500 MHz, CDCl3): δ 7.50–7.33 (m, aromatic protons), 4.06–4.03 [dd, H(6) proton], 3.93 [s, H(2) proton], 3.45–3.40 [dd, H(5e) proton], 2.54–2.51 [dd, H(5a) proton], 1.70 (s, NH proton), 1.43 (s, CH3 proton at C-3), 2.45 (s, CH3 protons attached to the phenyl ring). 13C NMR (CDCl3, 500 MHz): δ 203.07 (C=O), 139.32, 138.56, 138.01, 134.32 (aromatic ipso carbon atoms), 129.69–126.76 (aromatic carbon atoms), 72.16 (C-3 carbon), 69.62 (C-2 carbon), 61.18 (C-6 carbon), 45.58 (C-5 carbon), 21.37 (methyl carbon at C-3), 22.22 (methyl carbon atoms attached to the phenyl ring).

3-Chloro-3-methyl-r(2),c(6)-bis­(p-chloro­phen­yl)piperidin-4-one, (C18H16Cl3NO) (III) IR (KBr): 3325.87 (υN—H), 3047.68, 3009.09 (υC—H), 1715.63 (υC=O), 1596.88, 1491.72 (υC=C), 799.88 (υC—Cl) cm−1. 1H NMR (500 MHz, CDCl3): δ 7.50–7.33 (m, aromatic protons), 4.06–4.03 [dd, H(6) proton], 3.93 [s, H(2) proton], 3.45–.40 [dd, H(5e) proton], 2.54–2.51 [dd, H(5a) proton], 1.70 (s, NH proton), 1.43 (s, CH3 proton). 13C NMR (CDCl3, 500 MHz): δ 201.73 (C=O), 140.41, 135.41, 134.67, 133.93 (aromatic ipso carbon atoms), 130.55–128.04 (aromatic carbon atoms), 71.31 (C-3 carbon), 68.92 (C-2 carbon), 60.54 (C-6 carbon), 45.24 (C-5 carbon), 21.92 (methyl carbon).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. In (I)[link], all H atoms were placed in their calculated positions and then refined using a riding model with bond lengths of 0.95 or 1.0 Å (CH), 0.99 Å (CH2), 0.98 Å (CH3) or 0.83 Å (NH). In (II)[link] and (III)[link], atom H1 was located in a difference map and refined isotropically. Isotropic displacement parameters for all these atoms in (I)[link], (II)[link] and (III)[link] were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. Idealized methyl groups were refined as rotating groups. The refinement for (III)[link] showed some parameter oscillation, and convergence was achieved with the use of a DAMP card.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C18H18ClNO C20H22ClNO C18H16Cl3NO
Mr 299.78 327.83 368.67
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pna21 Orthorhombic, Pna21
Temperature (K) 173 173 173
a, b, c (Å) 6.7150 (6), 10.9591 (13), 11.1704 (10) 13.0578 (2), 22.6513 (4), 5.93756 (8) 13.2430 (4), 22.3945 (6), 5.81947 (14)
α, β, γ (°) 72.162 (9), 79.721 (7), 76.873 (8) 90, 90, 90 90, 90, 90
V3) 756.80 (14) 1756.19 (5) 1725.88 (8)
Z 2 4 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 2.21 1.94 4.83
Crystal size (mm) 0.26 × 0.22 × 0.06 0.32 × 0.18 × 0.08 0.34 × 0.14 × 0.14
 
Data collection
Diffractometer Rigaku Oxford Diffraction Agilent Xcalibur, Eos, Gemini Agilent Xcalibur, Eos, Gemini
Absorption correction Multi-scan CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.609, 1.000 0.724, 1.000 0.646, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4920, 2847, 2456 11595, 2966, 2873 12474, 2602, 2494
Rint 0.030 0.050 0.033
(sin θ/λ)max−1) 0.615 0.615 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.168, 1.05 0.034, 0.087, 1.07 0.032, 0.084, 1.02
No. of reflections 2847 2966 2602
No. of parameters 195 214 212
No. of restraints 0 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.68, −0.29 0.24, −0.21 0.45, −0.23
Absolute structure Flack x determined using 1017 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 695 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.010 (13) 0.135 (13)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) 3-Chloro-3-methyl-r-2,c-6-diphenylpiperidin-4-one top
Crystal data top
C18H18ClNOZ = 2
Mr = 299.78F(000) = 316
Triclinic, P1Dx = 1.316 Mg m3
a = 6.7150 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.9591 (13) ÅCell parameters from 1924 reflections
c = 11.1704 (10) Åθ = 4.2–71.4°
α = 72.162 (9)°µ = 2.21 mm1
β = 79.721 (7)°T = 173 K
γ = 76.873 (8)°Plate, colourless
V = 756.80 (14) Å30.26 × 0.22 × 0.06 mm
Data collection top
Rigaku Oxford Diffraction
diffractometer
2847 independent reflections
Radiation source: Enhance (Cu) X-ray Source2456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.0416 pixels mm-1θmax = 71.6°, θmin = 4.2°
ω scansh = 58
Absorption correction: multi-scan
CrysAlisPro (Agilent, 2014)
k = 1312
Tmin = 0.609, Tmax = 1.000l = 1313
4920 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.1016P)2 + 0.3319P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2847 reflectionsΔρmax = 0.68 e Å3
195 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84481 (9)0.47065 (6)0.39680 (5)0.0398 (2)
O11.0539 (3)0.6618 (2)0.10828 (18)0.0419 (5)
N10.4811 (3)0.6045 (2)0.2321 (2)0.0317 (4)
H10.366 (5)0.597 (3)0.221 (3)0.030 (7)*
C10.8931 (4)0.6412 (3)0.1735 (2)0.0329 (5)
C20.8483 (3)0.5027 (2)0.2271 (2)0.0305 (5)
C30.6344 (3)0.5032 (2)0.1920 (2)0.0301 (5)
H30.64510.52590.09760.036*
C40.5174 (4)0.7368 (2)0.1683 (2)0.0330 (5)
H40.52640.75240.07470.040*
C50.7243 (4)0.7487 (2)0.2022 (2)0.0357 (5)
H5A0.75970.83440.15270.043*
H5B0.71100.74340.29320.043*
C60.5636 (3)0.3733 (2)0.2443 (2)0.0307 (5)
C70.5880 (4)0.2906 (3)0.1680 (2)0.0355 (5)
H70.65240.31500.08340.043*
C80.5196 (4)0.1733 (3)0.2141 (3)0.0432 (6)
H80.53520.11830.16050.052*
C90.4285 (4)0.1354 (3)0.3377 (3)0.0448 (6)
H90.38340.05410.36960.054*
C100.4040 (4)0.2172 (3)0.4142 (3)0.0441 (6)
H100.34220.19150.49930.053*
C110.4687 (4)0.3364 (3)0.3680 (2)0.0371 (5)
H110.44830.39280.42070.044*
C120.3394 (4)0.8335 (2)0.2104 (2)0.0335 (5)
C130.2480 (4)0.9433 (3)0.1241 (3)0.0422 (6)
H130.29970.95970.03680.051*
C140.0817 (5)1.0298 (3)0.1631 (3)0.0479 (7)
H140.02171.10540.10310.057*
C150.0041 (4)1.0049 (3)0.2902 (3)0.0463 (7)
H150.11021.06300.31760.056*
C160.0935 (4)0.8953 (3)0.3769 (3)0.0446 (6)
H160.04050.87830.46400.053*
C170.2606 (4)0.8099 (3)0.3375 (2)0.0379 (6)
H170.32140.73490.39770.045*
C181.0159 (4)0.4010 (3)0.1837 (3)0.0369 (5)
H18A1.15070.41280.19570.055*
H18B1.01200.41110.09380.055*
H18C0.99310.31360.23350.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0387 (4)0.0523 (4)0.0297 (3)0.0089 (3)0.0114 (2)0.0087 (3)
O10.0284 (9)0.0543 (11)0.0436 (10)0.0149 (8)0.0023 (7)0.0132 (8)
N10.0201 (9)0.0363 (11)0.0398 (11)0.0026 (8)0.0084 (8)0.0110 (8)
C10.0272 (11)0.0446 (13)0.0297 (11)0.0073 (10)0.0107 (9)0.0098 (10)
C20.0235 (11)0.0418 (13)0.0261 (10)0.0037 (9)0.0071 (8)0.0087 (9)
C30.0233 (10)0.0382 (12)0.0292 (11)0.0037 (9)0.0087 (8)0.0083 (9)
C40.0286 (11)0.0374 (12)0.0330 (12)0.0035 (9)0.0077 (9)0.0094 (9)
C50.0309 (12)0.0384 (13)0.0397 (13)0.0097 (10)0.0037 (10)0.0114 (10)
C60.0206 (10)0.0384 (12)0.0347 (12)0.0022 (9)0.0090 (9)0.0115 (10)
C70.0250 (11)0.0434 (13)0.0395 (13)0.0024 (9)0.0065 (9)0.0146 (11)
C80.0356 (13)0.0429 (14)0.0568 (16)0.0010 (11)0.0131 (12)0.0223 (12)
C90.0362 (13)0.0405 (14)0.0582 (17)0.0109 (11)0.0142 (12)0.0069 (12)
C100.0397 (14)0.0519 (16)0.0413 (14)0.0172 (12)0.0058 (11)0.0069 (12)
C110.0324 (12)0.0452 (14)0.0358 (12)0.0106 (10)0.0039 (10)0.0120 (10)
C120.0273 (11)0.0379 (12)0.0377 (12)0.0069 (10)0.0071 (9)0.0113 (10)
C130.0419 (14)0.0427 (14)0.0406 (14)0.0041 (11)0.0101 (11)0.0093 (11)
C140.0411 (14)0.0416 (14)0.0591 (17)0.0059 (11)0.0187 (13)0.0139 (13)
C150.0321 (13)0.0481 (15)0.0619 (18)0.0014 (11)0.0083 (12)0.0246 (13)
C160.0360 (13)0.0525 (16)0.0468 (15)0.0072 (12)0.0004 (11)0.0192 (13)
C170.0328 (12)0.0407 (13)0.0381 (13)0.0037 (10)0.0055 (10)0.0095 (10)
C180.0265 (11)0.0431 (13)0.0427 (13)0.0021 (10)0.0075 (10)0.0151 (11)
Geometric parameters (Å, º) top
Cl1—C21.816 (2)C8—C91.384 (4)
O1—C11.215 (3)C9—H90.9500
N1—H10.83 (3)C9—C101.383 (4)
N1—C31.454 (3)C10—H100.9500
N1—C41.461 (3)C10—C111.388 (4)
C1—C21.529 (4)C11—H110.9500
C1—C51.507 (3)C12—C131.385 (4)
C2—C31.553 (3)C12—C171.389 (4)
C2—C181.520 (3)C13—H130.9500
C3—H31.0000C13—C141.391 (4)
C3—C61.515 (3)C14—H140.9500
C4—H41.0000C14—C151.388 (4)
C4—C51.546 (3)C15—H150.9500
C4—C121.517 (3)C15—C161.381 (4)
C5—H5A0.9900C16—H160.9500
C5—H5B0.9900C16—C171.389 (4)
C6—C71.389 (3)C17—H170.9500
C6—C111.393 (3)C18—H18A0.9800
C7—H70.9500C18—H18B0.9800
C7—C81.381 (4)C18—H18C0.9800
C8—H80.9500
C3—N1—H1109 (2)C7—C8—H8119.8
C3—N1—C4114.13 (19)C7—C8—C9120.5 (3)
C4—N1—H1110 (2)C9—C8—H8119.8
O1—C1—C2121.0 (2)C8—C9—H9120.4
O1—C1—C5122.8 (2)C10—C9—C8119.3 (3)
C5—C1—C2116.2 (2)C10—C9—H9120.4
C1—C2—Cl1103.69 (15)C9—C10—H10119.7
C1—C2—C3108.02 (19)C9—C10—C11120.7 (3)
C3—C2—Cl1111.52 (16)C11—C10—H10119.7
C18—C2—Cl1107.95 (16)C6—C11—H11120.0
C18—C2—C1113.27 (19)C10—C11—C6119.9 (2)
C18—C2—C3112.11 (19)C10—C11—H11120.0
N1—C3—C2109.95 (19)C13—C12—C4121.4 (2)
N1—C3—H3107.4C13—C12—C17118.8 (2)
N1—C3—C6110.15 (18)C17—C12—C4119.7 (2)
C2—C3—H3107.4C12—C13—H13119.5
C6—C3—C2114.24 (19)C12—C13—C14121.0 (3)
C6—C3—H3107.4C14—C13—H13119.5
N1—C4—H4109.3C13—C14—H14120.2
N1—C4—C5108.10 (19)C15—C14—C13119.5 (3)
N1—C4—C12109.07 (19)C15—C14—H14120.2
C5—C4—H4109.3C14—C15—H15120.1
C12—C4—H4109.3C16—C15—C14119.9 (3)
C12—C4—C5111.7 (2)C16—C15—H15120.1
C1—C5—C4110.3 (2)C15—C16—H16119.8
C1—C5—H5A109.6C15—C16—C17120.3 (3)
C1—C5—H5B109.6C17—C16—H16119.8
C4—C5—H5A109.6C12—C17—H17119.8
C4—C5—H5B109.6C16—C17—C12120.4 (3)
H5A—C5—H5B108.1C16—C17—H17119.8
C7—C6—C3120.2 (2)C2—C18—H18A109.5
C7—C6—C11119.1 (2)C2—C18—H18B109.5
C11—C6—C3120.7 (2)C2—C18—H18C109.5
C6—C7—H7119.7H18A—C18—H18B109.5
C8—C7—C6120.5 (2)H18A—C18—H18C109.5
C8—C7—H7119.7H18B—C18—H18C109.5
Cl1—C2—C3—N160.5 (2)C4—C12—C13—C14178.5 (2)
Cl1—C2—C3—C663.9 (2)C4—C12—C17—C16177.9 (2)
O1—C1—C2—Cl1113.3 (2)C5—C1—C2—Cl169.0 (2)
O1—C1—C2—C3128.2 (2)C5—C1—C2—C349.4 (3)
O1—C1—C2—C183.4 (3)C5—C1—C2—C18174.2 (2)
O1—C1—C5—C4127.1 (2)C5—C4—C12—C13105.9 (3)
N1—C3—C6—C7137.0 (2)C5—C4—C12—C1776.4 (3)
N1—C3—C6—C1141.4 (3)C6—C7—C8—C91.0 (4)
N1—C4—C5—C153.2 (3)C7—C6—C11—C101.3 (4)
N1—C4—C12—C13134.6 (2)C7—C8—C9—C100.9 (4)
N1—C4—C12—C1743.1 (3)C8—C9—C10—C110.3 (4)
C1—C2—C3—N152.8 (2)C9—C10—C11—C61.4 (4)
C1—C2—C3—C6177.23 (19)C11—C6—C7—C80.1 (3)
C2—C1—C5—C450.6 (3)C12—C4—C5—C1173.2 (2)
C2—C3—C6—C798.7 (2)C12—C13—C14—C150.9 (4)
C2—C3—C6—C1182.9 (3)C13—C12—C17—C160.2 (4)
C3—N1—C4—C562.7 (2)C13—C14—C15—C160.6 (4)
C3—N1—C4—C12175.60 (18)C14—C15—C16—C170.1 (4)
C3—C6—C7—C8178.5 (2)C15—C16—C17—C120.1 (4)
C3—C6—C11—C10179.7 (2)C17—C12—C13—C140.7 (4)
C4—N1—C3—C263.7 (2)C18—C2—C3—N1178.29 (19)
C4—N1—C3—C6169.51 (18)C18—C2—C3—C657.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.83 (3)2.49 (3)3.257 (3)154 (3)
C9—H9···Cg3ii0.952.973.662 (3)131
C15—H15···Cg2iii0.962.983.861 (3)155
C18—H18A···Cg2iv0.982.733.497 (3)136
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x1, y+1, z; (iv) x+1, y, z.
(II) 3-Chloro-3-methyl-r-2,c-6-di-p-tolylpiperidin-4-one top
Crystal data top
C20H22ClNODx = 1.240 Mg m3
Mr = 327.83Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pna21Cell parameters from 5659 reflections
a = 13.0578 (2) Åθ = 3.9–71.5°
b = 22.6513 (4) ŵ = 1.94 mm1
c = 5.93756 (8) ÅT = 173 K
V = 1756.19 (5) Å3, colourless
Z = 40.32 × 0.18 × 0.08 mm
F(000) = 696
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
2966 independent reflections
Radiation source: Enhance (Cu) X-ray Source2873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 3.9°
ω scansh = 1515
Absorption correction: multi-scan
CrysAlisPro (Agilent, 2014)
k = 2427
Tmin = 0.724, Tmax = 1.000l = 67
11595 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.1354P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.24 e Å3
2966 reflectionsΔρmin = 0.21 e Å3
214 parametersAbsolute structure: Flack x determined using 1017 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.010 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54670 (4)0.77906 (3)0.75415 (12)0.04218 (17)
O10.43096 (11)0.75024 (7)0.2382 (4)0.0378 (4)
N10.71897 (14)0.72611 (7)0.4371 (4)0.0287 (4)
H10.784 (3)0.7255 (12)0.419 (6)0.034*
C10.50913 (16)0.74057 (10)0.3414 (4)0.0310 (4)
C20.56797 (16)0.79142 (10)0.4558 (4)0.0300 (4)
C30.68295 (15)0.78608 (8)0.3965 (4)0.0269 (4)
H30.69020.79410.23170.032*
C40.66920 (16)0.68266 (9)0.2913 (4)0.0303 (5)
H40.67450.69600.13120.036*
C50.55566 (16)0.68040 (10)0.3595 (5)0.0384 (6)
H5A0.51850.65260.26000.046*
H5B0.54960.66590.51630.046*
C60.75100 (15)0.82967 (9)0.5206 (4)0.0276 (4)
C70.77498 (16)0.88426 (9)0.4254 (4)0.0313 (4)
H70.74740.89450.28260.038*
C80.83845 (17)0.92371 (9)0.5363 (4)0.0337 (5)
H80.85300.96090.46940.040*
C90.88100 (14)0.90983 (9)0.7432 (5)0.0338 (5)
C100.85823 (18)0.85499 (10)0.8368 (4)0.0336 (5)
H100.88730.84440.97780.040*
C110.79398 (15)0.81549 (9)0.7278 (4)0.0306 (4)
H110.77920.77840.79530.037*
C120.72266 (16)0.62377 (9)0.3163 (4)0.0309 (5)
C130.77964 (18)0.60043 (11)0.1403 (5)0.0370 (5)
H130.78210.62050.00010.044*
C140.83321 (19)0.54782 (11)0.1675 (5)0.0403 (6)
H140.87170.53250.04490.048*
C150.83168 (18)0.51738 (10)0.3687 (5)0.0374 (5)
C160.7745 (2)0.54068 (11)0.5437 (5)0.0424 (6)
H160.77190.52030.68350.051*
C170.7208 (2)0.59322 (10)0.5193 (5)0.0388 (5)
H170.68250.60840.64240.047*
C180.52313 (18)0.85084 (10)0.3942 (5)0.0409 (6)
H18A0.45090.85210.43900.061*
H18B0.52850.85680.23110.061*
H18C0.56090.88210.47250.061*
C190.9515 (2)0.95208 (12)0.8652 (6)0.0476 (7)
H19A1.02010.95000.79860.071*
H19B0.95520.94121.02480.071*
H19C0.92500.99240.85130.071*
C200.8889 (2)0.46004 (11)0.3978 (6)0.0486 (7)
H20A0.84380.42700.35880.073*
H20B0.91110.45610.55470.073*
H20C0.94890.45970.29870.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0344 (3)0.0598 (3)0.0323 (3)0.0046 (2)0.0068 (3)0.0043 (3)
O10.0232 (7)0.0479 (8)0.0423 (10)0.0006 (6)0.0037 (8)0.0050 (9)
N10.0199 (8)0.0283 (9)0.0380 (11)0.0017 (6)0.0002 (8)0.0030 (7)
C10.0205 (9)0.0392 (11)0.0334 (11)0.0025 (8)0.0030 (8)0.0007 (9)
C20.0254 (9)0.0353 (10)0.0294 (11)0.0014 (8)0.0011 (9)0.0015 (9)
C30.0233 (9)0.0293 (9)0.0281 (12)0.0024 (7)0.0014 (8)0.0005 (8)
C40.0291 (9)0.0285 (9)0.0333 (13)0.0022 (8)0.0022 (8)0.0017 (8)
C50.0271 (11)0.0334 (11)0.0548 (16)0.0071 (8)0.0067 (10)0.0025 (11)
C60.0222 (9)0.0275 (9)0.0332 (11)0.0001 (7)0.0012 (8)0.0019 (9)
C70.0294 (10)0.0313 (10)0.0333 (12)0.0007 (8)0.0011 (9)0.0033 (9)
C80.0308 (10)0.0264 (9)0.0439 (14)0.0020 (8)0.0056 (9)0.0001 (9)
C90.0252 (9)0.0317 (9)0.0445 (13)0.0017 (7)0.0030 (11)0.0086 (10)
C100.0308 (10)0.0352 (10)0.0347 (11)0.0008 (8)0.0046 (9)0.0016 (9)
C110.0294 (9)0.0275 (9)0.0350 (12)0.0011 (7)0.0007 (9)0.0012 (9)
C120.0291 (10)0.0288 (9)0.0347 (13)0.0037 (8)0.0046 (8)0.0040 (8)
C130.0375 (12)0.0398 (12)0.0336 (13)0.0007 (9)0.0012 (10)0.0021 (10)
C140.0371 (12)0.0412 (12)0.0427 (15)0.0034 (10)0.0001 (10)0.0104 (10)
C150.0328 (10)0.0311 (10)0.0483 (15)0.0024 (9)0.0098 (10)0.0062 (10)
C160.0504 (14)0.0366 (12)0.0401 (14)0.0000 (10)0.0024 (11)0.0040 (10)
C170.0433 (12)0.0368 (11)0.0363 (13)0.0025 (9)0.0039 (10)0.0025 (10)
C180.0307 (10)0.0357 (11)0.0561 (17)0.0036 (9)0.0063 (11)0.0037 (11)
C190.0439 (13)0.0416 (13)0.0573 (18)0.0119 (10)0.0041 (12)0.0113 (13)
C200.0452 (13)0.0371 (12)0.0634 (19)0.0069 (10)0.0101 (13)0.0063 (12)
Geometric parameters (Å, º) top
Cl1—C21.815 (3)C10—H100.9500
O1—C11.211 (3)C10—C111.387 (3)
N1—H10.85 (3)C11—H110.9500
N1—C31.458 (3)C12—C131.388 (3)
N1—C41.463 (3)C12—C171.390 (4)
C1—C21.542 (3)C13—H130.9500
C1—C51.496 (3)C13—C141.391 (3)
C2—C31.547 (3)C14—H140.9500
C2—C181.513 (3)C14—C151.379 (4)
C3—H31.0000C15—C161.385 (4)
C3—C61.519 (3)C15—C201.508 (3)
C4—H41.0000C16—H160.9500
C4—C51.538 (3)C16—C171.389 (4)
C4—C121.513 (3)C17—H170.9500
C5—H5A0.9900C18—H18A0.9800
C5—H5B0.9900C18—H18B0.9800
C6—C71.395 (3)C18—H18C0.9800
C6—C111.390 (3)C19—H19A0.9800
C7—H70.9500C19—H19B0.9800
C7—C81.385 (3)C19—H19C0.9800
C8—H80.9500C20—H20A0.9800
C8—C91.384 (4)C20—H20B0.9800
C9—C101.393 (3)C20—H20C0.9800
C9—C191.513 (3)
C3—N1—H1108.3 (18)C9—C10—H10119.4
C3—N1—C4112.70 (18)C11—C10—C9121.2 (2)
C4—N1—H1111 (2)C11—C10—H10119.4
O1—C1—C2120.5 (2)C6—C11—H11119.7
O1—C1—C5122.9 (2)C10—C11—C6120.5 (2)
C5—C1—C2116.51 (19)C10—C11—H11119.7
C1—C2—Cl1103.80 (15)C13—C12—C4120.6 (2)
C1—C2—C3108.96 (17)C13—C12—C17118.2 (2)
C3—C2—Cl1111.02 (16)C17—C12—C4121.1 (2)
C18—C2—Cl1108.31 (18)C12—C13—H13119.7
C18—C2—C1111.42 (19)C12—C13—C14120.6 (2)
C18—C2—C3112.96 (19)C14—C13—H13119.7
N1—C3—C2110.39 (17)C13—C14—H14119.3
N1—C3—H3107.5C15—C14—C13121.4 (2)
N1—C3—C6109.69 (17)C15—C14—H14119.3
C2—C3—H3107.5C14—C15—C16117.9 (2)
C6—C3—C2114.00 (17)C14—C15—C20121.5 (3)
C6—C3—H3107.5C16—C15—C20120.6 (3)
N1—C4—H4109.1C15—C16—H16119.3
N1—C4—C5107.14 (18)C15—C16—C17121.4 (3)
N1—C4—C12109.27 (18)C17—C16—H16119.3
C5—C4—H4109.1C12—C17—H17119.7
C12—C4—H4109.1C16—C17—C12120.6 (3)
C12—C4—C5112.94 (18)C16—C17—H17119.7
C1—C5—C4110.02 (18)C2—C18—H18A109.5
C1—C5—H5A109.7C2—C18—H18B109.5
C1—C5—H5B109.7C2—C18—H18C109.5
C4—C5—H5A109.7H18A—C18—H18B109.5
C4—C5—H5B109.7H18A—C18—H18C109.5
H5A—C5—H5B108.2H18B—C18—H18C109.5
C7—C6—C3120.7 (2)C9—C19—H19A109.5
C11—C6—C3121.01 (19)C9—C19—H19B109.5
C11—C6—C7118.2 (2)C9—C19—H19C109.5
C6—C7—H7119.6H19A—C19—H19B109.5
C8—C7—C6120.9 (2)H19A—C19—H19C109.5
C8—C7—H7119.6H19B—C19—H19C109.5
C7—C8—H8119.5C15—C20—H20A109.5
C9—C8—C7121.0 (2)C15—C20—H20B109.5
C9—C8—H8119.5C15—C20—H20C109.5
C8—C9—C10118.1 (2)H20A—C20—H20B109.5
C8—C9—C19121.7 (2)H20A—C20—H20C109.5
C10—C9—C19120.2 (3)H20B—C20—H20C109.5
Cl1—C2—C3—N164.2 (2)C5—C1—C2—Cl172.9 (2)
Cl1—C2—C3—C659.8 (2)C5—C1—C2—C345.4 (3)
O1—C1—C2—Cl1109.0 (2)C5—C1—C2—C18170.7 (2)
O1—C1—C2—C3132.7 (2)C5—C4—C12—C13129.5 (2)
O1—C1—C2—C187.4 (3)C5—C4—C12—C1754.1 (3)
O1—C1—C5—C4128.2 (2)C6—C7—C8—C90.9 (3)
N1—C3—C6—C7143.2 (2)C7—C6—C11—C100.5 (3)
N1—C3—C6—C1134.4 (3)C7—C8—C9—C100.1 (3)
N1—C4—C5—C156.9 (3)C7—C8—C9—C19179.2 (2)
N1—C4—C12—C13111.4 (2)C8—C9—C10—C110.7 (3)
N1—C4—C12—C1765.1 (3)C9—C10—C11—C60.4 (3)
C1—C2—C3—N149.5 (3)C11—C6—C7—C81.1 (3)
C1—C2—C3—C6173.48 (19)C12—C4—C5—C1177.2 (2)
C2—C1—C5—C449.9 (3)C12—C13—C14—C150.1 (4)
C2—C3—C6—C792.4 (2)C13—C12—C17—C160.2 (4)
C2—C3—C6—C1189.9 (2)C13—C14—C15—C160.3 (4)
C3—N1—C4—C566.6 (2)C13—C14—C15—C20179.4 (2)
C3—N1—C4—C12170.74 (18)C14—C15—C16—C170.5 (4)
C3—C6—C7—C8178.9 (2)C15—C16—C17—C120.4 (4)
C3—C6—C11—C10178.2 (2)C17—C12—C13—C140.0 (3)
C4—N1—C3—C264.0 (2)C18—C2—C3—N1173.9 (2)
C4—N1—C3—C6169.52 (18)C18—C2—C3—C662.1 (3)
C4—C12—C13—C14176.6 (2)C19—C9—C10—C11179.9 (2)
C4—C12—C17—C16176.7 (2)C20—C15—C16—C17179.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (3)2.27 (3)3.057 (2)154 (3)
C18—H18A···Cg3ii0.982.923.686 (3)135
C20—H20A···Cg2iii0.972.813.724 (3)156
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z+1/2; (iii) x+3/2, y1/2, z1.
(III) 3-Chloro-3-methyl-r-2,c-6-bis(4-chlorophenyl)piperidin-4-one top
Crystal data top
C18H16Cl3NODx = 1.419 Mg m3
Mr = 368.67Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pna21Cell parameters from 5579 reflections
a = 13.2430 (4) Åθ = 3.9–71.2°
b = 22.3945 (6) ŵ = 4.83 mm1
c = 5.81947 (14) ÅT = 173 K
V = 1725.88 (8) Å3Prism, colourless
Z = 40.34 × 0.14 × 0.14 mm
F(000) = 760
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
2602 independent reflections
Radiation source: Enhance (Cu) X-ray Source2494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 3.9°
ω scansh = 1615
Absorption correction: multi-scan
CrysAlisPro (Agilent, 2014)
k = 2727
Tmin = 0.646, Tmax = 1.000l = 74
12474 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.6568P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.45 e Å3
2602 reflectionsΔρmin = 0.23 e Å3
212 parametersAbsolute structure: Flack x determined using 695 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.135 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45288 (4)0.77767 (3)0.75233 (13)0.04111 (16)
Cl20.03876 (5)0.95332 (3)0.88033 (17)0.05145 (19)
Cl30.10150 (6)0.45148 (3)0.38178 (19)0.0578 (2)
O10.57167 (12)0.74818 (9)0.2363 (4)0.0363 (4)
N10.28424 (14)0.72489 (9)0.4198 (4)0.0288 (5)
H10.228 (2)0.7238 (12)0.413 (6)0.035*
C10.49247 (17)0.73891 (11)0.3332 (5)0.0294 (6)
C20.43340 (17)0.79041 (11)0.4461 (5)0.0277 (5)
C30.32060 (17)0.78557 (9)0.3839 (5)0.0261 (5)
H30.31430.79440.21610.031*
C40.33396 (17)0.68095 (10)0.2728 (5)0.0291 (5)
H40.33020.69460.10950.035*
C50.44518 (17)0.67810 (12)0.3470 (6)0.0364 (6)
H5A0.44970.66300.50660.044*
H5B0.48230.65010.24600.044*
C60.25273 (17)0.82914 (10)0.5104 (5)0.0260 (5)
C70.22816 (18)0.88418 (11)0.4167 (5)0.0303 (6)
H70.25650.89550.27330.036*
C80.1631 (2)0.92294 (11)0.5281 (5)0.0335 (6)
H80.14670.96060.46250.040*
C90.12236 (17)0.90591 (11)0.7364 (6)0.0336 (6)
C100.14495 (18)0.85140 (11)0.8344 (5)0.0321 (6)
H100.11610.84020.97760.039*
C110.21035 (17)0.81329 (11)0.7205 (5)0.0303 (6)
H110.22650.77570.78690.036*
C120.27945 (18)0.62177 (11)0.2956 (5)0.0312 (6)
C130.2849 (2)0.58865 (14)0.4970 (6)0.0445 (7)
H130.32680.60210.61900.053*
C140.2303 (3)0.53636 (14)0.5229 (7)0.0471 (8)
H140.23460.51400.66130.057*
C150.1701 (2)0.51733 (11)0.3470 (6)0.0402 (7)
C160.1625 (2)0.54859 (14)0.1446 (6)0.0420 (7)
H160.12060.53470.02350.050*
C170.2180 (2)0.60143 (13)0.1208 (6)0.0384 (7)
H170.21330.62360.01790.046*
C180.47925 (19)0.85094 (11)0.3858 (6)0.0356 (6)
H18A0.44270.88250.46750.053*
H18B0.47400.85760.21980.053*
H18C0.55050.85160.43130.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0355 (3)0.0587 (4)0.0292 (3)0.0045 (3)0.0049 (3)0.0023 (3)
Cl20.0479 (3)0.0469 (3)0.0596 (5)0.0179 (3)0.0108 (4)0.0101 (4)
Cl30.0598 (4)0.0405 (3)0.0732 (5)0.0189 (3)0.0166 (4)0.0065 (4)
O10.0232 (7)0.0470 (9)0.0388 (10)0.0017 (7)0.0030 (9)0.0059 (11)
N10.0196 (8)0.0281 (9)0.0386 (13)0.0013 (7)0.0008 (9)0.0027 (10)
C10.0220 (10)0.0378 (12)0.0286 (13)0.0045 (9)0.0038 (10)0.0023 (11)
C20.0252 (10)0.0342 (11)0.0235 (12)0.0000 (9)0.0010 (10)0.0018 (10)
C30.0267 (10)0.0265 (10)0.0252 (13)0.0012 (8)0.0026 (10)0.0008 (11)
C40.0305 (10)0.0251 (10)0.0318 (14)0.0010 (9)0.0013 (11)0.0013 (11)
C50.0260 (11)0.0354 (12)0.0478 (16)0.0062 (9)0.0070 (12)0.0021 (13)
C60.0219 (9)0.0280 (11)0.0282 (12)0.0016 (9)0.0020 (9)0.0018 (11)
C70.0311 (11)0.0279 (11)0.0318 (14)0.0007 (9)0.0013 (10)0.0001 (11)
C80.0337 (12)0.0262 (11)0.0406 (16)0.0047 (10)0.0027 (12)0.0011 (12)
C90.0270 (10)0.0320 (12)0.0418 (15)0.0038 (9)0.0016 (12)0.0085 (13)
C100.0287 (11)0.0375 (13)0.0302 (14)0.0001 (9)0.0051 (10)0.0018 (12)
C110.0286 (10)0.0282 (11)0.0340 (15)0.0019 (9)0.0021 (11)0.0020 (11)
C120.0309 (11)0.0270 (11)0.0357 (16)0.0027 (9)0.0047 (10)0.0018 (11)
C130.0550 (16)0.0411 (15)0.0375 (17)0.0085 (13)0.0069 (14)0.0021 (14)
C140.0615 (18)0.0365 (14)0.0434 (18)0.0062 (13)0.0018 (16)0.0052 (15)
C150.0383 (12)0.0304 (12)0.0519 (17)0.0028 (10)0.0133 (13)0.0090 (13)
C160.0382 (13)0.0431 (15)0.0446 (17)0.0045 (12)0.0007 (13)0.0089 (13)
C170.0387 (13)0.0385 (14)0.0379 (16)0.0017 (11)0.0008 (13)0.0004 (13)
C180.0297 (11)0.0321 (11)0.0449 (16)0.0036 (9)0.0045 (12)0.0012 (14)
Geometric parameters (Å, º) top
Cl1—C21.823 (3)C7—C81.385 (4)
Cl2—C91.748 (3)C8—H80.9500
Cl3—C151.744 (3)C8—C91.380 (4)
O1—C11.209 (3)C9—C101.380 (4)
N1—H10.74 (3)C10—H100.9500
N1—C31.457 (3)C10—C111.385 (4)
N1—C41.460 (3)C11—H110.9500
C1—C21.541 (3)C12—C131.389 (4)
C1—C51.501 (4)C12—C171.380 (4)
C2—C31.541 (3)C13—H130.9500
C2—C181.526 (3)C13—C141.384 (4)
C3—H31.0000C14—H140.9500
C3—C61.517 (3)C14—C151.365 (5)
C4—H41.0000C15—C161.374 (5)
C4—C51.536 (3)C16—H160.9500
C4—C121.515 (3)C16—C171.400 (4)
C5—H5A0.9900C17—H170.9500
C5—H5B0.9900C18—H18A0.9800
C6—C71.386 (3)C18—H18B0.9800
C6—C111.391 (4)C18—H18C0.9800
C7—H70.9500
C3—N1—H1111 (2)C7—C8—H8120.6
C3—N1—C4113.3 (2)C9—C8—C7118.7 (2)
C4—N1—H1113 (2)C9—C8—H8120.6
O1—C1—C2120.7 (2)C8—C9—Cl2120.0 (2)
O1—C1—C5122.9 (2)C10—C9—Cl2118.5 (2)
C5—C1—C2116.4 (2)C10—C9—C8121.5 (2)
C1—C2—Cl1103.17 (17)C9—C10—H10120.6
C1—C2—C3109.8 (2)C9—C10—C11118.9 (3)
C3—C2—Cl1110.85 (17)C11—C10—H10120.6
C18—C2—Cl1107.91 (19)C6—C11—H11119.5
C18—C2—C1111.4 (2)C10—C11—C6121.0 (2)
C18—C2—C3113.2 (2)C10—C11—H11119.5
N1—C3—C2110.62 (19)C13—C12—C4121.1 (2)
N1—C3—H3107.3C17—C12—C4120.3 (2)
N1—C3—C6109.5 (2)C17—C12—C13118.5 (2)
C2—C3—H3107.3C12—C13—H13119.4
C6—C3—C2114.5 (2)C14—C13—C12121.1 (3)
C6—C3—H3107.3C14—C13—H13119.4
N1—C4—H4109.1C13—C14—H14120.4
N1—C4—C5107.2 (2)C15—C14—C13119.1 (3)
N1—C4—C12108.9 (2)C15—C14—H14120.4
C5—C4—H4109.1C14—C15—Cl3118.7 (3)
C12—C4—H4109.1C14—C15—C16121.8 (3)
C12—C4—C5113.3 (2)C16—C15—Cl3119.5 (2)
C1—C5—C4110.3 (2)C15—C16—H16120.8
C1—C5—H5A109.6C15—C16—C17118.5 (3)
C1—C5—H5B109.6C17—C16—H16120.8
C4—C5—H5A109.6C12—C17—C16121.0 (3)
C4—C5—H5B109.6C12—C17—H17119.5
H5A—C5—H5B108.1C16—C17—H17119.5
C7—C6—C3121.3 (2)C2—C18—H18A109.5
C7—C6—C11118.5 (2)C2—C18—H18B109.5
C11—C6—C3120.1 (2)C2—C18—H18C109.5
C6—C7—H7119.4H18A—C18—H18B109.5
C8—C7—C6121.3 (3)H18A—C18—H18C109.5
C8—C7—H7119.4H18B—C18—H18C109.5
Cl1—C2—C3—N165.4 (2)C4—C12—C13—C14176.1 (3)
Cl1—C2—C3—C659.0 (2)C4—C12—C17—C16176.2 (2)
Cl2—C9—C10—C11179.4 (2)C5—C1—C2—Cl174.3 (2)
Cl3—C15—C16—C17179.8 (2)C5—C1—C2—C344.0 (3)
O1—C1—C2—Cl1106.9 (3)C5—C1—C2—C18170.2 (2)
O1—C1—C2—C3134.8 (3)C5—C4—C12—C1349.2 (4)
O1—C1—C2—C188.6 (4)C5—C4—C12—C17134.8 (3)
O1—C1—C5—C4129.9 (3)C6—C7—C8—C90.0 (4)
N1—C3—C6—C7142.0 (2)C7—C6—C11—C100.1 (4)
N1—C3—C6—C1135.4 (3)C7—C8—C9—Cl2179.3 (2)
N1—C4—C5—C156.5 (3)C7—C8—C9—C100.2 (4)
N1—C4—C12—C1369.9 (3)C8—C9—C10—C110.3 (4)
N1—C4—C12—C17106.0 (3)C9—C10—C11—C60.2 (4)
C1—C2—C3—N148.0 (3)C11—C6—C7—C80.1 (4)
C1—C2—C3—C6172.4 (2)C12—C4—C5—C1176.6 (2)
C2—C1—C5—C448.9 (3)C12—C13—C14—C150.1 (5)
C2—C3—C6—C793.1 (3)C13—C12—C17—C160.2 (4)
C2—C3—C6—C1189.6 (3)C13—C14—C15—Cl3179.9 (2)
C3—N1—C4—C566.1 (3)C13—C14—C15—C160.2 (5)
C3—N1—C4—C12170.9 (2)C14—C15—C16—C170.3 (4)
C3—C6—C7—C8177.4 (2)C15—C16—C17—C120.3 (4)
C3—C6—C11—C10177.4 (2)C17—C12—C13—C140.1 (4)
C4—N1—C3—C262.9 (3)C18—C2—C3—N1173.2 (2)
C4—N1—C3—C6169.9 (2)C18—C2—C3—C662.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.74 (3)2.40 (3)3.071 (3)151 (3)
C10—H10···O1ii0.952.563.374 (3)144
C18—H18C···Cg3iii0.982.983.725 (3)134
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x1/2, y+3/2, z+1; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai, India, for recording the NMR data and extend their thanks to the Principal, Dr P. Kathirvel, Chairman, Mr R. Sattanathan, and Treasurer, Mr T. Ramalingam, of Thiruvalluvar Arts and Science College, Kurinjipadi 607 302, Tamilnadu, India, for giving permission to carry out research work in the Chemistry Laboratory. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationArulraj, R., Sivakumar, S., Thiruvalluvar, A., Kaur, M. & Jasinski, J. P. (2016). IUCrData, 1, x161580.  Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGayathri, P., Ilango, S. S., Ponnuswamy, S., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o2445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIlango, S. S., Ponnuswamy, S., Gayathri, P., Thiruvalluvar, A. & Butcher, R. J. (2008). Acta Cryst. E64, o2312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPerumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThenmozhi, M., Ponnuswamy, S., Umamaheshwari, J., Jamesh, M. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o2794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679–3681.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds