COMMUNICATIONS

ISSN 2056-9890

Received 26 December 2016
Accepted 19 January 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; solvothermal synthesis; coordination polymer; centrosymmetric dimer.

CCDC reference: 1497751

Supporting information: this article has supporting information at journals.iucr.org/e


## OPEN $\bigodot$ ACCESS

# Crystal structure of a chloride-bridged copper(II) dimer: piperazine-1,4-dium bis(di- $\mu$-chlorido-bis[(4-carboxypyridine-2-carboxylato- $\kappa^{2} N, O^{2}$ )chloridocuprate(II)] 

Bassey Enyi Inah, ${ }^{\text {a }}$ Ayi Anyama Ayi ${ }^{\text {a* }}$ and Amit Adhikary ${ }^{\text {b }}$

${ }^{\text {a }}$ Inorganic Materials Chemistry Laboratory, Department of Pure and Applied Chemistry, University of Calabar, P.M.B. 1115-Calabar, Nigeria, and ${ }^{\text {b }}$ Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA. *Correspondence e-mail: ayiayi72@gmail.com

Crystals of a new dimeric chloride-bridged cuprate(II) derived from pyridine-2,4-dicarboxylic acid were obtained solvothermally in the presence of piperazine and hydrochloric acid. The crystal structure determination of the title salt, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2} \mathrm{Cl}_{4}\right]$, revealed one of the carboxyl groups of the original pyridine-2,4-dicarboxylic acid ligand to be protonated, whereas the other is deprotonated and binds together with the pyridine N atom to the $\mathrm{Cu}^{\mathrm{II}}$ atom. The coordination environment of the $\mathrm{Cu}^{\mathrm{II}}$ atom is distorted squarepyramidal. One of the chloride ligands bridges two metal cations to form a centrosymmetric dimer with two different $\mathrm{Cu}-\mathrm{Cl}$ distances of 2.2632 (8) and 2.7853 (8) $\AA$, whereby the longer distance is associated with the apical ligand. The remaining chloride ligand is terminal at one of the basal positions, with a distance of 2.2272 (9) A. In the crystal, the dimers are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, together with $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions involving the centrosymmetric organic cation, into a three-dimensional supramolecular network. Further but weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions consolidate the packing.

## 1. Chemical context

In recent times, research on coordination polymers, popularly known as metal-organic frameworks (MOFs), have received great attention, not only for their potential applications in the area of gas storage, ion-exchange, non-linear optics, molecular sieves, catalysis, magnetism, and molecular sensing (Yaghi et al., 2003; Ockwig et al., 2005; Wang et al., 2005; Carlucci et al., 2003; Hill et al., 2005), but also for their rich structural chemistry (Li et al., 2016; Eddaoudi et al., 2015). In the design of compounds with metal-organic frameworks, versatile carboxylate ligands, derived from 1,4-benzenedicarboxylic acid, 1,3,5-benzenetricarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid or pyridine-2,4-dicarboxylic acid, have frequently been used owing to their abundant carboxylate groups possessing high affinity to metal cations (Li et al., 2004; Shi et al., 2004; Gutschke et al., 2001; Tao et al., 2000). A number of novel metal-organic frameworks have been constructed using di- or multicarboxylate ligands as linkers. Most of the reported MOF materials have been synthesized using solvothermal or hydrothermal synthetic conditions, often by using sealed autoclaves. These techniques have also been found to play an important role in preparing robust and stable inorganic compounds with open frameworks (Rao et al.,

2001; Eddaoudi et al., 2001). The fact that the solubility of the reactants increases under hydrothermal methods makes the reaction more likely to occur at lower temperatures, with the formation of polymeric units through molecular building blocks (Zhao et al., 2007). Small changes in one or more of the reaction variables, such as temperature, time, pH or the solvent type, can have a profound influence on the product. In some cases, organic amines or alkylammonium cations are used as templates and/or structure-directing agents in the crystallization process of framework solids (Jiang et al., 1998; Cheetham et al., 1999). In the course of our investigations, we were interested in using pyridine-2,4-dicarboxylic acid as a source of N - and O -donors, in synthesizing a coordination polymer in an acidic medium under solvothermal conditions and in the presence of piperazine as an organic amine. In this context we report on the synthesis and crystal structure of the title compound $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2} \mathrm{Cl}_{4}\right]$, (I).


## 2. Structural commentary

The molecular structure of (I) showing the numbering scheme is presented in Fig. 1. The copper(II) atom is chelated by the O atom (O3) of the deprotonated carboxylic group and the pyridine N atom (N1) of the organic ligand, forming a fivemembered chelate ring $\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 3$. Two bridging and one terminal chlorido ligands complete the distorted square-pyramidal coordination of the metal cation. The


Figure 1
The molecular structures of the cationic and anionic components of (I). Displacement ellipsoids are drawn at the $50 \%$ probability level. The nonlabelled atoms are related to the labelled atoms by $-x+2,-y+2,-z+1$;.

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {i }}$ | 0.82 | 1.79 | $2.603(3)$ | 171 |
| $\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{C} 1^{\text {ii }}$ | 0.89 | 2.78 | $3.562(3)$ | 147 |
| $\mathrm{~N} 2-\mathrm{H} 2 A \cdots 3^{\text {ii }}$ | 0.89 | 2.22 | $2.861(3)$ | 129 |
| $\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 1^{\text {iii }}$ | 0.89 | 2.69 | $3.414(3)$ | 139 |
| $\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 2^{\text {iii }}$ | 0.89 | 2.69 | $3.360(3)$ | 133 |
| $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {iv }}$ | 0.93 | 2.49 | $3.402(4)$ | 169 |
| $\mathrm{C} 4-\mathrm{H} 12 \cdots 2^{\text {v }}$ | 0.93 | 2.56 | $3.362(4)$ | 145 |
| $\mathrm{C} 5-\mathrm{H} 13 \cdots \mathrm{Cl} 2$ | 0.93 | 2.71 | $3.269(3)$ | 119 |
| $\mathrm{C} 8-\mathrm{H} 27 A \cdots \mathrm{Cl} 1^{\text {vi }}$ | 0.97 | 2.72 | $3.561(3)$ | 146 |
| $\mathrm{C} 8-\mathrm{H} 27 B \cdots \mathrm{Cl} 2^{\text {vii }}$ | 0.97 | 2.81 | $3.599(3)$ | 139 |
| $\mathrm{C} 9-\mathrm{H} 26 A \cdots \mathrm{O} 2^{\text {viii }}$ | 0.97 | 2.56 | $3.509(4)$ | 165 |
| $\mathrm{C} 9-\mathrm{H} 26 B \cdots \mathrm{Cl} 1^{\text {vi }}$ | 0.97 | 2.93 | $3.713(3)$ | 139 |
| $\mathrm{C} 9-\mathrm{H} 26 B \cdots \mathrm{Cl} 2^{\text {iii }}$ | 0.97 | 2.93 | $3.491(4)$ | 118 |

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (iii) $x, y-1, z$; (iv) $-x+1, y+\frac{1}{2},-z+\frac{3}{2} ;$ (v) $-x+1,-y+1,-z+1 ;$ (vi) $-x+2, y-\frac{3}{2},-z+\frac{1}{2} ; \quad$ (vii) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$; (viii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.
arrangement of the chlorido ligands is such that Cl1 is doubly bridging the two metal cations into a centrosymmetric dimer through edge-sharing. The apical $\mathrm{Cu}-\mathrm{Cl} 1(-x+2,-y+2$, $-z+1$ ) bond length of 2.7853 (9) $\AA$ is significantly longer than the other bridging $\mathrm{Cu}-\mathrm{Cl}$ bond with a length of 2.2632 (8) $\AA$. The square plane is formed by N 1 and O3, both from the pyridine-2,4-dicarboxylate anion, Cl 1 from the bridging chlorido ligand and Cl 2 of the terminal chlorido ligand [2.2272 (9) A]. This type of coordination has been previously described as a transition state between 4 - and 5-coordinate ( Qi et al., 2009). The distortion index ( $\tau$ ) assuming a squarepyramidal environment was calculated as 0.08 using the formula, $\tau=(\beta-\alpha) / 60(\alpha, \beta$ are the largest valence angles) proposed by Addison et al. (1984), which indicates only slight distortions from the ideal value where $\tau=0$. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance in the dimer is 3.5946 (9) $\AA$, with an $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ bond angle of $90.19(3)^{\circ}$ and a $\mathrm{Cl} \cdots \mathrm{Cl}$ separation of 3.5831 (14) $\AA$. The $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ bond lengths are 2.013 (2) and 1.963 (2) A, respectively, and are in good agreement with similar compounds reported in the literature (Goddard et al., 1990; Tynan et al., 2005; Han et al., 2008; Liu et al., 2009; Qi et al., 2009). The chelate angle $\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 1$ of $81.34(9)^{\circ}$ is, as expected, smaller than the $\mathrm{N} 1-\mathrm{Cu}-\mathrm{Cl} 1$ and $\mathrm{O} 3-\mathrm{Cu}-\mathrm{Cl} 2$ bond angles of $170.22(7)$ and $165.23(8)^{\circ}$, respectively. The inorganic anion has a charge of -2 that is compensated by the incorporation of a fully protonated piperazine molecule in the structure. The latter is located about an inversion centre.

## 3. Supramolecular features

The centrosymmetric dimers are linked by pairs of (carboxyl)$\mathrm{O} 1-\mathrm{H} 3 \cdots \mathrm{O} 4$ (carboxylate) hydrogen bonds to form sheets parallel (100). The protonated centrosymmetric amine cations are situated between the sheets and are connected through $\mathrm{N} 2-\mathrm{H} \cdots \mathrm{O} 2$ interactions to one of the carbonyl oxygen atoms and various $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions into a three-dimensional network (Table 1, Fig. 2). The carbonyl oxygen atom O 2 also


Figure 2
The crystal structure of (I), showing $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen-bonding interactions as dashed lines (see Table 1 for numerical details).
acts as a hydrogen-bond acceptor from pyridyl $\mathrm{C}-\mathrm{H}$ groups $(\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2$ and $\mathrm{C} 4-\mathrm{H} 12 \cdots \mathrm{O} 2)$. These interactions, together with $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, further stabilize the three-dimensional supramolecular network structure.

## 4. Database survey

There are several copper(II) dimeric compounds in which the copper atoms are bridged by chlorido ligands (Marsh et al., 1983; Puschmann et al., 2001; Li et al., 2006; Lee, et al., 2008; Han et al., 2008; Øien et al., 2013; Choubey et al., 2015; Golchoubian \& Nateghi 2016; Liu et al., 2009). A search of the Cambridge Structural Database (Version 5.38, November 2016; Groom et al., 2016), revealed numerous di- $\mu$-chlorido bridged copper(II) compounds constructed with ligands having -N,O- donor atoms (Kapoor et al., 2002, 2004; Damous et al., 2013; Lumb et al., 2013; Smolentsev et al., 2014; Qureshi et al., 2016). However, the search did not reveal related complexes derived from pyridine-2,4-dicarboxylic acid and piperazine.

## 5. Synthesis and crystallization

The syntheses were carried out in Ace pressure tubes $\left(15 \mathrm{~cm}^{3}\right)$ and heated in programmable ovens. The reagents used for syntheses were obtained from Aldrich (Analar grade) and used without further purification. In a typical synthesis of (I), $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(0.1996 \mathrm{~g}, \quad 1.0 \mathrm{mmol})$ was stirred together with pyridine-2,4-dicarboxylic acid $(0.1671 \mathrm{~g}$, 1.0 mmol ) in $3.3 \mathrm{~cm}^{3}$ of $n$-butanol. This was followed by the addition of piperazine ( $0.940 \mathrm{~g}, 1.0 \mathrm{mmol}$ ) and the pH of the solution was adjusted to 2 by dropwise addition of $0.16 \mathrm{~cm}^{3}$ of conc. HCl . The resultant mixture was homogenized for 15 min before transferring into the reaction vessel and heated in an oven at 393 K for 48 h . The product, a crop of bluish crystalline material, was washed with distilled water and air-dried.

Table 2
Experimental details.
Crystal data
Chemical formula
$M_{\mathrm{r}}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\mathrm{~A}^{3}\right)$
V
Radiation typ
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.039,0.127,0.86$
No. of reflections
2923
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2} \mathrm{Cl}_{4}\right]$
689.26
Monoclinic, $P 2_{1} / c$
298
11.639 (3), $9.224(2), 11.423(3)$
$105.211(3)$
$1183.4(5)$
2
Mo $K \alpha$
2.30
$0.05 \times 0.02 \times 0.02$

Bruker $S M A R T$ APEX CCD area
$\quad$ detector
Multi-scan $(S A D A B S ;$ Bruker,
$\quad 2008)$
$0.946,0.955$
$14235,2923,2392$
0.050
0.666

$0.039,0.127,0.86$
2923
164
H-atom parameters constrained
$0.55,-0.31$

Computer programs: SMART and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

## 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ (aromatic) and $0.97 \AA$ (aliphatic), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}) . \mathrm{N}-$ and $\mathrm{O}-$ bound H atoms were located in difference maps and were refined with $\mathrm{N}-\mathrm{H}$ distances of $0.89 \AA$ and $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$, respectively.

## Acknowledgements

This work was supported by The World Academy of Sciences for the Advancement of Science in developing countries (TWAS) under Grant 1 2-1 69 RG/CHE/AF/AC-GUNESCO FR: 3240271320 for which grateful acknowledgment is made. AAA is also grateful to the Royal Society of Chemistry for a personal research grant. The authors are thankful for the support of Professor Amitava Choudhury of the Department of Chemistry, Missouri University of Science and Technology, Rolla, USA, for the single-crystal X-ray crystallographic data.

## Funding information

Funding for this research was provided by: Academy of Sciences for the Developing World (award No. 1 2-1 69 RG/ CHE/AF/AC-G -UNESCO FR: 3240271 320).

## References

Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Carlucci, L., Ciani, G. \& Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247-289.
Cheetham, A. K., Férey, G. \& Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.
Choubey, S., Roy, S., Chattopadhayay, S., Bhar, K., Ribas, J., Monfort, M. \& Ghosh, B. K. (2015). Polyhedron, 89, 39-44.

Damous, M., Dénès, G., Bouacida, S., Hamlaoui, M., Merazig, H. \& Daran, J.-C. (2013). Acta Cryst. E69, m488.
Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. \& Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319330.

Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. \& Guillerm, V. (2015). Chem. Soc. Rev. 44, 228-249.

Goddard, R., Hemalatha, B. \& Rajasekharan, M. V. (1990). Acta Cryst. C46, 33-35.
Golchoubian, H. \& Nateghi, S. (2016). J. Coord. Chem. 69, 3192-3205.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Gutschke, S. H., Price, D. J., Powell, A. K. \& Wood, P. T. (2001). Eur. J. Inorg. Chem. pp. 2739-2741.

Han, K.-F., Wu, H.-Y., Wang, Z.-M. \& Guo, H.-Y. (2008). Acta Cryst. E64, m1607-m1608.
Hill, R. J., Long, D. L., Champness, N. R., Hubberstey, P. \& Schröder, M. (2005). Acc. Chem. Res. 38, 335-348.

Jiang, T., Lough, A., Ozin, G. A. \& Bedard, R. L. (1998). J. Mater. Chem. 8, 733-741.
Kapoor, P., Pathak, A., Kapoor, R., Venugopalan, P., Corbella, M., Rodríguez, M., Robles, J. \& Llobet, A. (2002). Inorg. Chem. 41, 6153-6160.
Kapoor, P., Pathak, A., Kaur, P., Venugopalan, P. \& Kapoor, R. (2004). Transition Met. Chem. 29, 251-258.

Lee, H. W., Sengottuvelan, N., Seo, H.-J., Choi, J. S., Kang, S. K. \& Kim, Y.-I. (2008). Bull. Korean Chem. Soc. 29, 1711-1716.
Li, X., Cao, R., Sun, D., Yuan, D., Bi, W., Li, X. \& Wang, Y. (2004). J. Mol. Struct. 694, 205-210.

Li, S.-A., Jin, Y.-C., Xu, T.-T., Wang, D.-Q. \& Gao, J. (2006). Acta Cryst. E62, m3496-m3497.
Li, X., Yang, L., Zhao, L., Wang, X.-L., Shao, K.-Z. \& Su, Z.-M. (2016). Crystal Growth Des., 16, 4374-4382.

Liu, Y.-F., Rong, D.-F., Xia, H.-T. \& Wang, D.-Q. (2009). Acta Cryst. E65, m1492.
Lumb, I., Hundal, M. S., Corbella, M., Gómez, V. \& Hundal, G. (2013). Eur. J. Inorg. Chem. pp. 4799-4811.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
Marsh, W. E., Patel, K. C., Hatfield, W. E. \& Hodgson, D. (1983). Inorg. Chem. 22, 511-515.
Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. \& Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.

Øien, S., Wragg, D. S., Lillerud, K. P. \& Tilset, M. (2013). Acta Cryst. E69, m73-m74.
Puschmann, H., Howard, J. A. K., Soto, B., Bonne, R. \& Au-Alvarez, O. (2001). Acta Cryst. E57, m551-m552.

Qi, Z.-P., Wang, A.-D., Zhang, H. \& Wang, X.-X. (2009). Acta Cryst. E65, m1507-m1508.
Qureshi, N., Yufit, D. S., Steed, K. M., Howard, J. A. K. \& Steed, J. W. (2016). CrystEngComm, 18, 5333-5337.

Rao, C. N. R., Natarajan, S., Choudhury, A., Neeraj, S. \& Ayi, A. A. (2001). Acc. Chem. Res. 34, 80-87.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shi, Z., Li, G., Wang, L., Gao, L., Chen, X., Hua, J. \& Feng, S. (2004). Cryst. Growth Des. 4, 25-27.
Smolentsev, A. I., Lider, E. V., Lavrenova, L. G., Sheludyakova, L. A., Bogomyakov, A. S. \& Vasilevsky, S. F. (2014). Polyhedron, 77, 8188.

Tao, J., Tong, M. L., Shi, J. X., Chen, X. \& Ng, S. W. (2000). Chem. Commun. pp. 2043-2044.
Tynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. \& Kruger, P. E. (2005). CrystEngComm, 7, 90-95.
Wang, Z., Kravtsov, V. C. \& Zaworotko, M. J. (2005). Angew. Chem. Int. Ed. 44, 2877-2880.
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. \& Kim, J. (2003). Nature, 423, 705-714.
Zhao, X. X., Ma, J. P., Dong, Y. B., Huang, R. Q. \& Lai, T. (2007). Cryst. Growth Des. 7, 1058-1068.

## supporting information

# Crystal structure of a chloride-bridged copper(II) dimer: piperazine-1,4-dium 

 bis(di- $\mu$-chlorido-bis[(4-carboxypyridine-2-carboxylato$\kappa^{2} N, O^{2}$ )chloridocuprate(II)]
## Bassey Enyi Inah, Ayi Anyama Ayi and Amit Adhikary

## Computing details

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Piperazine-1,4-dium bis(di- $\mu$-chlorido-bis[(4-carboxypyridine-2-carboxylato- $\kappa^{2} N, O^{2}$ )chloridocuprate(II)]

## Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2} \mathrm{Cl}_{4}\right]$
$M_{r}=689.26$
Monoclinic, $P 2_{1} / c$
$a=11.639$ (3) $\AA$
$b=9.224(2) \AA$
$c=11.423$ (3) $\AA$
$\beta=105.211(3)^{\circ}$
$V=1183.4(5) \AA^{3}$
$Z=2$

## Data collection

Bruker SMART APEX CCD area detector diffractometer
$\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.946, T_{\text {max }}=0.955$
14235 measured reflections

$$
\begin{aligned}
& F(000)=692 \\
& D_{\mathrm{x}}=1.934 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1016 \text { reflections } \\
& \theta=2.9-26.8^{\circ} \\
& \mu=2.30 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Rod, blue } \\
& 0.05 \times 0.02 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.127$
$S=0.86$
2923 reflections
164 parameters
0 restraints
2923 independent reflections
2392 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-15 \rightarrow 15$
$k=-12 \rightarrow 12$
$l=-15 \rightarrow 15$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.55 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e} \AA^{-3}$

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Cu1 | $0.84456(3)$ | $1.01123(4)$ | $0.42216(3)$ | $0.02632(15)$ |
| C11 | $0.99944(6)$ | $1.14015(7)$ | $0.39127(7)$ | $0.02963(19)$ |
| C12 | $0.82884(8)$ | $0.86943(9)$ | $0.26090(7)$ | $0.0431(2)$ |
| O3 | $0.82154(19)$ | $1.1592(2)$ | $0.5374(2)$ | $0.0326(5)$ |
| O4 | $0.7301(2)$ | $1.2063(2)$ | $0.6797(2)$ | $0.0411(6)$ |
| N1 | $0.7122(2)$ | $0.9149(2)$ | $0.4767(2)$ | $0.0244(5)$ |
| O1 | $0.4230(2)$ | $0.8203(3)$ | $0.7170(2)$ | $0.0412(6)$ |
| H3 | 0.379334 | 0.776566 | 0.750692 | $0.062^{*}$ |
| C6 | $0.7489(2)$ | $1.1293(3)$ | $0.5993(3)$ | $0.0259(6)$ |
| N2 | $0.9556(2)$ | $0.0777(3)$ | $0.0881(2)$ | $0.0358(6)$ |
| H2A | 0.959588 | 0.169430 | 0.065288 | $0.043^{*}$ |
| H2B | 0.926778 | 0.077335 | 0.152968 | $0.043^{*}$ |
| C1 | $0.6847(3)$ | $0.9859(3)$ | $0.5683(3)$ | $0.0246(6)$ |
| O2 | $0.4234(2)$ | $0.6091(3)$ | $0.6208(2)$ | $0.0468(6)$ |
| C2 | $0.6029(2)$ | $0.9326(3)$ | $0.6261(3)$ | $0.0261(6)$ |
| H2 | 0.584506 | 0.983758 | 0.688974 | $0.031^{*}$ |
| C8 | $1.0765(3)$ | $0.0148(3)$ | $0.1210(3)$ | $0.0323(7)$ |
| H27A | 1.073784 | -0.081047 | 0.155093 | $0.039^{*}$ |
| H27B | 1.128410 | 0.074758 | 0.182456 | $0.039^{*}$ |
| C7 | $0.4583(3)$ | $0.7319(3)$ | $0.6429(3)$ | $0.0310(6)$ |
| C4 | $0.5776(3)$ | $0.7273(3)$ | $0.4928(3)$ | $0.0308(6)$ |
| H12 | 0.542510 | 0.638592 | 0.465717 | $0.037^{*}$ |
| C5 | $0.6597(3)$ | $0.7892(3)$ | $0.4394(3)$ | $0.0294(6)$ |
| H13 | 0.678695 | 0.741211 | 0.375346 | $0.035^{*}$ |
| C3 | $0.5487(3)$ | $0.7998(3)$ | $0.5872(3)$ | $0.0268(6)$ |
| C9 | $0.8733(3)$ | $-0.0041(3)$ | $-0.0119(3)$ | $0.0367(7)$ |
| H26A | 0.796776 | 0.044487 | -0.034859 | $0.044^{*}$ |
| H26B | 0.861083 | -0.100761 | 0.016075 | $0.044^{*}$ |
|  |  |  |  |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cu 1 | $0.0282(2)$ | $0.0222(2)$ | $0.0335(2)$ | $-0.00475(12)$ | $0.01701(17)$ | $-0.00548(13)$ |
| C 11 | $0.0306(4)$ | $0.0252(3)$ | $0.0368(4)$ | $-0.0053(3)$ | $0.0155(3)$ | $0.0021(3)$ |
| C 2 | $0.0595(5)$ | $0.0385(4)$ | $0.0410(5)$ | $-0.0166(4)$ | $0.0305(4)$ | $-0.0152(3)$ |
| O 3 | $0.0350(11)$ | $0.0255(10)$ | $0.0437(12)$ | $-0.0075(9)$ | $0.0215(10)$ | $-0.0092(9)$ |
| O 4 | $0.0424(13)$ | $0.0372(12)$ | $0.0520(14)$ | $-0.0066(10)$ | $0.0272(11)$ | $-0.0194(10)$ |
| N 1 | $0.0249(11)$ | $0.0239(12)$ | $0.0270(11)$ | $-0.0007(9)$ | $0.0112(9)$ | $-0.0022(9)$ |
| O1 | $0.0441(14)$ | $0.0401(13)$ | $0.0497(14)$ | $-0.0112(11)$ | $0.0306(12)$ | $-0.0032(11)$ |


|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C6 | $0.0219(13)$ | $0.0217(13)$ | $0.0348(15)$ | $-0.0001(10)$ | $0.0086(11)$ | $-0.0051(11)$ |
| N2 | $0.0454(15)$ | $0.0311(14)$ | $0.0334(13)$ | $0.0120(12)$ | $0.0150(12)$ | $0.0001(11)$ |
| C1 | $0.0209(12)$ | $0.0247(14)$ | $0.0281(14)$ | $0.0024(10)$ | $0.0064(11)$ | $-0.0005(10)$ |
| O2 | $0.0573(16)$ | $0.0355(12)$ | $0.0581(16)$ | $-0.0167(11)$ | $0.0337(13)$ | $-0.0040(11)$ |
| C2 | $0.0238(13)$ | $0.0291(14)$ | $0.0264(13)$ | $-0.0003(11)$ | $0.0085(11)$ | $-0.0007(11)$ |
| C8 | $0.0422(18)$ | $0.0228(14)$ | $0.0280(15)$ | $0.0016(12)$ | $0.0027(14)$ | $-0.0002(11)$ |
| C7 | $0.0290(14)$ | $0.0344(16)$ | $0.0291(14)$ | $-0.0046(12)$ | $0.0068(12)$ | $0.0058(12)$ |
| C4 | $0.0309(15)$ | $0.0276(14)$ | $0.0350(15)$ | $-0.0075(12)$ | $0.0106(13)$ | $-0.0022(12)$ |
| C5 | $0.0320(15)$ | $0.0288(15)$ | $0.0300(14)$ | $-0.0037(12)$ | $0.0130(12)$ | $-0.0053(11)$ |
| C3 | $0.0240(13)$ | $0.0276(14)$ | $0.0291(14)$ | $0.0002(11)$ | $0.0076(11)$ | $0.0037(11)$ |
| C9 | $0.0313(17)$ | $0.0374(18)$ | $0.0416(19)$ | $0.0024(12)$ | $0.0099(15)$ | $0.0037(13)$ |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| $\mathrm{Cu} 1-\mathrm{O} 3$ | 1.963 (2) | N2-H2B | 0.8900 |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu} 1-\mathrm{N} 1$ | 2.013 (2) | $\mathrm{C} 1-\mathrm{C} 2$ | 1.384 (4) |
| $\mathrm{Cu} 1-\mathrm{Cl} 2$ | 2.2272 (9) | O2-C7 | 1.207 (4) |
| $\mathrm{Cu} 1-\mathrm{Cl} 1$ | 2.2632 (8) | C2-C3 | 1.396 (4) |
| $\mathrm{Cu} 1-\mathrm{Cl1}^{\text {i }}$ | 2.7853 (9) | C2-H2 | 0.9300 |
| O3-C6 | 1.267 (3) | C8-C9 ${ }^{\text {ii }}$ | 1.512 (5) |
| O4-C6 | 1.225 (3) | C8-H27A | 0.9700 |
| N1-C5 | 1.327 (4) | C8-H27B | 0.9700 |
| N1-C1 | 1.343 (4) | C7-C3 | 1.502 (4) |
| O1-C7 | 1.316 (4) | C4-C3 | 1.383 (4) |
| O1-H3 | 0.8200 | C4-C5 | 1.385 (4) |
| C6-C1 | 1.515 (4) | C4-H12 | 0.9300 |
| N2-C8 | 1.476 (4) | C5-H13 | 0.9300 |
| N2-C9 | 1.490 (4) | C9-H26A | 0.9700 |
| N2-H2A | 0.8900 | C9-H26B | 0.9700 |
| $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$ | 81.34 (9) | C3-C2-H2 | 121.0 |
| $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{Cl} 2$ | 165.23 (8) | $\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9^{\text {ii }}$ | 111.4 (3) |
| $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$ | 95.35 (7) | N2-C8-H27A | 109.4 |
| O3-Cu1-Cl1 | 89.63 (6) | C9i- ${ }^{\text {ii }} 8$ - H 27 A | 109.4 |
| N1-Cu1-Cl1 | 170.22 (7) | N2-C8-H27B | 109.4 |
| $\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$ | 94.33 (3) | C9ii- ${ }^{\text {ii }} 8-\mathrm{H} 27 \mathrm{~B}$ | 109.4 |
| C6-O3-Cu1 | 116.83 (18) | H27A-C8-H27B | 108.0 |
| C5-N1-C1 | 119.5 (2) | $\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1$ | 124.8 (3) |
| C5-N1-Cu1 | 127.7 (2) | $\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 3$ | 122.5 (3) |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$ | 112.59 (18) | O1-C7-C3 | 112.7 (3) |
| C7-O1-H3 | 109.5 | C3-C4-C5 | 118.7 (3) |
| O4-C6-O3 | 124.7 (3) | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 12$ | 120.6 |
| O4-C6-C1 | 120.5 (3) | C5-C4-H12 | 120.6 |
| O3-C6-C1 | 114.8 (2) | N1-C5-C4 | 122.1 (3) |
| C8-N2-C9 | 112.0 (2) | N1-C5-H13 | 118.9 |
| C8-N2-H2A | 109.2 | C4-C5-H13 | 118.9 |
| C9-N2-H2A | 109.2 | C4-C3-C2 | 119.4 (3) |
| C8-N2-H2B | 109.2 | C4-C3-C7 | 118.0 (3) |

supporting information

| $\mathrm{C} 9-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$ | 109.2 | $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$ | $122.6(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$ | 107.9 | $\mathrm{~N} 2-\mathrm{C} 9-\mathrm{C} 8^{\mathrm{ii}}$ | $110.8(3)$ |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ | $122.2(3)$ | $\mathrm{N} 2-\mathrm{C} 9-\mathrm{H} 26 \mathrm{~A}$ | 109.5 |
| $\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 6$ | $113.9(3)$ | $\mathrm{C} 8 \mathrm{C} 9-\mathrm{H} 26 \mathrm{~A}$ | 109.5 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$ | $123.9(3)$ | $\mathrm{N} 2-\mathrm{C} 9-\mathrm{H} 26 \mathrm{~B}$ | 109.5 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $118.0(3)$ | $\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 26 \mathrm{~B}$ | 109.5 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$ | 121.0 | $\mathrm{H} 26 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 26 \mathrm{~B}$ | 108.1 |

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $-x+2,-y,-z$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots \mathrm{A}$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 1-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {iii }}$ | 0.82 | 1.79 | 2.603 (3) | 171 |
| $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl1} 1^{\text {iv }}$ | 0.89 | 2.78 | 3.562 (3) | 147 |
| $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3^{\text {iv }}$ | 0.89 | 2.22 | 2.861 (3) | 129 |
| $\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl1}{ }^{\text {v }}$ | 0.89 | 2.69 | 3.414 (3) | 139 |
| $\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 2^{\text {v }}$ | 0.89 | 2.69 | 3.360 (3) | 133 |
| $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {vi }}$ | 0.93 | 2.49 | 3.402 (4) | 169 |
| $\mathrm{C} 4-\mathrm{H} 12 \cdots \mathrm{O} 2^{\text {vii }}$ | 0.93 | 2.56 | 3.362 (4) | 145 |
| C5- $\mathrm{H} 13 \cdots \mathrm{Cl} 2$ | 0.93 | 2.71 | 3.269 (3) | 119 |
| $\mathrm{C} 8-\mathrm{H} 27 A \cdots \mathrm{Cl1}{ }^{\text {viii }}$ | 0.97 | 2.72 | 3.561 (3) | 146 |
| $\mathrm{C} 8-\mathrm{H} 27 B \cdots \mathrm{Cl} 2^{\text {ix }}$ | 0.97 | 2.81 | 3.599 (3) | 139 |
| $\mathrm{C} 9-\mathrm{H} 26 A^{\cdots} \mathrm{O}^{\mathrm{x}}$ | 0.97 | 2.56 | 3.509 (4) | 165 |
| C9—H26B $\cdots{ }^{\text {Cl1 }}{ }^{\text {viii }}$ | 0.97 | 2.93 | 3.713 (3) | 139 |
| C9-H26B ${ }^{\text {C }} \mathrm{Cl}^{\text {v }}$ | 0.97 | 2.93 | 3.491 (4) | 118 |

Symmetry codes: (iii) $-x+1, y-1 / 2,-z+3 / 2$; (iv) $x,-y+3 / 2, z-1 / 2$; (v) $x, y-1, z$; (vi) $-x+1, y+1 / 2,-z+3 / 2$; (vii) $-x+1,-y+1,-z+1$; (viii) $-x+2, y-3 / 2$, $-z+1 / 2$; (ix) $-x+2, y-1 / 2,-z+1 / 2$; $(\mathrm{x})-x+1, y-1 / 2,-z+1 / 2$.

