

Received 20 December 2016 Accepted 7 January 2017

Edited by T. J. Prior, University of Hull, England

Keywords: crystal structure; co-crystal; hydrate; tetrachloridozincate; imidazolium.

CCDC references: 1526096; 1526095

Supporting information: this article has supporting information at journals.iucr.org/e

Structural characterization of two tetrachloridozincate salts of 4-carboxy-1*H*-imidazol-3-ium: a salt hydrate and a co-crystal salt hydrate

Sean J. Martens and David K Geiger*

Department of Chemistry, SUNY-College at Geneseo, Geneseo, New York 14454, USA. *Correspondence e-mail: geiger@geneseo.edu

Imidazole-containing compounds exhibit a myriad of pharmacological activities. Two tetrachloridozincate salts of 4-carboxy-1*H*-imidazol-3-ium, ImHCO₂H⁺, are reported. Bis(4-carboxy-1*H*-imidazol-3-ium) tetrachloridozincate monohydrate, $(C_4H_5N_2O_2)_2[ZnCl_4]\cdot H_2O$, (I), crystallizes as a monohydrate salt, while bis(4-carboxy-1*H*-imidazol-3-ium) tetrachloridozincate bis(1*H*-imidazol-3-ium-4-carboxylato) monohydrate, $(C_4H_5N_2O_2)_2[ZnCl_4]\cdot C_2M_4N_2O_2\cdot H_2O$, (II), is a co-crystal salt with six residues: two ImHCO₂H⁺ cations, two formula units of the zwitterionic 1*H*-imidazol-3-ium-4-carboxylate, ImHCO₂, one tetrachloridozincate anion and one water molecule disordered over two sites in a 0.60 (4):0.40 (4) ratio. The geometric parameters of the ImHCO₂H⁺ and the ImHCO₂ moieties are the same within the standard uncertainties of the measurements. Both compounds exhibit extensive hydrogen bonding, including involvement of the tetrachloridozincate anion, resulting in interconnected chains of anions joined by water molecules.

1. Chemical context

Imidazole-containing compounds find use in numerous pharmaceuticals including fungicides, antiviral agents, antiarrhythmics, antihistamines, and anthelmintics (Varala *et al.*, 2007; Horton *et al.*, 2003; López-Rodríguez *et al.*, 1999). Recent studies have shown that imidazole and benzimidazole derivatives exhibit pharmacological activity in histamine signaling (Tichenor *et al.*, 2015; Marson, 2011), and act as tau aggregation inhibitors for Alzheimer's disease (Bulic *et al.*, 2013), and in the central nervous system (Robichaud *et al.*, 2011; Sheffler *et al.*, 2011). Further, derivatized imidazole-5carboxylic acids have been shown to be angiotensinconverting enzyme (ACE) inhibitors (Jallapally *et al.*, 2015; Li *et al.*, 1998; Yanagisawa *et al.*, 1996).

As a result of the myriad binding modes available to imidazole ligands that bear carboxylic acid substituents, they have found use in the preparation of several metal organic frameworks, MOFs (Starosta & Leciejewicz, 2006; Yin *et al.*, 2009, 2012; Sun & Yang, 2007; Sun *et al.*, 2006). The synthesis and characterization of novel MOFs is an area of active research because of their potential use in such diverse areas as gas storage, catalysis, chemical sensors and molecular separation (Dey *et al.*, 2014; Kreno *et al.*, 2012; Farha & Hupp, 2010). Neutral carboxyimidazoles exist in their zwitterionic form and none of the reported compounds have the carboxyimidazole ligand in the fully protonated form. However, there are examples of MOFs with anionic repeating units and imidazolium cations (Shao & Yu, 2014; Wang *et al.*, 2013).

Although the structures of the zwitterionic 1H-imidazol-3ium-4-carboxylate, (III), (Cao *et al.*, 2012) and the corresponding 2-isopropyl (Du *et al.*, 2011) and 2-methyl (Guo, 2009) derivatives have been reported, to our knowledge, fully protonated imidazolecarboxylic acid species have not been structurally characterized. Compounds (I) and (II) possess the carboxyimidazole in its fully protonated form and so contribute to the knowledge base of this class of compounds.

2. Structural commentary

Fig. 1 shows the atom-labeling scheme employed for (I). The asymmetric unit consists of two 4-carboxy-1*H*-imidazol-3-ium cations (ImHCO₂H⁺), one tetrachloridozincate anion, and one

Figure 1

The molecular structure of (I), showing the atom-labeling scheme. Nonhydrogen anisotropic displacement parameters are drawn at the 50% probability level.

Table 1Selected geometric	parameters (Å,	°) for (I).	
Zn1-Cl2	2.2690 (7)	O1-C1	1.313 (2)
Zn1-Cl3	2.2704 (6)	O2-C1	1.200 (2)
Zn1-Cl4	2.2737 (6)	O3-C5	1.305 (2)
Zn1-Cl1	2.2794 (6)	O4-C5	1.201 (3)
Cl2-Zn1-Cl3	107.93 (2)	Cl3-Zn1-Cl1	112.84 (2)
Cl2-Zn1-Cl4	111.11 (2)	Cl4-Zn1-Cl1	107.92 (2)
Cl3-Zn1-Cl4	109.21 (3)	O2-C1-O1	124.9 (2)
Cl2-Zn1-Cl1	107.85 (2)	04-C5-O3	125.4 (2)
O2-C1-C2-N1	4.6 (3)	O4-C5-C6-N3	-1.8 (3)
Selected geometric	parameters (Å,	°) for (II).	
Zn1-Cl3	2.2577 (12)	O3-C8	1.220 (5)
Zn1-Cl4	2.2589 (11)	O4-C8	1.277 (5)
Zn1-Cl1	2.2758 (12)	O5-C12	1.274 (5)
Zn1-Cl2	2.2948 (12)	O6-C12	1.222 (5)
O1-C4	1.271 (4)	O7-C16	1.224 (5)
O2-C4	1.229 (4)	O8-C16	1.267 (5)
Cl3-Zn1-Cl4	111.21 (4)	Cl1-Zn1-Cl2	108.62 (5)
Cl3-Zn1-Cl1	112.42 (5)	O2-C4-O1	126.3 (4)
Cl4-Zn1-Cl1	109.31 (5)	O3-C8-O4	125.6 (4)
Cl3-Zn1-Cl2	104.23 (5)	O6-C12-O5	126.3 (4)
Cl4-Zn1-Cl2	110.95 (4)	O7-C16-O8	126.3 (4)
N2-C1-C4-O2	5.7 (6)	N5-C9-C12-O6	3.2 (6)
N3-C5-C8-O3	-2.3 (6)	N7-C13-C16-O7	6.3 (6)

water molecule. Thus, compound (I) is classified as a salt solvate (Grothe *et al.*, 2016) with four residues.

Compound (II) is an example of a rare co-crystal salt solvate with six residues (Grothe *et al.*, 2016). The asymmetric unit consists of two ImHCO₂H⁺ cations, one tetrachloridozincate anion, two 1*H*-imidazol-3-ium-4-carboxylate zwitterions (ImHCO₂), and one water molecule. The atom-labeling scheme employed is shown in Fig. 2.

The geometric parameters determined for the tetrachloridozincate anions in (I) and (II) are found in Tables 1 and 2, respectively. The average Zn–Cl bond length is 2.273 (3) and 2.272 (15) Å, respectively, for (I) and (II), which are within the range 2.2409 (3)–2.3085 (7) Å found in other

Figure 2

The molecular structure of (II), showing the atom-labeling scheme. Nonhydrogen anisotropic displacement parameters are drawn at the 50% probability level.

research communications

Table 3	
Hydrogen-bond geometry (Å, °) fe	or (I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1S - H1SA \cdots Cl2$	0.83 (2)	2.42 (2)	3.192 (3)	155 (4)
$O1S-H1SB\cdots Cl4^{i}$	0.81(2)	2.94 (4)	3.392 (2)	118 (3)
$O1S-H1SB\cdots Cl1^{ii}$	0.81(2)	3.05 (4)	3.540 (3)	122 (4)
$O1-H1A\cdots Cl4^{iii}$	0.83(2)	2.25 (2)	3.0723 (19)	171 (3)
$O3-H3A\cdots O1S^{iv}$	0.83(2)	1.77 (2)	2.576 (3)	163 (3)
$N1 - H1N \cdot \cdot \cdot Cl1$	0.84(2)	2.37 (2)	3.2105 (17)	178 (2)
$N2-H2N\cdots Cl1^{i}$	0.86(2)	2.85 (2)	3.3787 (19)	122 (2)
$N2-H2N\cdots O2^{i}$	0.86(2)	1.99 (2)	2.745 (2)	146 (2)
$N3-H3N\cdots Cl3^{v}$	0.83(2)	2.37 (2)	3.1941 (18)	177 (2)
N4-H4 N ···Cl3 ^{vi}	0.86 (2)	2.83 (2)	3.3586 (19)	121 (2)
$N4 - H4N \cdots O4^{i}$	0.86 (2)	2.00 (2)	2.753 (2)	146 (2)

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y - 1, z; (iii) -x, -y + 1, -z + 1; (iv) -x + 1, -y, -z + 1; (v) x, y, z + 1; (vi) x + 1, y, z + 1.

examples of tetrachloridozincate salts (Govindan *et al.*, 2014*a*,*b*; Leesakul *et al.*, 2012; Goh *et al.*, 2012; Kefi *et al.*, 2011). The same example structures exhibit CI-Zn-CI angles in the range 102.256 (10) to 112.72 (3)°. The average angles found in (I) and (II) are 109 (2)° and 109 (3)°, respectively, and the individual values exhibit comparable ranges (Tables 1 and 2).

There are no noteworthy differences in the C–C and C–N bond lengths between the ImHCO₂H⁺ cations and ImHCO₂ zwitterions found in (I) and (II). The N–C' bond length, where C' is the carbon atom bonded to both nitrogen atoms in a given ring (formally, the 2 position in the ring), is consistently shorter than the N–C'' bond length, where C'' represents the carbon in the formal 4 or 5 position in the ring, for all of the ImHCO₂H⁺ and ImHCO₂ residues. This observation is consistent with other reported imidazoles and imidazolium salts (*e.g.*, Mohamed *et al.*, 2014; Trifa *et al.*, 2013; Chérif *et al.*, 2013; Yu, 2012; Zhu, 2012).

Figure 3

Partial packing diagram of (I), showing the water-tetrachloridozincate chains. Only the tetrachloridozincate anion and the water of hydration are shown.

Table 4Hydrogen-bond geometry (Å, $^{\circ}$) for (II).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O4-H4A\cdots O5^{i}$	0.87 (2)	1.63 (2)	2.476 (4)	163 (5)
$O4-H4A\cdots O6^{i}$	0.87(2)	2.52 (4)	3.205 (4)	136 (4)
$O8-H8A\cdots O1^{ii}$	0.85(2)	1.65 (2)	2.484 (4)	166 (5)
$O8-H8A\cdots O2^{ii}$	0.85(2)	2.63 (4)	3.162 (4)	122 (4)
$O1S-H1A\cdots Cl2$	0.85(2)	2.52 (5)	3.330 (9)	159 (10)
$O1S - H1B \cdot \cdot \cdot Cl1^{iii}$	0.84(2)	2.97 (9)	3.546 (15)	128 (10)
$O1S - H1B \cdot \cdot \cdot Cl4^{iii}$	0.84(2)	2.93 (7)	3.499 (11)	127 (8)
$O2S - H2A \cdots Cl2$	0.85(2)	2.61 (12)	3.382 (17)	150.20
$O2S - H2B \cdot \cdot \cdot Cl1^{iii}$	0.85(2)	2.36 (10)	3.13 (2)	150 (17)
$N1 - H1N \cdots O2^{iv}$	0.88(2)	1.86 (2)	2.712 (4)	160 (4)
$N2-H2N\cdots Cl2$	0.87(2)	2.44 (2)	3.297 (3)	167 (4)
N3−H3 <i>N</i> ···O1 <i>S</i>	0.87(2)	2.01 (2)	2.860 (10)	168 (4)
N3−H3 <i>N</i> ···O2 <i>S</i>	0.87(2)	1.89 (2)	2.739 (12)	165 (4)
N4 $-$ H4 N ···O3 ^{iv}	0.85 (2)	1.92 (3)	2.677 (5)	148 (4)
$N5-H5N\cdots Cl4$	0.86(2)	2.39 (2)	3.247 (3)	173 (4)
$N6-H6N\cdots O6^{iv}$	0.87(2)	1.85 (3)	2.661 (4)	156 (4)
$N7 - H7N \cdot \cdot \cdot Cl1$	0.89 (2)	2.32 (2)	3.205 (3)	175 (4)
$N8-H8N\cdots O7^{iv}$	0.87 (2)	1.78 (2)	2.628 (4)	164 (4)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y + 1, -z; (iii) x + 1, y - 1, z; (iv) x + 1, y, z.

The carboxy and carboxylate groups are tilted slightly from the imidazole plane in all cases. The N-C-C-O torsion angles are reported in Tables 1 and 2. In both (I) and (II), the carboxy and carboxylate groups are unsymmetrical. For the carboxy groups, the C-OH bond is longer than the C=O bond. These observations are consistent with the geometric parameters found in similar imidazolecarboxylic acids (Cao *et al.*, 2012; Du *et al.*, 2011; Guo, 2009). The observed O-C-O bond angles of the fully protonated form in (I) and (II) and the zwitterionic form in (II) are the same within the standard uncertainties of the refinement.

3. Supramolecular features

An extensive hydrogen-bonding network in (I) involving the tetrachloridozincate anion and the water of hydration results in chains parallel to $[2\overline{2}0]$, as seen in Fig. 3 and Table 3. Additional Cl···H-O-H···Cl interactions along [100] join

Packing diagram of (I), showing the hydrogen-bonding scheme. Only H atoms involved in the interactions are shown.

Figure 5

A view of the hydrogen bonding in (II), showing the ring motifs. Only H atoms involved in the interactions are shown. Only the major contributor to the disorder model of the water molecule is shown.

the chains (Fig. 4). $N-H\cdots O(water)$, $N-H\cdots Cl$, and $O-H\cdots O$ hydrogen bonds incorporate the ImHCO₂H⁺ cations into the three-dimensional extended structure. Using graphset analysis to describe the hydrogen bonding (Etter *et al.*, 1990), an $R_4^4(20)$ ring is observed with four oxygen acceptors, two oxygen donors and two nitrogen donors. One oxygen donor, two oxygen acceptor rings, $R_1^2(4)$, involving a carboxy group are also present.

Figs. 5 and 6 show two views of the crystal packing observed in (II). Hydrogen-bonding parameters are found in Table 4. As seen in Fig. 5, there are several hydrogen-bonding ring motifs that are common to (I) and (II). An $R_4^4(20)$ ring is observed with four oxygen acceptors, two oxygen donors and two nitrogen donors, and there is a one oxygen donor, two oxygen acceptor ring, $R_1^2(4)$, involving a carboxy group. $R_2^2(7)$ rings involving two nitrogen donors and two oxygen acceptors are also observed. There are two rings containing chlorine acceptor atoms: an $R_4^4(15)$ system with one oxygen donor, three nitrogen donors, one oxygen acceptor and three chlorine acceptors; and an $R_1^2(4)$ ring with a single oxygen donor and two chlorine acceptors. Similarly to (I), chains of hydrogenbonded tetrachloridozincate anions and water molecules of hydration are found parallel to [220].

Figure 6

A second view of the hydrogen bonding in (II). Only H atoms involved in the hydrogen bonds are shown. Only the major contributor to the disorder model of the water molecule is shown.

Projections of π -stacked molecules. The molecules are related by the symmetry transformations (I) -x + 1, -y + 1, -z + 1; (IIa) x, y, z; (IIb) x + 1, y - 1,z; (III) x, y, z + 1.

In (I), a weak π - π interaction between ImHCO₂H⁺ cations related by a crystallographically imposed center of symmetry is observed with a centroid-to-centroid distance of 3.5781 (15) Å and an interplanar distance of 3.4406 (9) Å, corresponding to 0.983 Å slippage (Spek, 2009). Two independent weak π - π interactions between ImHCO₂H⁺ cations and ImHCO₂ zwitterions are observed in (II). The principal one involves the rings containing N1 and N7 with a centroidto-centroid distance of 3.5871 (3) Å, an interplanar distance of 3.3591 (18) Å and a dihedral angle of 2.6 (2)° between rings (Spek, 2009). The weaker π - π interaction involves the rings containing N3 and N5 and has a centroid-to-centroid distance of 3.740 (3) Å, an interplanar distance of 3.3140 (17) Å and a dihedral angle of 1.2 (2) Å between planes.

Fig. 7 shows representations of the observed π stacking in which members of interacting pairs of molecules are projected into the same plane. A π - π interaction is also observed in the solid-state structure of the ImHCO₂ zwitterion, labeled (III) (Cao *et al.*, 2012). In (III), the centroid–centroid distance is longer [3.674 (4) Å] than that observed between the fully protonated form in (I) and the principal interaction between the zwitterion and the protonated form in (II). In all of the pairs except in (I), the members of the pairs are arranged in a head-to-head configuration.

4. Database survey

The structure of 1-*H*-imidazol-3-ium-4-carboxylate has been reported (Cao *et al.*, 2012) and the structures of the 2-methyl and 2-isopropyl derivatives of the zwitterion 5-carboxy-1*H*-3-ium-4-carboxylate monohydrate have been reported (Guo, 2009; Du *et al.*, 2011). Several polymeric compounds with bridging 1*H*-imidazole-4-carboxylato ligands have been reported, including one with Ca^{II} (Starosta & Leciejewicz, 2006) and two with Cd^{II} (Yin *et al.*, 2009, 2012). The structures of monomeric compounds with 1*H*-imidazole-4-carboxylato- $\kappa^2 N$, *O* ligands and Mg^{II} (Gryz *et al.*, 2007), Mn^{II} (Xiong *et al.*, 2013), Co^{II} (Chen, 2012; Artetxe *et al.*, 2013), Ni^{II} (Zheng *et al.*, 2011), Cu^{II} (Reinoso *et al.*, 2015), and Zn^{II} (Gryz *et al.*, 2007; He, 2006; Shuai *et al.*, 2011) have been determined. Tetranuclear Mn^{II} complexes with 1*H*-imidazole-4-carboxylato- $\kappa^2 N$, *O* and the structurally similar 4-imidazole-actate ligand

research communications

Table	5	
Experi	mental	details

	(I)	(II)
Crystal data		
Chemical formula	$(C_4H_5N_2O_2)_2[ZnCl_4]\cdot H_2O$	$(C_4H_4N_2O_2)_2[ZnCl_4]\cdot 2C_4H_5N_2O_2H_2O_2$
M_r	451.39	675.57
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	200	200
a, b, c (Å)	6.9094 (10), 7.5828 (12), 16.468 (3)	6.9369 (19), 6.9624 (15), 28.483 (8)
α, β, γ (°)	79.455 (4), 84.489 (4), 83.833 (4)	89.524 (9), 85.622 (9), 71.202 (8)
$V(\dot{A}^3)$	840.7 (2)	1298.3 (6)
Z	2	2
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	2.12	1.42
Crystal size (mm)	$0.60 \times 0.50 \times 0.20$	$0.50 \times 0.25 \times 0.20$
Data collection		
Diffractometer	Bruker SMART X2S benchtop	Bruker SMART X2S benchtop
Absorption correction	Multi-scan (SADABS; Bruker, 2013)	Multi-scan (SADABS; Bruker, 2013)
T_{\min}, T_{\max}	0.41, 0.68	0.50, 0.76
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10429, 3375, 2995	10560, 4855, 3619
R _{int}	0.032	0.042
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.625	0.616
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.064, 1.03	0.050, 0.135, 1.03
No. of reflections	3375	4855
No. of parameters	227	395
No. of restraints	8	16
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.53, -0.28	0.63, -0.71

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

have also been characterized (Boskovic *et al.*, 2000). The structures of numerous imidazolium salts are known (*e.g.*, Mohamed *et al.*, 2014; Trifa *et al.*, 2013; Chérif *et al.*, 2013; Yu, 2012; Zhu, 2012; Ishida & Kashino, 2001; Gili *et al.*, 2000; Pavan Kumar & Kumara Swamy, 2005; Hashizume *et al.*, 2001; Moreno-Fuquen *et al.*, 2009*a*,*b*, 2011; Zhang *et al.*, 2011; Sun *et al.*, 2002; Fukunaga & Ishida, 2003). There are many examples of reported structures of tetrachloridozincate salts (*e.g.*, Govindan *et al.*, 2014*a*,*b*; Leesakul *et al.*, 2012; Goh *et al.*, 2012; Kefi *et al.*, 2011).

5. Synthesis and crystallization

Compounds (I) and (II) were obtained during the attempted syntheses of Zn^{II} coordination polymers. (I) was obtained by dissolving 113 mg (0.829 mmol) $ZnCl_2$ and 194 mg (1.73 mmol) 1*H*-imidazole-4-carboxylic acid in ethanol. Six drops of 6 *M* HCl were added and the mixture was heated to reflux with stirring. The warm solution was filtered and the filtrate was allowed to cool. After a few days, crystalline clumps of the product were obtained. ¹H NMR (400 MHz, dmso-*d*₆, p.p.m.): 7.97 (*s*, 2H), 8.51 (*s*, 2H). ¹³C NMR (100 MHz, dmso-*d*₆, p.p.m.): 126.1, 127.4, 137.7, 161.3. A crystal cut from a larger mass of crystals was used for X-ray analysis.

Compound (II) was prepared similarly to (I) except that methanol was the solvent and no HCl was added to the reaction mixture. Single crystals for X-ray analysis were obtained by slow evaporation of a methanol solution.¹H NMR (400 MHz, dmso- d_6 , p.p.m.): 8.15 (*s*, 4H), 8.95 (*s*, 4H). ¹³C NMR (100 MHz, dmso- d_6 , p.p.m.): 125.4, 126.1, 137.6, 160.3.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. For (I), data completeness was 97.9% and for (II) it was 95.2%. For both (I) and (II), all hydrogen atoms were located in difference Fourier maps. The hydrogen atoms bonded to carbon were refined using a riding model with a C-H distance of 0.95 Å and hydrogen-atom isotropic displacement parameters were set using the approximation $U_{iso}(H) = 1.2U_{eq}(C)$. The O-H and N-H distances were restrained to 0.84 and 0.88 Å, respectively. The isotropic displacement parameters of the hydrogen atoms bonded to nitrogen were set using the approximation $U_{iso}(H)$ = $1.2U_{eq}(N)$. In (I), isotropic displacement parameters of the hydrogen atoms bonded to oxygen were refined freely, but for (II) they were set using the approximation $U_{iso}(H) =$ $1.5U_{eq}(O)$. For (II), the water molecule is disordered over two positions. In addition to the aforementioned distance restraint,

an H–O–H angle restraint of 105° was employed. The occupancies refined to 0.60 (4):0.40 (4).

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education for the X-ray diffractometer and a grant from the Geneseo Foundation.

Funding information

Funding for this research was provided by: U.S. Department of Education (award No. P116Z100020); Geneseo Foundation.

References

- Artetxe, B., San Felices, L., Pache, A., Reinoso, S. & Gutiérrez-Zorrilla, J. M. (2013). Acta Cryst. E69, m94.
- Boskovic, C., Folting, K. & Christou, G. (2000). *Polyhedron*, **19**, 2111–2118.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bulic, B., Pickhardt, M. & Mandelkow, E. (2013). J. Med. Chem. 56, 4135–4155.
- Cao, Q., Duan, B.-R., Zhu, B. & Cao, Z. (2012). Acta Cryst. E68, 0134–0135.
- Chen, W.-S. (2012). Acta Cryst. E68, m1246.
- Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, m667–m668.
- Dey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Acta Cryst. B70, 3–10.
- Du, C.-J., Shi, Z.-H., Wang, L.-S. & Du, C.-L. (2011). Acta Cryst. E67, 01837.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Farha, O. K. & Hupp, J. T. (2010). Acc. Chem. Res. 43, 1166-1175.
- Fukunaga, T. & Ishida, H. (2003). Acta Cryst. E59, o1869-o1871.
- Gili, P., Núñez, P., Martín-Zarza, P. & Lorenzo-Luis, P. A. (2000). Acta Cryst. C56, e441–e442.
- Goh, T. B., Mordi, M. N., Mansor, S. M., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, m464–m465.
- Govindan, E., Thirumurugan, S., Ganeshraja, A. S., Anbalagan, K. & SubbiahPandi, A. (2014*a*). Acta Cryst. E**70**, m53.
- Govindan, E., Thirumurugan, S., Rajkumar, K., Anbalagan, K. & SubbiahPandi, A. (2014b). Acta Cryst. E70, m303.
- Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237–3243.
- Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.
- Guo, Y.-P. (2009). Acta Cryst. E65, o22.
- Hashizume, D., Iegaki, M., Yasui, M., Iwasaki, F., Meng, J., Wen, Z. & Matsuura, T. (2001). *Acta Cryst.* C**57**, 1067–1072.
- He, H.-S. (2006). Acta Cryst. E62, m3535-m3536.
- Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). *Chem. Rev.* **103**, 893–930.
- Ishida, H. & Kashino, S. (2001). Acta Cryst. C57, 476-479.
- Jallapally, A., Addla, D., Bagul, P., Sridhar, B., Banerjee, S. K. & Kantevari, S. (2015). *Bioorg. Med. Chem.* 23, 3526–3533.
- Kefi, R., Lefebvre, F., Zeller, M. & Ben Nasr, C. (2011). Acta Cryst. E67, m343.
- Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). *Chem. Rev.* **112**, 1105–1125.

- Leesakul, N., Runrueng, W., Saithong, S. & Pakawatchai, C. (2012). *Acta Cryst.* E68, m837.
- Li, Y.-K., Hsu, H.-S., Chang, L.-F. & Chen, G. (1998). J. Biochem. 123, 416–422.
- López-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejada, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). *J. Med. Chem.* 42, 5020–5028.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Marson, C. M. (2011). Chem. Rev. 111, 7121-7156.
- Mohamed, S. K., Akkurt, M., Potgieter, H. & Ali, M. (2014). Acta Cryst. E70, 0979–0980.
- Moreno-Fuquen, R., De Almeida Santos, R. & Aguirre, L. (2011). Acta Cryst. E67, o139.
- Moreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009*a*). *Acta Cryst.* E65, 02717.
- Moreno-Fuquen, R., Kennedy, A. R., Gilmour, D., De Almeida Santos, R. H. & Viana, R. B. (2009b). Acta Cryst. E65, o3044– o3045.
- Pavan Kumar, K. V. P. & Kumara Swamy, K. C. (2005). *Acta Cryst.* C61, o668–o670.
- Reinoso, S., Artetxe, B., Castillo, O., Luque, A. & Gutiérrez-Zorrilla, J. M. (2015). *Acta Cryst.* E71, m232–m233.
- Robichaud, A. J., Engers, D. W., Lindsley, C. W. & Hopkins, C. R. (2011). ACS Chem. Neurosci. 2, 433–449.
- Shao, X.-D. & Yu, C.-H. (2014). Acta Cryst. C70, 603-605.
- Sheffler, D. J., Pinkerton, A. B., Dahl, R., Markou, A. & Cosford, N. D. P. (2011). ACS Chem. Neurosci. 2, 382–393.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Shuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648-m2650.
- Sun, Y.-Q. & Yang, G.-Y. (2007). Dalton Trans. pp. 3771-3781.
- Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002). Acta Cryst. E58, o1100– 01102.
- Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 1947– 1949.
- Tichenor, M. S., Thurmond, R. L., Venable, J. D. & Savall, B. M. (2015). J. Med. Chem. 58, 7119–7127.
- Trifa, C., Bouhali, A., Bouacida, S., Boudaren, C. & Bataille, T. (2013). Acta Cryst. E69, m303–m304.
- Varala, R., Nasreen, A., Enugala, R. & Adapa, S. R. (2007). *Tetrahedron Lett.* 48, 69–72.
- Wang, B.-Q., Yan, H.-B., Huang, Z.-Q. & Zhang, Z. (2013). Acta Cryst. C69, 616–619.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xiong, Z.-Y., Li, L., Zhao, X.-J. & Chen, H.-M. (2013). Acta Cryst. E69, m172.
- Yanagisawa, H., Amemiya, Y., Kanazaki, T., Shimoji, Y., Fujimoto, K., Kitahara, Y., Sada, T., Mizuno, M., Ikeda, M., Miyamoto, S., Furukawa, Y. & Koike, H. (1996). J. Med. Chem. 39, 323–338.
- Yin, X., Cai, S.-L., Zheng, S.-R., Fan, J. & Zhang, W.-G. (2012). Acta Cryst. C68, m177–m180.
- Yin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155–1159.
- Yu, C.-H. (2012). Acta Cryst. E68, 02295.
- Zhang, W., Chen, Y., Lei, T., Li, Y. & Li, W. (2011). Acta Cryst. E67, m569–m570.
- Zheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865. Zhu, R.-Q. (2012). Acta Cryst. E68, m389.

Acta Cryst. (2017). E73, 162-167 [https://doi.org/10.1107/S2056989017000317]

Structural characterization of two tetrachloridozincate salts of 4-carboxy-1*H*imidazol-3-ium: a salt hydrate and a co-crystal salt hydrate

Sean J. Martens and David K Geiger

Computing details

For both compounds, data collection: *APEX2* (Bruker, 2013); cell refinement: *APEX2* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(I) Bis(4-carboxy-1H-imidazol-3-ium) tetrachloridozincate monohydrate

Crystal data

 $(C_{4}H_{5}N_{2}O_{2})_{2}[ZnCl_{4}]\cdot H_{2}O$ $M_{r} = 451.39$ Triclinic, *P*1 *a* = 6.9094 (10) Å *b* = 7.5828 (12) Å *c* = 16.468 (3) Å *a* = 79.455 (4)° *β* = 84.489 (4)° *y* = 83.833 (4)° *V* = 840.7 (2) Å³

Data collection

Bruker SMART X2S benchtop diffractometer Radiation source: sealed microfocus tube Doubly curved silicon crystal monochromator Detector resolution: 8.3330 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013) $T_{\min} = 0.41, T_{\max} = 0.68$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.064$ S = 1.033375 reflections 227 parameters 8 restraints Z = 2 F(000) = 452 $D_x = 1.783 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6894 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 2.12 \text{ mm}^{-1}$ T = 200 KPlate, clear colourless $0.60 \times 0.50 \times 0.20 \text{ mm}$

10429 measured reflections 3375 independent reflections 2995 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 2.5^\circ$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 9$ $l = -20 \rightarrow 19$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0292P)^2 + 0.2531P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.53 ~{\rm e}~{\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.28 ~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.24426 (3)	0.35245 (3)	0.23892 (2)	0.03225 (8)
Cl1	0.07702 (7)	0.58951 (7)	0.29003 (3)	0.04037 (13)
Cl2	0.56514 (8)	0.40109 (8)	0.22143 (4)	0.04596 (14)
C13	0.14855 (8)	0.32216 (8)	0.11448 (3)	0.04391 (14)
Cl4	0.19391 (9)	0.09768 (8)	0.33224 (3)	0.04754 (14)
O1S	0.7881 (4)	0.0065 (3)	0.25272 (16)	0.0744 (6)
H1SA	0.755 (6)	0.114 (3)	0.256 (2)	0.113 (16)*
H1SB	0.902 (3)	-0.023 (6)	0.241 (3)	0.112 (17)*
01	0.2088 (3)	0.8341 (3)	0.57654 (11)	0.0583 (5)
H1A	0.096 (3)	0.846 (4)	0.5976 (19)	0.080 (11)*
O2	0.0547 (2)	0.7334 (2)	0.48378 (10)	0.0499 (4)
O3	0.4700 (2)	0.1089 (2)	0.82247 (10)	0.0488 (4)
H3A	0.371 (3)	0.082 (4)	0.8047 (18)	0.068 (9)*
O4	0.2491 (2)	0.1786 (3)	0.92209 (10)	0.0509 (4)
N1	0.4180 (2)	0.6761 (2)	0.39214 (10)	0.0328 (4)
H1N	0.328 (3)	0.656 (3)	0.3653 (13)	0.039*
N2	0.7041 (3)	0.6977 (3)	0.42572 (12)	0.0398 (4)
H2N	0.830 (2)	0.694 (3)	0.4249 (15)	0.048*
N3	0.5549 (2)	0.2595 (2)	1.00903 (11)	0.0354 (4)
H3N	0.448 (3)	0.280 (3)	1.0351 (14)	0.042*
N4	0.8615 (3)	0.2308 (3)	0.97687 (12)	0.0414 (4)
H4N	0.985 (2)	0.234 (3)	0.9774 (16)	0.05*
C1	0.2014 (3)	0.7670 (3)	0.50896 (12)	0.0340 (4)
C2	0.3956 (3)	0.7354 (3)	0.46709 (12)	0.0304 (4)
C3	0.6053 (3)	0.6554 (3)	0.36821 (13)	0.0374 (5)
H3	0.6597	0.6168	0.3185	0.045*
C4	0.5780 (3)	0.7487 (3)	0.48777 (13)	0.0365 (4)
H4	0.6113	0.7864	0.5362	0.044*
C5	0.4145 (3)	0.1639 (3)	0.89239 (12)	0.0352 (4)
C6	0.5806 (3)	0.2008 (3)	0.93398 (12)	0.0320 (4)
C7	0.7275 (3)	0.2773 (3)	1.03332 (14)	0.0404 (5)
H7	0.7507	0.3166	1.0828	0.048*
C8	0.7758 (3)	0.1833 (3)	0.91435 (13)	0.0395 (5)
H8	0.8402	0.1452	0.8661	0.047*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03082 (14)	0.03910 (14)	0.02828 (13)	-0.00235 (10)	-0.00091 (9)	-0.01089 (10)
C11	0.0302 (3)	0.0506 (3)	0.0444 (3)	0.0027 (2)	-0.0016 (2)	-0.0234 (2)
Cl2	0.0303 (3)	0.0544 (3)	0.0579 (3)	-0.0051 (2)	-0.0010 (2)	-0.0226 (3)
Cl3	0.0329 (3)	0.0699 (4)	0.0337 (3)	-0.0025 (2)	-0.0048 (2)	-0.0219 (2)
Cl4	0.0491 (3)	0.0446 (3)	0.0421 (3)	0.0028 (2)	0.0056 (2)	0.0016 (2)
O1S	0.0736 (16)	0.0632 (14)	0.0966 (17)	0.0020 (12)	-0.0382 (14)	-0.0293 (12)
01	0.0376 (10)	0.0984 (14)	0.0484 (10)	-0.0049 (9)	-0.0019 (8)	-0.0392 (10)
O2	0.0282 (8)	0.0812 (12)	0.0462 (9)	-0.0099 (8)	-0.0035 (7)	-0.0234 (8)
O3	0.0444 (10)	0.0668 (11)	0.0403 (9)	-0.0072 (8)	-0.0005 (7)	-0.0231 (8)
O4	0.0276 (8)	0.0815 (12)	0.0447 (9)	-0.0031 (8)	-0.0002 (7)	-0.0164 (8)
N1	0.0264 (9)	0.0406 (9)	0.0332 (9)	-0.0024 (7)	-0.0075 (7)	-0.0089 (7)
N2	0.0227 (9)	0.0491 (10)	0.0480 (10)	-0.0037 (8)	-0.0042 (8)	-0.0081 (8)
N3	0.0266 (9)	0.0453 (10)	0.0340 (9)	-0.0015 (8)	0.0024 (7)	-0.0098 (8)
N4	0.0235 (9)	0.0515 (11)	0.0478 (11)	-0.0049 (8)	-0.0014 (8)	-0.0046 (9)
C1	0.0316 (11)	0.0408 (11)	0.0299 (10)	-0.0025 (9)	-0.0045 (8)	-0.0064 (8)
C2	0.0286 (10)	0.0335 (10)	0.0297 (9)	-0.0016 (8)	-0.0055 (8)	-0.0060 (8)
C3	0.0308 (11)	0.0429 (11)	0.0383 (11)	-0.0020 (9)	-0.0016 (9)	-0.0080 (9)
C4	0.0323 (11)	0.0411 (11)	0.0381 (11)	-0.0051 (9)	-0.0085 (9)	-0.0082 (9)
C5	0.0343 (12)	0.0373 (11)	0.0324 (10)	-0.0011 (9)	-0.0016 (8)	-0.0034 (8)
C6	0.0295 (11)	0.0351 (10)	0.0298 (9)	-0.0017 (8)	0.0008 (8)	-0.0043 (8)
C7	0.0330 (12)	0.0484 (12)	0.0410 (11)	-0.0048 (9)	-0.0045 (9)	-0.0094 (10)
C8	0.0310 (11)	0.0479 (12)	0.0369 (11)	-0.0013 (9)	0.0063 (9)	-0.0062 (9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Zn1—Cl2	2.2690 (7)	N2—C4	1.362 (3)
Zn1—Cl3	2.2704 (6)	N2—H2N	0.864 (16)
Zn1—Cl4	2.2737 (6)	N3—C7	1.321 (3)
Zn1—Cl1	2.2794 (6)	N3—C6	1.378 (2)
O1S—H1SA	0.829 (19)	N3—H3N	0.830 (16)
O1S—H1SB	0.806 (18)	N4—C7	1.316 (3)
01—C1	1.313 (2)	N4—C8	1.356 (3)
O1—H1A	0.828 (18)	N4—H4N	0.858 (16)
O2—C1	1.200 (2)	C1—C2	1.465 (3)
O3—C5	1.305 (2)	C2—C4	1.355 (3)
O3—H3A	0.827 (17)	С3—Н3	0.95
O4—C5	1.201 (3)	C4—H4	0.95
N1—C3	1.317 (3)	C5—C6	1.468 (3)
N1—C2	1.379 (2)	C6—C8	1.354 (3)
N1—H1N	0.838 (16)	С7—Н7	0.95
N2—C3	1.323 (3)	C8—H8	0.95
Cl2—Zn1—Cl3	107.93 (2)	O1—C1—C2	112.04 (17)
Cl2—Zn1—Cl4	111.11 (2)	C4—C2—N1	106.33 (17)
Cl3—Zn1—Cl4	109.21 (3)	C4—C2—C1	132.70 (18)

Cl2—Zn1—Cl1	107.85 (2)	N1	120.95 (17)
Cl3—Zn1—Cl1	112.84 (2)	N1—C3—N2	107.86 (18)
Cl4—Zn1—Cl1	107.92 (2)	N1—C3—H3	126.1
H1SA—O1S—H1SB	119 (4)	N2—C3—H3	126.1
C1—O1—H1A	107 (2)	C2-C4-N2	106.69 (18)
С5—О3—НЗА	107 (2)	C2—C4—H4	126.7
C3—N1—C2	109.33 (16)	N2—C4—H4	126.7
C3—N1—H1N	124.5 (16)	O4—C5—O3	125.4 (2)
C2—N1—H1N	126.2 (16)	O4—C5—C6	122.53 (18)
C3—N2—C4	109.79 (17)	O3—C5—C6	112.00 (18)
C3—N2—H2N	125.9 (17)	C8—C6—N3	106.23 (18)
C4—N2—H2N	124.3 (17)	C8—C6—C5	132.12 (18)
C7—N3—C6	109.06 (17)	N3—C6—C5	121.61 (17)
C7—N3—H3N	125.3 (17)	N4—C7—N3	107.89 (19)
C6—N3—H3N	125.6 (17)	N4—C7—H7	126.1
C7—N4—C8	110.01 (18)	N3—C7—H7	126.1
C7—N4—H4N	126.0 (17)	C6—C8—N4	106.81 (18)
C8—N4—H4N	123.9 (17)	С6—С8—Н8	126.6
O2—C1—O1	124.9 (2)	N4—C8—H8	126.6
O2—C1—C2	123.11 (18)		
	/		/
C3—N1—C2—C4	-0.3 (2)	C7—N3—C6—C8	0.2 (2)
C3—N1—C2—C1	-178.98 (18)	C7—N3—C6—C5	178.29 (19)
O2—C1—C2—C4	-173.6 (2)	O4—C5—C6—C8	175.7 (2)
O1—C1—C2—C4	6.0 (3)	O3—C5—C6—C8	-2.2 (3)
O2—C1—C2—N1	4.6 (3)	O4—C5—C6—N3	-1.8 (3)
O1—C1—C2—N1	-175.81 (19)	O3—C5—C6—N3	-179.68 (18)
C2—N1—C3—N2	0.6 (2)	C8—N4—C7—N3	0.5 (3)
C4—N2—C3—N1	-0.6 (2)	C6—N3—C7—N4	-0.5 (3)
N1—C2—C4—N2	-0.1 (2)	N3—C6—C8—N4	0.1 (2)
C1-C2-C4-N2	178.4 (2)	C5-C6-C8-N4	-177.7 (2)
C3—N2—C4—C2	0.4 (2)	C7—N4—C8—C6	-0.4 (3)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	$D \cdots A$	D—H···A
01 <i>S</i> —H1 <i>SA</i> ···Cl2	0.83 (2)	2.42 (2)	3.192 (3)	155 (4)
O1S—H1SB····Cl4 ⁱ	0.81 (2)	2.94 (4)	3.392 (2)	118 (3)
O1S—H1SB····Cl1 ⁱⁱ	0.81 (2)	3.05 (4)	3.540 (3)	122 (4)
O1—H1A···Cl4 ⁱⁱⁱ	0.83 (2)	2.25 (2)	3.0723 (19)	171 (3)
$O3-H3A\cdotsO1S^{iv}$	0.83 (2)	1.77 (2)	2.576 (3)	163 (3)
N1—H1 <i>N</i> ···Cl1	0.84 (2)	2.37 (2)	3.2105 (17)	178 (2)
N2—H2N···Cl1 ⁱ	0.86 (2)	2.85 (2)	3.3787 (19)	122 (2)
N2—H2N···O2 ⁱ	0.86 (2)	1.99 (2)	2.745 (2)	146 (2)
N3—H3 <i>N</i> ···Cl3 ^v	0.83 (2)	2.37 (2)	3.1941 (18)	177 (2)

N4—H4 <i>N</i> ····Cl3 ^{vi}	0.86 (2)	2.83 (2)	3.3586 (19)	121 (2)
N4—H4 <i>N</i> ···O4 ⁱ	0.86 (2)	2.00 (2)	2.753 (2)	146 (2)

Symmetry codes: (i) x+1, y, z; (ii) x+1, y-1, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) x, y, z+1; (vi) x+1, y, z+1.

(II) bis(4-carboxy-1H-imidazol-3-ium) tetrachloridozincate bis(1H-imidazol-3-ium-4-carboxylato) monohydrate

Crystal data

$(C_4H_4N_2O_2)_2[ZnCl_4]\cdot 2C_4H_5N_2O_2H_2O_2$	Z = 2
$M_r = 675.57$	F(000) = 684
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.728 {\rm ~Mg} {\rm ~m}^{-3}$
a = 6.9369 (19) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 6.9624 (15) Å	Cell parameters from 3388 reflections
c = 28.483 (8) Å	$\theta = 3.1 - 23.6^{\circ}$
$\alpha = 89.524 \ (9)^{\circ}$	$\mu = 1.42 \text{ mm}^{-1}$
$\beta = 85.622 \ (9)^{\circ}$	T = 200 K
$\gamma = 71.202 \ (8)^{\circ}$	Block, clear colourless
V = 1298.3 (6) Å ³	$0.50 \times 0.25 \times 0.20$ mm

Data collection

Bruker SMART X2S benchtop	10560 measured reflections
diffractometer	4855 independent reflections
Radiation source: sealed microfocus tube	3619 reflections with $I > 2\sigma(I)$
Detector resolution: 8.3330 pixels mm ⁻¹	$R_{\rm int} = 0.042$
ω scans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.9^\circ$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Bruker, 2013)	$k = -8 \rightarrow 7$
$T_{\min} = 0.50, \ T_{\max} = 0.76$	$l = -35 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: mixed
$wR(F^2) = 0.135$	H atoms treated by a mixture of independent
<i>S</i> = 1.03	and constrained refinement
4855 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0739P)^2 + 0.0203P]$
395 parameters	where $P = (F_0^2 + 2F_c^2)/3$
16 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.71 \text{ e} \text{ Å}^{-3}$
$WR(F^2) = 0.135$ S = 1.03 4855 reflections 395 parameters 16 restraints Primary atom site location: structure-invariant direct methods	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0739P)^2 + 0.0203P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.71 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F 1		1	1	• , •		• 1 /	• • •	1. 1			18	21
Fractional	atomic	coordinates	and	isofronic	or	eauivalent	isofronic	displacem	ent	narameters	IA^{\cdot}	-1
1 / 401101141	aronne	coordinates		isonopie	01	equivalent	isonopie	anspracem	Civ	par amerers	(**	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	-0.05225 (7)	0.61778 (7)	0.24502 (2)	0.03731 (17)	
Cl1	-0.26017 (17)	0.82285 (19)	0.19411 (4)	0.0531 (3)	
Cl2	0.05785 (16)	0.29226 (16)	0.21504 (3)	0.0436 (3)	
C13	0.23787 (18)	0.6937 (2)	0.25097 (4)	0.0560 (3)	

Cl4	-0.22620 (16)	0.63506 (17)	0.31606 (3)	0.0408 (3)	
01	0.3219 (4)	0.2856 (5)	0.02796 (9)	0.0471 (8)	
O2	0.1247 (4)	0.3358 (5)	0.09533 (10)	0.0517 (8)	
03	0.3667 (5)	0.1705 (6)	0.39393 (12)	0.0661 (10)	
O4	0.4907 (5)	0.2123 (5)	0.46135 (10)	0.0559 (9)	
H4A	0.379 (5)	0.223 (8)	0.4788 (16)	0.084*	
05	-0.1453 (5)	0.7598 (5)	0.50318 (10)	0.0537 (8)	
O6	-0.2533 (5)	0.6845 (6)	0.43625 (10)	0.0615 (9)	
O7	-0.2136 (5)	0.8281 (6)	0.07375 (11)	0.0685 (10)	
08	-0.0196 (5)	0.7583 (5)	0.00627 (10)	0.0508 (8)	
H8A	-0.114 (6)	0.723 (8)	-0.0045 (16)	0.076*	
O1S	0.414 (2)	0.099 (2)	0.2899 (6)	0.070 (4)	0.60 (4)
H1A	0.334 (16)	0.176 (12)	0.272 (3)	0.105*	0.60 (4)
H1B	0.459 (16)	-0.021 (6)	0.279 (3)	0.105*	0.60 (4)
O2S	0.495 (5)	0.150 (4)	0.2703 (12)	0.093 (10)	0.40 (4)
H2A	0.381 (15)	0.15 (3)	0.262 (8)	0.14*	0.40 (4)
H2B	0.59 (2)	0.08 (3)	0.251 (5)	0.14*	0.40 (4)
N1	0.7400 (5)	0.3481 (6)	0.12509 (13)	0.0451 (9)	()
H1N	0.870 (3)	0.342 (7)	0.1225 (15)	0.054*	
N2	0.4407 (5)	0.3466 (6)	0.14633 (11)	0.0392 (8)	
H2N	0.328 (4)	0.352 (6)	0.1626 (12)	0.047*	
N3	0.7314 (6)	0.1382 (5)	0.34378 (11)	0.0405 (8)	
H3N	0.644 (5)	0.134 (6)	0.3241 (12)	0.049*	
N4	1.0110 (6)	0.1551 (6)	0.36673 (14)	0.0460 (9)	
H4N	1.133 (4)	0.158 (7)	0.3638 (15)	0.055*	
N5	0.1092 (5)	0.6640 (5)	0.38684 (11)	0.0370 (8)	
H5N	0.024 (5)	0.646 (6)	0.3686 (12)	0.044*	
N6	0.3850 (5)	0.6882 (6)	0.41028 (12)	0.0437 (9)	
H6N	0.511 (4)	0.687 (7)	0.4100 (15)	0.052*	
N7	0.1081 (5)	0.8476 (5)	0.12179 (11)	0.0370 (8)	
H7N	0.006 (5)	0.834 (6)	0.1409 (12)	0.044*	
N8	0.4083 (5)	0.8406 (5)	0.09664(12)	0.0392 (8)	
H8N	0.533 (4)	0.846 (6)	0.0945 (14)	0.047*	
C1	0.4601 (6)	0.3304 (6)	0.09817(12)	0.0317 (9)	
C2	0.6497 (6)	0.3318 (6)	0.08465 (14)	0.0403 (10)	
H2	0.7095	0.3232	0.0533	0.048*	
C3	0.6112 (6)	0.3560 (7)	0.16165 (15)	0.0463 (11)	
H3	0.6366	0.3667	0.1937	0.056*	
C4	0.2872 (6)	0.3160 (6)	0.07221 (13)	0.0352 (9)	
C5	0.7016 (6)	0.1709 (6)	0.39137(13)	0.0349(9)	
C6	0.8780 (6)	0.1832 (6)	0.40570(13)	0.0385(9)	
H6	0.9044	0.207	0.437	0.046*	
C7	0.9189 (7)	0.1297 (6)	0.32923(14)	0.0443(10)	
H7	0.9775	0.1092	0.2977	0.053*	
C8	0.5038(7)	0.1835 (6)	0.41683(14)	0.0412(10)	
C9	0.0765 (6)	0.6982 (6)	0.43471(12)	0.0332 (9)	
C10	0.2521(6)	0 7147 (6)	0.44949(13)	0.0332(9)	
H10	0.2774	0.7396	0.4808	0.049*	
V	·····	0.1020	0.1000	V.V.I.2	

C11	0.2965 (6)	0.6581 (7)	0.37284 (14)	0.0415 (10)
H11	0.357	0.6361	0.3415	0.05*
C12	-0.1239 (6)	0.7129 (6)	0.45951 (13)	0.0387 (9)
C13	0.1228 (6)	0.8218 (6)	0.07366 (12)	0.0327 (9)
C14	0.3108 (6)	0.8187 (6)	0.05808 (13)	0.0359 (9)
H14	0.3661	0.804	0.0262	0.043*
C15	0.2828 (6)	0.8583 (6)	0.13502 (13)	0.0395 (10)
H15	0.313	0.8756	0.1664	0.047*
C16	-0.0527 (6)	0.8025 (6)	0.04986 (13)	0.0371 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
Zn1	0.0263 (3)	0.0572 (3)	0.0303 (2)	-0.0159 (2)	-0.00276 (18)	0.0010 (2)
Cl1	0.0298 (6)	0.0833 (8)	0.0449 (6)	-0.0162 (6)	-0.0066 (4)	0.0210 (5)
Cl2	0.0350 (6)	0.0569 (7)	0.0396 (5)	-0.0163 (5)	0.0002 (4)	-0.0053 (4)
C13	0.0384 (7)	0.0955 (9)	0.0465 (6)	-0.0383 (7)	-0.0061 (5)	0.0008 (6)
Cl4	0.0300 (6)	0.0627 (7)	0.0325 (5)	-0.0195 (5)	0.0005 (4)	-0.0008(4)
01	0.0278 (17)	0.083 (2)	0.0384 (15)	-0.0286 (17)	-0.0010 (12)	-0.0070 (14)
O2	0.0223 (16)	0.092 (2)	0.0451 (16)	-0.0247 (17)	0.0012 (12)	-0.0051 (15)
O3	0.034 (2)	0.106 (3)	0.067 (2)	-0.032 (2)	-0.0113 (16)	-0.0099 (19)
O4	0.0332 (19)	0.089 (2)	0.0449 (18)	-0.0209 (19)	0.0054 (13)	-0.0038 (16)
O5	0.0321 (18)	0.090 (2)	0.0411 (16)	-0.0239 (18)	0.0005 (13)	-0.0055 (15)
O6	0.0292 (18)	0.112 (3)	0.0530 (18)	-0.035 (2)	-0.0055 (14)	-0.0124 (18)
O7	0.0241 (18)	0.138 (3)	0.0505 (18)	-0.036 (2)	0.0012 (14)	-0.0083 (19)
08	0.0326 (18)	0.086 (2)	0.0427 (16)	-0.0312 (18)	-0.0062 (13)	-0.0057 (15)
O1S	0.042 (6)	0.110 (6)	0.048 (6)	-0.008 (5)	-0.014 (5)	-0.020 (4)
O2S	0.060 (14)	0.130 (12)	0.068 (13)	0.008 (11)	-0.035 (11)	-0.019 (11)
N1	0.0172 (19)	0.063 (2)	0.060(2)	-0.0188 (19)	-0.0057 (16)	-0.0067 (18)
N2	0.0176 (18)	0.060(2)	0.0417 (18)	-0.0154 (18)	-0.0014 (14)	-0.0019 (16)
N3	0.032 (2)	0.052 (2)	0.0397 (18)	-0.0163 (18)	-0.0075 (15)	0.0016 (16)
N4	0.023 (2)	0.050(2)	0.069 (2)	-0.0163 (18)	-0.0057 (17)	0.0118 (18)
N5	0.0210 (18)	0.052 (2)	0.0406 (18)	-0.0135 (17)	-0.0100 (14)	-0.0015 (15)
N6	0.0174 (18)	0.060(2)	0.058 (2)	-0.0166 (18)	-0.0085 (16)	0.0067 (17)
N7	0.0236 (19)	0.056 (2)	0.0353 (17)	-0.0183 (17)	-0.0008 (13)	0.0015 (15)
N8	0.0171 (18)	0.050(2)	0.056 (2)	-0.0168 (17)	-0.0054 (15)	0.0018 (16)
C1	0.020 (2)	0.040 (2)	0.0378 (19)	-0.0145 (18)	-0.0013 (15)	-0.0030 (16)
C2	0.020 (2)	0.055 (3)	0.044 (2)	-0.011 (2)	0.0009 (16)	-0.0067 (19)
C3	0.028 (2)	0.068 (3)	0.047 (2)	-0.020 (2)	-0.0079 (19)	-0.002 (2)
C4	0.023 (2)	0.045 (2)	0.041 (2)	-0.0149 (19)	-0.0041 (16)	0.0011 (17)
C5	0.031 (2)	0.036 (2)	0.040(2)	-0.0118 (19)	-0.0084 (17)	0.0009 (17)
C6	0.036 (2)	0.043 (2)	0.040 (2)	-0.015 (2)	-0.0093 (18)	-0.0013 (17)
C7	0.039 (3)	0.050 (3)	0.044 (2)	-0.015 (2)	0.0016 (19)	0.0033 (19)
C8	0.027 (2)	0.049 (3)	0.050 (2)	-0.015 (2)	-0.0047 (18)	-0.0028 (19)
C9	0.020 (2)	0.044 (2)	0.0370 (19)	-0.0120 (19)	-0.0081 (15)	0.0046 (17)
C10	0.031 (2)	0.056 (3)	0.038 (2)	-0.014 (2)	-0.0110 (17)	-0.0017 (18)
C11	0.026 (2)	0.058 (3)	0.042 (2)	-0.015 (2)	-0.0014 (17)	0.0025 (19)
C12	0.025 (2)	0.052 (3)	0.041 (2)	-0.014(2)	-0.0040 (17)	-0.0012 (18)

C13	0.022 (2)	0.044 (2)	0.0352 (19)	-0.0141 (19)	-0.0042 (15)	0.0015 (16)
C14	0.023 (2)	0.047 (2)	0.038 (2)	-0.013 (2)	-0.0007 (16)	-0.0019 (17)
C15	0.032 (2)	0.052 (3)	0.039 (2)	-0.017 (2)	-0.0118 (17)	0.0020 (18)
C16	0.020 (2)	0.055 (3)	0.039 (2)	-0.015 (2)	-0.0053 (16)	0.0019 (18)

Geometric parameters (Å, °)

2.2577 (12)	N4—H4N	0.849 (19)
2.2589 (11)	N5-C11	1.317 (5)
2.2758 (12)	N5—C9	1.375 (5)
2.2948 (12)	N5—H5N	0.858 (19)
1.271 (4)	N6	1.321 (5)
1.229 (4)	N6	1.367 (5)
1.220 (5)	N6—H6N	0.868 (19)
1.277 (5)	N7—C15	1.321 (5)
0.87 (2)	N7—C13	1.376 (4)
1.274 (5)	N7—H7N	0.889 (19)
1.222 (5)	N8—C15	1.325 (5)
1.224 (5)	N8—C14	1.367 (5)
1.267 (5)	N8—H8N	0.872 (19)
0.851 (19)	C1—C2	1.345 (5)
0.85 (2)	C1—C4	1.487 (5)
0.84 (2)	C2—H2	0.95
0.85 (2)	С3—Н3	0.95
0.85 (2)	C5—C6	1.347 (5)
1.309 (5)	C5—C8	1.479 (5)
1.375 (5)	С6—Н6	0.95
0.884 (19)	С7—Н7	0.95
1.312 (5)	C9—C10	1.357 (5)
1.370 (5)	C9—C12	1.484 (5)
0.871 (19)	C10—H10	0.95
1.318 (5)	C11—H11	0.95
1.365 (5)	C13—C14	1.339 (5)
0.866 (19)	C13—C16	1.481 (5)
1.327 (6)	C14—H14	0.95
1.361 (5)	С15—Н15	0.95
111.21 (4)	N1—C3—H3	126.0
112.42 (5)	N2—C3—H3	126.0
109.31 (5)	O2—C4—O1	126.3 (4)
104.23 (5)	O2—C4—C1	117.2 (3)
110.95 (4)	O1—C4—C1	116.5 (3)
108.62 (5)	C6—C5—N3	106.6 (3)
122 (4)	C6—C5—C8	132.8 (4)
113 (3)	N3—C5—C8	120.6 (3)
111 (5)	C5—C6—N4	106.8 (3)
113 (6)	С5—С6—Н6	126.6
109.4 (3)	N4—C6—H6	126.6
	$\begin{array}{c} 2.2577 (12) \\ 2.2589 (11) \\ 2.2758 (12) \\ 2.2948 (12) \\ 1.271 (4) \\ 1.229 (4) \\ 1.220 (5) \\ 1.277 (5) \\ 0.87 (2) \\ 1.274 (5) \\ 1.222 (5) \\ 1.224 (5) \\ 1.224 (5) \\ 1.267 (5) \\ 0.851 (19) \\ 0.85 (2) \\ 0.85 (2) \\ 0.84 (2) \\ 0.85 (2) \\ 0.85 (2) \\ 1.309 (5) \\ 1.375 (5) \\ 0.884 (19) \\ 1.312 (5) \\ 1.370 (5) \\ 0.871 (19) \\ 1.318 (5) \\ 1.365 (5) \\ 0.866 (19) \\ 1.327 (6) \\ 1.361 (5) \\ 111.21 (4) \\ 112.42 (5) \\ 109.31 (5) \\ 104.23 (5) \\ 110.95 (4) \\ 108.62 (5) \\ 122 (4) \\ 113 (3) \\ 111 (5) \\ 113 (6) \\ 109.4 (3) \\ \end{array}$	2.2577 (12) N4—H4N 2.2589 (11) N5—C11 2.2758 (12) N5—C9 2.2948 (12) N5—H5N 1.271 (4) N6—C10 1.229 (4) N6—C10 1.220 (5) N6—H6N 1.277 (5) N7—C13 1.274 (5) N7—H7N 1.222 (5) N8—C14 1.226 (5) N8—C14 1.227 (5) N7—H7N 1.222 (5) N8—C14 1.267 (5) N8—H8N 0.851 (19) C1—C2 0.85 (2) C1—C4 0.85 (2) C5—C6 1.309 (5) C5—C8 1.375 (5) C6—H6 0.884 (19) C7—H7 1.312 (5) C9—C12 0.871 (19) C10—H10 1.376 (5) C13—C14 0.866 (19) C13—C16 1.327 (6) C14—H14 1.361 (5) C15—H15 111.21 (4) N1—C3—H3 112.42 (5) N2—C3—H3 109.31 (5) O2—C4—C1 108.62 (5) C6—C5—C8 113 (3)

C2 N1 U1N	122 (2)	N12 C7 N14	107.5(4)
$C_2 = N_1 = H_1 N_1$	132(3) 118(3)	N3 - C7 - H7	107.3 (4)
$C_2 = N_1 = M_1$	110(3)	$N_{4} = C_{7} = H_{7}$	120.3
$C_2 = N_2 = U_1 N_2$	109.7(3)	N4 - C / - H / C / C / C / C / C / C / C / C / C /	120.3
$C_3 = N_2 = H_2 N_1$	120(3)	03 - 03 - 04	123.0(4)
CI—N2—H2N	122 (3)	03-08-05	118.2 (4)
$C/-N_3-C_3$	109.6 (3)	04 - 08 - 05	116.2 (4)
C/-N3-H3N	121 (3)	C10—C9—N5	106.6 (3)
C5—N3—H3N	129 (3)	C10-C9-C12	133.0 (3)
C7—N4—C6	109.4 (4)	N5—C9—C12	120.4 (3)
C7—N4—H4N	120 (3)	C9—C10—N6	106.2 (3)
C6—N4—H4N	130 (3)	C9—C10—H10	126.9
C11—N5—C9	109.5 (3)	N6—C10—H10	126.9
C11—N5—H5N	124 (3)	N5—C11—N6	107.7 (3)
C9—N5—H5N	126 (3)	N5—C11—H11	126.1
C11—N6—C10	110.0 (3)	N6—C11—H11	126.1
C11—N6—H6N	125 (3)	O6—C12—O5	126.3 (4)
C10—N6—H6N	125 (3)	O6—C12—C9	117.6 (3)
C15—N7—C13	109.3 (3)	O5—C12—C9	116.1 (3)
C15—N7—H7N	126 (3)	C14—C13—N7	106.7 (3)
C13—N7—H7N	124 (3)	C14—C13—C16	133.2 (3)
C15—N8—C14	109.4 (3)	N7—C13—C16	120.1 (3)
C15—N8—H8N	128 (3)	C13—C14—N8	107.0 (3)
C14—N8—H8N	122 (3)	C13—C14—H14	126.5
C2-C1-N2	1063(3)	N8—C14—H14	126.5
$C_{2} - C_{1} - C_{4}$	133.6 (3)	N7-C15-N8	107.6(3)
$N_2 - C_1 - C_4$	120.2(3)	N7-C15-H15	126.2
C1 - C2 - N1	120.2(3) 106.6(3)	N8_C15_H15	126.2
C1 - C2 - H2	126.7	07-C16-08	126.2 126.3 (4)
N1 C2 H2	126.7	07 - C16 - C13	120.3(4)
N1 = C2 = N2	120.7	0^{-10}	117.0(3)
MI-C3-M2	108.0 (4)	08-010-015	115.9(5)
C3—N2—C1—C2	-0.4 (5)	C11—N5—C9—C10	0.5 (5)
C3—N2—C1—C4	179.6 (4)	C11—N5—C9—C12	179.7 (4)
N2-C1-C2-N1	0.2 (5)	N5-C9-C10-N6	-0.5 (5)
C4—C1—C2—N1	-179.9 (4)	C12—C9—C10—N6	-179.6 (4)
C3—N1—C2—C1	0.1 (5)	C11—N6—C10—C9	0.4 (5)
C2—N1—C3—N2	-0.4 (5)	C9—N5—C11—N6	-0.2(5)
C1—N2—C3—N1	0.5 (5)	C10—N6—C11—N5	-0.1(5)
C2—C1—C4—O2	-174.2 (5)	C10—C9—C12—O6	-177.8(5)
N2-C1-C4-O2	5.7 (6)	N5—C9—C12—O6	3.2 (6)
C_{2} C_{1} C_{4} C_{1}	5.4 (7)	C10-C9-C12-O5	4.0 (7)
N2-C1-C4-O1	-174.7 (4)	N5-C9-C12-O5	-175.0(4)
C7 - N3 - C5 - C6	0.3 (5)	C_{15} N7 C_{13} C_{14}	-0.4(5)
C7 - N3 - C5 - C8	-1790(4)	C15 - N7 - C13 - C16	179 2 (4)
N3-C5-C6-N4	-0.8(5)	N7_C13_C14_N8	0.5(5)
C8 - C5 - C6 - N4	178 4 (4)	C_{16} C_{13} C_{14} N_{8}	-1790(4)
$C7_NA_C6_C5$	11(5)	C15 - C15 - C17 - 110 C15 - N8 - C14 - C12	-04(5)
$C_{1} = 104 - C_{0} - C_{3}$	0.4(5)	$C_{13} = 10 - C_{14} - C_{15}$	0.7(3)
UJ-INJ-U/-IN4	0.+(J)	UIJ-IN/-UIJ-INO	0.1 (0)

C6—N4—C7—N3	-0.9 (5)	C14—N8—C15—N7	0.2 (5)
C6—C5—C8—O3	178.6 (5)	C14—C13—C16—O7	-174.2 (5)
N3—C5—C8—O3	-2.3 (6)	N7—C13—C16—O7	6.3 (6)
C6—C5—C8—O4	0.2 (7)	C14—C13—C16—O8	6.5 (7)
N3—C5—C8—O4	179.3 (4)	N7—C13—C16—O8	-173.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O4—H4A····O5 ⁱ	0.87 (2)	1.63 (2)	2.476 (4)	163 (5)
O4— $H4A$ ···O6 ⁱ	0.87 (2)	2.52 (4)	3.205 (4)	136 (4)
O8—H8A····O1 ⁱⁱ	0.85 (2)	1.65 (2)	2.484 (4)	166 (5)
O8—H8A····O2 ⁱⁱ	0.85 (2)	2.63 (4)	3.162 (4)	122 (4)
O1 <i>S</i> —H1 <i>A</i> ···Cl2	0.85 (2)	2.52 (5)	3.330 (9)	159 (10)
O1S—H1B····Cl1 ⁱⁱⁱ	0.84 (2)	2.97 (9)	3.546 (15)	128 (10)
O1S—H1B····Cl4 ⁱⁱⁱ	0.84 (2)	2.93 (7)	3.499 (11)	127 (8)
O2 <i>S</i> —H2 <i>A</i> ···Cl2	0.85 (2)	2.61 (12)	3.382 (17)	150.20
O2S—H2B····Cl1 ⁱⁱⁱ	0.85 (2)	2.36 (10)	3.13 (2)	150 (17)
N1—H1 <i>N</i> ···O2 ^{iv}	0.88 (2)	1.86 (2)	2.712 (4)	160 (4)
N2—H2 <i>N</i> ···Cl2	0.87 (2)	2.44 (2)	3.297 (3)	167 (4)
N3—H3 <i>N</i> ···O1 <i>S</i>	0.87 (2)	2.01 (2)	2.860 (10)	168 (4)
N3—H3 <i>N</i> ···O2 <i>S</i>	0.87 (2)	1.89 (2)	2.739 (12)	165 (4)
N4—H4 <i>N</i> ···O3 ^{iv}	0.85 (2)	1.92 (3)	2.677 (5)	148 (4)
N5—H5 <i>N</i> ···Cl4	0.86 (2)	2.39 (2)	3.247 (3)	173 (4)
N6—H6 <i>N</i> ···O6 ^{iv}	0.87 (2)	1.85 (3)	2.661 (4)	156 (4)
N7—H7 <i>N</i> ···Cl1	0.89 (2)	2.32 (2)	3.205 (3)	175 (4)
N8—H8N····O7 ^{iv}	0.87 (2)	1.78 (2)	2.628 (4)	164 (4)
C2—H2…O8 ^v	0.95	2.55	3.414 (5)	152
C3—H3···Cl2 ^{iv}	0.95	2.91	3.454 (4)	118
C6—H6····O5 ^{vi}	0.95	2.54	3.400 (5)	151
C7—H7····Cl2 ^{iv}	0.95	2.77	3.599 (4)	146
C10—H10…O4 ^{vi}	0.95	2.49	3.345 (5)	151
C11—H11···Cl3	0.95	2.75	3.523 (4)	139
C11—H11···Cl4 ^{iv}	0.95	2.92	3.528 (4)	123
C14—H14…O1 ^v	0.95	2.47	3.303 (5)	147
C15—H15…Cl3	0.95	2.8	3.511 (4)	132

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) x+1, y-1, z; (iv) x+1, y, z; (v) -x+1, -y+1, -z; (vi) -x+1, -y+1, -z+1.