research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trirubidium citrate monohydrate from laboratory X-ray powder diffraction data and DFT comparison

CROSSMARK_Color_square_no_text.svg

aAtlantic International University, Honolulu, HI, USA, and bIllinois Institute of Technology, Chicago, IL, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 December 2016; accepted 15 January 2017; online 20 January 2017)

The crystal structure of the title compound, 3Rb+·C6H5O73−·H2O, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The hy­droxy group participates in an intra­molecular hydrogen bond to the deprotonated central carboxyl­ate group with graph-set motif S(5). The water mol­ecule acts as a hydrogen-bond donor to both terminal and central carboxyl­ate O atoms. The three independent rubidium cations are seven-, six- and six-coordinate, with bond-valence sums of 0.84, 1.02, and 0.95, respectively. In the extended structure, their polyhedra share edges and corners to form a three-dimensional network. The hydro­phobic methyl­ene groups occupy channels along the b axis.

1. Chemical context

In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, deprotonation, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the sixteen new compounds and twelve previously characterized structures are being reported separately (Rammohan & Kaduk, 2017a[Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B. Submitted.]). Seven of the new structures – NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, NaH2C6H5O7, Na2HC6H5O7, K3C6H5O7, and Rb2HC6H5O7 – have been published recently (Rammohan & Kaduk, 2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170-173.],b[Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403-406.],c[Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793-796.],d[Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854-857.],f[Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159-1162.], 2017b[Rammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92-95.]; Rammohan et al. (2016[Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943-946.])), and two additional structures – KH2C6H5O7 and KH2C6H5O7(H2O)2 – have been communicated to the CSD (Kaduk & Stern, 2016a[Kaduk, J. A. & Stern, C. (2016a). CSD Communications 1446457-1446458. CCDC, Cambridge, England.],b[Kaduk, J. A. & Stern, C. (2016b). CSD Communications 1446460-1446461. CCDC, Cambridge, England.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. The root-mean-square deviation of the non-hydrogen atoms in the Rietveld-refined and DFT-optimized structures is 0.127 Å (Fig. 2[link]). The good agreement between the two structures is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). This discussion uses the DFT-optimized structure. Most of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). Only the O11—C4—C5—C6 torsion angle involving a terminal carboxyl­ate group is flagged as unusual, but as shown in Rammohan & Kaduk (2017a[Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B. Submitted.]) these torsion angles exhibit no real preference. The citrate anion occurs in the trans,trans-conformation, which is one of the two low-energy conformations of an isolated citrate trianion. The central carboxyl­ate group and the hydroxyl group occur in the normal planar arrangement. The terminal carboxyl­ate O13 atom and the hy­droxy group O16 atom chelate to Rb3. The terminal carboxyl­ate O12 atom and the central carboxyl­ate O15 atom chelate to another Rb3 cation. The terminal carboxyl­ate O12 and central carboxyl­ate O14 chelate to Rb2, and the terminal O10 and central O14 chelate to a third Rb3 atom. The terminal carboxyl­ate O14/O15 acts as a bidentate ligand to Rb1, and the terminal carboxyl­ate O10/O11 chelates to another Rb1.

[Figure 1]
Figure 1
The asymmetric unit, with the atom numbering. The atoms are represented by 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of trirubidium citrate monohydrate. The refined structure is in red, and the DFT-optimized structure is in blue.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) morphology suggests that we might expect platy morphology for the title compound, with {011} as the principal faces. A 4th-order spherical harmonic texture model was included in the refinement. The texture index was 1.014, indicating that preferred orientation was negligible for this rotated flat-plate specimen.

3. Supra­molecular features

The three independent Rb+ ions are 7-, 6- and 6-coordinate (upper threshold for Rb—O bond lengths = 3.40 Å), with bond-valence sums of 0.84, 1.02, and 0.95, respectively. These polyhedra share edges and corners to form a three-dimensional network (Fig. 3[link]). Hydrogen bonds (Table 1[link]) between the water mol­ecules and the citrate anions result in chains propagating along the b-axis direction. The hydroxyl group participates in an intra­molecular hydrogen bond to the deprotonated central carboxyl­ate group with graph-set motif S(5). The water mol­ecule acts as a hydrogen-bond donor to both the terminal carboxyl­ate atom O13 and the central carboxyl­ate atom O14. The Mulliken overlap populations indicate, by the correlation in Rammohan & Kaduk (2017a[Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B. Submitted.]), that these hydrogen bonds account for 41.6 kcal mol−1 of crystal energy. A C—H⋯O hydrogen bond also apparently contributes to the crystal energy. The hydro­phobic methyl­ene groups occupy channels along the b-axis. This compound is isostructural to K3C6H5O7(H2O) (Carrell et al., 1987[Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, K. H. L. (1987). J. Am. Chem. Soc. 109, 8067-8071.]; CSD Refcode ZZZHVI01).

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H21⋯O15 0.984 1.838 2.552 126.9
O22—H23⋯O14i 0.983 1.704 2.672 168.7
O22—H24⋯O13 0.984 1.707 2.683 170.8
C5—H17⋯O22 1.093 2.674 3.749 167.4
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal structure of trirubidium citrate monohydrate, viewed down the b axis. outline of the unit cell needs to be added

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2017a[Rammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B. Submitted.]). A reduced cell search of the cell of trirubidium citrate monohydrate in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) (increasing the default tolerance from 1.5 to 2.0%) yielded 228 hits, but combining the cell search with a citrate fragment yielded Love & Patterson (1960[Love, W. E. & Patterson, A. L. (1960). Acta Cryst. 13, 426-428.], CSD Refcode ZZZHZC), but no coordinates were reported for this phase. Increasing the tolerance on the cell to 5% yielded K3C6H5O7(H2O) (Burns & Iball, 1954[Burns, D. M. & Iball, I. (1954). Acta Cryst. 7, 137-138.], CSD Refcode ZZZHVI; Carrell et al., 1987[Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, K. H. L. (1987). J. Am. Chem. Soc. 109, 8067-8071.], CSD Refcodes ZZZHVI01 and ZZZHVI02).

5. Synthesis and crystallization

H3C6H5O7(H2O) (10.0 mmol, 2.0972 g) was dissolved in 10 ml deionized water. Rb2CO3 (15.0 mmol, 3.4659 g, Sigma–Aldrich) was added to the citric acid solution slowly with stirring. The resulting clear colourless solution was evaporated to dryness at ambient conditions to yield a white powder.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The specimen was blended with a NIST SRM 640 Si inter­nal standard (a = 5.43105 Å). The powder pattern (Fig. 4[link]) was indexed using Jade 9.4 (MDI, 2012[MDI. (2012). JADE. Materials Data Inc., Livermore, CA, USA.]), which yielded a primitive monoclinic cell having a = 7.44769 (10), b = 11.87554 (16), c = 13.41675 (18) Å, β = 97.8820 (9)°, V = 1175.44 (3) Å3, and Z = 4. The suggested space group was P21/n, which was confirmed by successful solution and refinement. Three intense peaks from a structure solution using charge flipping as implemented in Jana2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) were used to carry out a Le Bail fit in GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86-784 Los Alamos National Laboratory, New Mexico, USA.]). The resulting peak list was imported into Endeavour 1.7b (Putz et al., 1999[Putz, H., Schön, J. C. & Jansen, M. (1999). J. Appl. Cryst. 32, 864-870.]), which was used to solve the structure with a citrate anion and 3 Rb atoms as fragments. A significant peak in a difference Fourier map in GSAS corresponded to the oxygen atom of a water mol­ecule, indicating that the compound was a monohydrate.

Table 2
Experimental details

  Powder data
Crystal data
Chemical formula 3Rb+·C6H5O73−·H2O
Mr 463.52
Crystal system, space group Monoclinic, P21/n
Temperature (K) 300
a, b, c (Å) 7.44769 (10), 11.87554 (16), 13.41675 (18)
β (°) 97.8820 (9)
V3) 1175.44 (4)
Z 4
Radiation type Kα1, Kα2, λ = 1.540629, 1.544451 Å
Specimen shape, size (mm) Flat sheet, 24 × 24
 
Data collection
Diffractometer IIT Bruker D2 Phaser
Specimen mounting Si zero-background cell
Data collection mode Reflection
Scan method Step
2θ values (°) 2θmin = 5.042 2θmax = 130.045 2θstep = 0.020
 
Refinement
R factors and goodness of fit Rp = 0.015, Rwp = 0.019, Rexp = 0.007, R(F2) = 0.061, χ2 = 8.352
No. of parameters 88
No. of restraints 47
The same symmetry and lattice parameters were used for the DFT calculation. Computer programs: DIFFRAC.Measurement (Bruker, 2009[Bruker (2009). DIFFRAC. Measurement. Bruker-AXS, Madison Wisconsin USA.]), (GSAS, Larson & Von Dreele, 2004[Kaduk, J. A. & Stern, C. (2016b). CSD Communications 1446460-1446461. CCDC, Cambridge, England.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.com/diamond.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 4]
Figure 4
Rietveld plot for the refinement of trirubidium citrate monohydrate. The vertical scale is not the raw counts but the counts multiplied by the least squares weights. This plot emphasizes the fit of the weaker peaks. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The row of black tick marks indicates the reflection positions, and the red tick marks indicate the Si inter­nal standard peak positions.

Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]) with profile coefficients for Simpson's rule integration of the pseudo-Voigt function according to Howard (1982[Howard, C. J. (1982). J. Appl. Cryst. 15, 615-620.]). The asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) was applied, and microstrain broadening by Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]). The structure was refined by the Rietveld method using GSAS/EXPGUI (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86-784 Los Alamos National Laboratory, New Mexico, USA.]; Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]). All C—C and C—O bond lengths were restrained, as were all bond angles. The hydrogen atoms were included at fixed positions, which were recalculated during the course of the refinement using Materials Studio (Dassault Systemes, 2014[Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego California, USA.]). The Uiso values of the C and O atoms in the citrate anion were constrained to be equal, and the Uiso values of the hydrogen atoms were constrained to be 1.3 times those of the atoms to which they are attached.

7. DFT calculations

After the Rietveld refinement, a density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Rb was that of Schoenes et al. (2008[Schoenes, J., Racu, A.-M., Doll, K., Bukowski, Z. & Karpinski, J. (2008). Phys. Rev. B, 77, 134515.]). The calculation used 8 k-points and the B3LYP functional, and took about 72 h on a 2.4 GHz PC. The Uiso values from the Rietveld refinement were assigned to the optimized fractional coord­inates.

Supporting information


Computing details top

(RAMM010_phase_1) top
Crystal data top
3Rb+·C6H5O73·H2Oc = 13.41675 (18) Å
Mr = 463.52β = 97.8820 (9)°
Monoclinic, P21/nV = 1175.44 (4) Å3
Hall symbol: -P 2ynZ = 4
a = 7.44769 (10) ÅDx = 2.619 Mg m3
b = 11.87554 (16) ÅT = 300 K
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.0102 (2)0.1660 (2)0.11841 (17)0.0456 (4)*
Rb20.1182 (3)0.43646 (19)0.38731 (17)0.0456 (4)*
Rb30.3356 (2)0.4349 (2)0.11309 (16)0.0456 (4)*
C40.886 (2)0.9013 (13)0.1375 (12)0.033 (3)*
C50.8103 (19)0.7886 (13)0.1665 (13)0.033 (3)*
C60.9144 (18)0.6786 (13)0.1510 (9)0.033 (3)*
C70.794 (2)0.5780 (14)0.1757 (11)0.033 (3)*
C80.847 (2)0.4649 (15)0.1373 (13)0.033 (3)*
C91.1021 (17)0.6830 (16)0.2152 (9)0.033 (3)*
O101.0404 (15)0.9238 (11)0.1753 (9)0.0351 (13)*
O110.7895 (15)0.9429 (11)0.0622 (9)0.0351 (13)*
O120.9890 (15)0.4210 (10)0.1791 (8)0.0351 (13)*
O130.7342 (15)0.4316 (11)0.0691 (10)0.0351 (13)*
O141.0988 (13)0.6888 (12)0.3119 (7)0.0351 (13)*
O151.2398 (14)0.6654 (9)0.1693 (7)0.0351 (13)*
O160.9233 (13)0.6642 (11)0.0459 (8)0.0351 (13)*
H170.668410.779380.111920.042 (4)*
H180.762540.797810.239820.042 (4)*
H190.644920.605160.158200.042 (4)*
H200.802580.578690.266350.042 (4)*
H211.068260.656970.059020.0456 (16)*
O220.6164 (13)0.2217 (9)0.0449 (8)0.040 (4)*
H230.544540.207590.098430.052 (5)*
H240.652100.296140.044300.052 (5)*
Geometric parameters (Å, º) top
Rb1—O10i2.976 (12)C8—O121.239 (12)
Rb1—O11i3.153 (13)C8—O131.221 (13)
Rb1—O11ii3.281 (11)C9—C61.539 (8)
Rb1—O12iii3.146 (12)C9—O141.302 (11)
Rb1—O13iii3.773 (12)C9—O151.285 (10)
Rb1—O14iv2.946 (10)O10—Rb1viii2.976 (12)
Rb1—O15iv3.182 (10)O10—Rb2ix2.789 (11)
Rb1—O16ii3.078 (11)O10—Rb3ix2.866 (12)
Rb1—O22iii3.036 (10)O10—C41.222 (12)
Rb2—O10iv2.789 (11)O11—Rb1viii3.153 (13)
Rb2—O11v3.201 (10)O11—Rb1ii3.281 (11)
Rb2—O11vi2.892 (12)O11—Rb2x3.201 (10)
Rb2—O12iii2.833 (11)O11—Rb2xi2.892 (12)
Rb2—O14iii3.160 (13)O11—C41.257 (12)
Rb2—O15iv3.504 (11)O12—Rb1xii3.146 (12)
Rb2—O22vii2.830 (10)O12—Rb2xii2.833 (11)
Rb3—O10iv2.866 (12)O12—Rb3xii2.847 (11)
Rb3—O12iii2.847 (11)O12—C81.239 (12)
Rb3—O133.105 (11)O13—Rb1xii3.773 (12)
Rb3—O13ii2.900 (13)O13—Rb33.105 (11)
Rb3—O14iv3.108 (13)O13—Rb3ii2.900 (13)
Rb3—O15iii2.952 (10)O13—C81.221 (13)
Rb3—O16ii2.920 (11)O14—Rb1ix2.946 (10)
Rb3—O223.485 (11)O14—Rb2xii3.160 (13)
C4—C51.522 (8)O14—Rb3ix3.108 (13)
C4—O101.222 (12)O14—C91.302 (11)
C4—O111.257 (12)O15—Rb1ix3.182 (10)
C5—C41.522 (8)O15—Rb2ix3.504 (11)
C5—C61.548 (8)O15—Rb3xii2.952 (10)
C6—C51.548 (8)O15—C91.285 (10)
C6—C71.555 (8)O16—Rb1ii3.078 (11)
C6—C91.539 (8)O16—Rb3ii2.920 (11)
C6—O161.431 (8)O16—C61.431 (8)
C7—C61.555 (8)O22—Rb1xii3.036 (10)
C7—C81.511 (8)O22—Rb2xiii2.830 (10)
C8—C71.511 (8)O22—Rb33.485 (11)
O10i—Rb1—O11i43.0 (3)O12iii—Rb2—O22xv131.2 (3)
O10i—Rb1—O11ii77.4 (3)O14iii—Rb2—O22xv149.8 (3)
O10i—Rb1—O12iii150.3 (3)O10iv—Rb3—O12iii82.6 (3)
O10i—Rb1—O14iv88.3 (4)O10iv—Rb3—O1390.1 (4)
O10i—Rb1—O15iv75.8 (3)O10iv—Rb3—O13ii148.9 (4)
O10i—Rb1—O16ii143.4 (3)O10iv—Rb3—O14iv67.7 (3)
O10i—Rb1—O22iii109.2 (3)O10iv—Rb3—O15iii81.2 (3)
O11i—Rb1—O11ii76.5 (3)O10iv—Rb3—O16ii142.7 (4)
O11i—Rb1—O12iii145.8 (3)O12iii—Rb3—O13171.8 (4)
O11i—Rb1—O14iv127.8 (4)O12iii—Rb3—O13ii103.2 (3)
O11i—Rb1—O15iv115.7 (3)O12iii—Rb3—O14iv87.3 (3)
O11i—Rb1—O16ii120.6 (3)O12iii—Rb3—O15iii73.3 (4)
O11i—Rb1—O22iii69.9 (3)O12iii—Rb3—O16ii70.6 (3)
O11ii—Rb1—O12iii127.9 (3)O13—Rb3—O13ii85.0 (4)
O11ii—Rb1—O14iv75.0 (3)O13—Rb3—O14iv86.4 (3)
O11ii—Rb1—O15iv113.0 (3)O13—Rb3—O15iii109.3 (4)
O11ii—Rb1—O16ii66.1 (3)O13—Rb3—O16ii114.1 (3)
O11ii—Rb1—O22iii111.3 (3)O13ii—Rb3—O14iv142.1 (3)
O12iii—Rb1—O14iv84.9 (3)O13ii—Rb3—O15iii71.8 (3)
O12iii—Rb1—O15iv79.3 (3)O13ii—Rb3—O16ii65.2 (4)
O12iii—Rb1—O16ii64.7 (3)O14iv—Rb3—O15iii145.3 (3)
O12iii—Rb1—O22iii78.1 (3)O14iv—Rb3—O16ii85.2 (3)
O14iv—Rb1—O15iv44.3 (2)O15iii—Rb3—O16ii113.7 (3)
O14iv—Rb1—O16ii85.3 (3)C5—C4—O10116.5 (15)
O14iv—Rb1—O22iii162.1 (3)C5—C4—O11111.2 (15)
O15iv—Rb1—O16ii120.7 (3)O10—C4—O11130.4 (16)
O15iv—Rb1—O22iii135.4 (3)C4—C5—C6119.9 (13)
O16ii—Rb1—O22iii82.4 (3)C5—C6—C7107.8 (11)
O10iv—Rb2—O11v174.5 (4)C5—C6—C9109.2 (13)
O10iv—Rb2—O11xiv87.3 (3)C5—C6—O16109.0 (13)
O10iv—Rb2—O12iii84.3 (3)C7—C6—C9114.3 (13)
O10iv—Rb2—O14iii87.6 (3)C7—C6—O16103.0 (11)
O10iv—Rb2—O22xv106.7 (3)C9—C6—O16113.3 (12)
O11v—Rb2—O11xiv98.2 (3)C6—C7—C8115.2 (13)
O11v—Rb2—O12iii90.4 (4)C7—C8—O12117.7 (15)
O11v—Rb2—O14iii92.4 (3)C7—C8—O13111.0 (14)
O11v—Rb2—O22xv75.9 (3)O12—C8—O13131.3 (17)
O11xiv—Rb2—O12iii152.2 (3)C6—C9—O14114.9 (12)
O11xiv—Rb2—O14iii77.6 (3)C6—C9—O15116.7 (12)
O11xiv—Rb2—O22xv76.7 (3)O14—C9—O15127.7 (14)
O12iii—Rb2—O14iii75.6 (3)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+3/2, y1/2, z+1/2; (v) x+1/2, y1/2, z+1/2; (vi) x1/2, y+3/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+1, y+1, z; (ix) x+3/2, y+1/2, z+1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x+1/2, y+3/2, z1/2; (xii) x+1, y, z; (xiii) x+1/2, y+1/2, z1/2; (xiv) x+1/2, y+5/2, z+3/2; (xv) x+1/2, y+3/2, z+3/2.
(RAMM010_phase_2) Trirubidium citrate monohydrate top
Crystal data top
3Rb+·C6H5O73·H2Oa = 5.43105 Å
Mr = 28.09V = 160.20 Å3
Cubic, Fd3mZ = 8
Hall symbol: -F 4vw 2vwT = 300 K
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.1250.1250.1250.01*
Geometric parameters (Å, º) top
Si1—Si1i2.3517Si1—Si1iii2.3517
Si1—Si1ii2.3517Si1—Si1iv2.3517
Si1i—Si1—Si1ii109.4712Si1ii—Si1—Si1iii109.4712
Si1i—Si1—Si1iii109.4712Si1ii—Si1—Si1iv109.4712
Si1i—Si1—Si1iv109.4712Si1iii—Si1—Si1iv109.4712
Symmetry codes: (i) x+1/4, y+1/4, z; (ii) z, x+1/4, y+1/4; (iii) y+1/4, z, x+1/4; (iv) x, y, z.
(ramm010_DFT) top
Crystal data top
3Rb+·C6H5O73·H2Oβ = 97.8820°
Mr = 463.48V = 1175.44 Å3
Monoclinic, P21/nZ = 4
a = 7.4477 ÅCu Kα radiation, λ = 1.5418 Å
b = 11.8755 ÅT = 300 K
c = 13.4168 Å
Data collection top
Density functional calculationk =
h = l =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.005830.171440.114960.04560*
Rb20.119380.436450.387520.04560*
Rb30.333320.445020.109550.04560*
C40.882240.900990.135580.03270*
C50.794900.790620.162790.03270*
C60.905390.682650.154210.03270*
C70.786540.584430.184270.03270*
C80.831690.471050.139600.03270*
C91.094120.681180.220830.03270*
O101.038870.923540.180020.03510*
O110.788740.963670.072110.03510*
O120.978540.423870.173900.03510*
O130.713890.432640.070080.03510*
O141.100180.687480.315500.03510*
O151.229670.668390.175040.03510*
O160.936690.670350.051670.03510*
H170.668410.779380.111920.04250*
H180.762540.797810.239820.04250*
H190.644920.605160.158200.04250*
H200.802580.578690.266350.04250*
H211.068260.656970.059020.04560*
O220.606390.218340.038960.03990*
H230.544540.207590.098430.05180*
H240.652100.296140.044300.05180*
Bond lengths (Å) top
C4—C51.530C7—H191.093
C4—O101.264C7—H201.093
C4—O111.266C8—O121.258
C5—C61.536C8—O131.274
C5—H171.093C9—O141.267
C5—H181.096C9—O151.261
C6—C71.551O16—H210.984
C6—C91.559O22—H230.983
C6—O161.434O22—H240.984
C7—C81.530
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H21···O150.9841.8382.552126.9
O22—H23···O14i0.9831.7042.672168.7
O22—H24···O130.9841.7072.683170.8
C5—H17···O221.0932.6743.749167.4
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

References

First citationBravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruker (2009). DIFFRAC. Measurement. Bruker-AXS, Madison Wisconsin USA.  Google Scholar
First citationBurns, D. M. & Iball, I. (1954). Acta Cryst. 7, 137–138.  CSD CrossRef IUCr Journals Google Scholar
First citationCarrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, K. H. L. (1987). J. Am. Chem. Soc. 109, 8067–8071.  CSD CrossRef CAS Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.com/diamondGoogle Scholar
First citationDassault Systemes (2014). Materials Studio. BIOVIA, San Diego California, USA.  Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573.  Web of Science CrossRef CAS Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.  Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoward, C. J. (1982). J. Appl. Cryst. 15, 615–620.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaduk, J. A. & Stern, C. (2016a). CSD Communications 1446457–1446458. CCDC, Cambridge, England.  Google Scholar
First citationKaduk, J. A. & Stern, C. (2016b). CSD Communications 1446460–1446461. CCDC, Cambridge, England.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86–784 Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLove, W. E. & Patterson, A. L. (1960). Acta Cryst. 13, 426–428.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMDI. (2012). JADE. Materials Data Inc., Livermore, CA, USA.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationPutz, H., Schön, J. C. & Jansen, M. (1999). J. Appl. Cryst. 32, 864–870.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170–173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403–406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793–796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854–857.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159–1162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017a). Acta Cryst. B. Submitted.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92–95.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943–946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchoenes, J., Racu, A.-M., Doll, K., Bukowski, Z. & Karpinski, J. (2008). Phys. Rev. B, 77, 134515.  Web of Science CrossRef Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds