CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 7 January 2017
Accepted 16 January 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; iridium; 1,5-cyclooctadiene; five-coordinate complex.

CCDC reference: 1527918

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of chloridobis[(1,2,5,6- η)-cyclo-octa-1,5-diene]iridium(I)

A. K. Fazlur Rahman, Miles Wilklow-Marnell, William W. Brennessel and William D. Jones*

Department of Chemistry, University of Rochester, Rochester, NY 14627, USA. *Correspondence e-mail: william.jones@rochester.edu

The title complex, $\left[\operatorname{IrCl}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$, was synthesized directly from the reaction of $\mathrm{IrCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with a large excess of $\operatorname{cod}(\operatorname{cod}=$ cycloocta- 1,5 -diene $)$ in alcoholic solvent. Large yellow needles were obtained by the slow cooling of a hot solution. Based on the positions of the chloride ligand and the mid-points of the four $\mathrm{C}=\mathrm{C}$ bonds, the molecule adopts a five-coordinate geometry that is midway between square pyramidal and trigonal bipyramidal. The material crystallizes in the orthorhombic space group $P b c a$ with one molecule per asymmetric unit in a general position and shows no significant intermolecular interactions. Individual molecules are aligned along [010], and these rows form a pseudo-hexagonal packing arrangement.

1. Chemical context

First reported in 1966 (Winkhaus \& Singer, 1966) [$\operatorname{Ir}(\operatorname{cod})(\mu-$ $\mathrm{Cl})]_{2}\left(\operatorname{cod}=1,5\right.$-cyclooctadiene, $\left.\mathrm{C}_{8} \mathrm{H}_{12}\right)$ is perhaps the most common organometallic precursor used in the synthesis of a variety of organoiridium compounds (Leigh \& Richards, 1982). $[\operatorname{Ir}(\operatorname{cod})(\mu-\mathrm{Cl})]_{2}$ can be prepared using either $\mathrm{Na}_{2} \mathrm{IrCl}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ or $\operatorname{IrCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ as the metal-containing precursor (Herde et al., 1974). A few years later it was reported that a cyclooctene-ligated dimer $\left[\operatorname{Ir}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}(\mu-\mathrm{Cl})\right]_{2}$

Reaction scheme showing the formation of the mixture of $[\operatorname{Ir}(\operatorname{cod})(\mu-$ $\mathrm{Cl})]_{2}$ and $\mathrm{IrCl}(\operatorname{cod})_{2}$. As the ethanol is removed under vacuum the solution becomes rich in cod, which drives the formation of $\mathrm{IrCl}(\operatorname{cod})_{2}$. Loss of cod regenerates the dimer.
had been synthesized from the reaction of ammonium hexachloridoiridiate(III) hydrate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{IrCl}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$, with cyclooctene in a mixture of 2-propanol and water (Onderdelinden \& van der Ent, 1972). In all three cases, $\mathrm{Ir}^{\mathrm{IV}}$ or $\mathrm{Ir}^{\mathrm{III}}$ is reduced to Ir^{I} by oxidation of the alcoholic solvent. Upon suspension in pure cod, $\left[\operatorname{Ir}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}(\mu-\mathrm{Cl})\right]_{2}$ reacted to form mononuclear $\operatorname{IrCl}(\operatorname{cod})_{2}$, which was then characterized by infra-red spectroscopy and elemental analysis (Onderdelinden \& van der Ent, 1972). Analogous to thermally unstable $\operatorname{IrCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{4}$, which releases ethylene to form the (slightly) more stable dimer $\left[\operatorname{Ir}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(\mu-\mathrm{Cl})\right]_{2}$ (Onderdelinden \& van der Ent, 1972), $\operatorname{IrCl}(\operatorname{cod})_{2}$ readily generates stable $[\operatorname{Ir}(\operatorname{cod})(\mu-\mathrm{Cl})]_{2}$ with the loss of one equivalent of cod per iridium. We have found that if Herde's preparation using $\mathrm{IrCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is carried out with a large excess of $\operatorname{cod}(10 \times)$, the product isolated after removal of the alcoholic solvent is $\mathrm{IrCl}(\mathrm{cod})_{2}$ (Fig. 1). This was apparent as the red-orange reaction mixture, which contained a mixture of red $[\operatorname{Ir}(\operatorname{cod})(\mu-\mathrm{Cl})]_{2}$ and yellow $\mathrm{IrCl}(\operatorname{cod})_{2}$, became pale yellow. Recrystallization from refluxing methanol/cod ($7: 1, v: v$) followed by cooling produced yellow needles of $\mathrm{IrCl}(\operatorname{cod})_{2}$ suitable for diffraction studies.

Herein we report the isolation and results of the single structure determination of mononuclear $\mathrm{IrCl}(\operatorname{cod})_{2}$ and compare it to related $\operatorname{Ir} X(\text { diene })_{2}\left(X=\mathrm{Cl}, \mathrm{SnMe}_{3}, \mathrm{SnCl}_{3}\right)$ complexes.

2. Structural commentary

Our single-crystal X-ray diffraction study confirmed the molecule to be mononuclear $\operatorname{IrCl}(\operatorname{cod})_{2}$, in which the two cod ligands are bound in an $\eta^{2}: \eta^{2}$ fashion (Fig. 2). The material crystallizes in the orthorhombic space group Pbca, with one molecule per asymmetric unit in a general position. The fivecoordinate complex adopts a geometry that is midway between square pyramidal (SP) and trigonal bipyramidal (TBP), with a τ_{5} parameter of 0.52 (Addison et al., 1984), calculated using the mid-points of the $\mathrm{C}=\mathrm{C}$ double bonds and the axial chlorido ligand. The elongation of the cod double bonds (Table 1) compared to those of non-coordinating cod, 1.333 (4) and 1.334 (4) A (Byrn et al., 1990), or to that of free ethylene, $1.333 \AA$ (Lide, 2002-2003), is consistent with back

Table 1
Selected bond lengths $(\AA$).

Ir1-Cl1	$2.5573(8)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.418(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.437(5)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.389(4)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.389(4)$		

donation to the π^{*} orbitals from a low-valent iridium atom, formally Ir^{I}. The elongations are asymmetric, with one double bond from each cod ligand being larger than the other by 0.048 (6) and 0.029 (6) A, respectively, for cod ligands $\mathrm{C} 1-\mathrm{C} 8$ and C9-C16. Likewise the distances between Ir and the midpoints of the $\mathrm{C}=\mathrm{C}$ bonds also show this asymmetry with two shorter distances, $\mathrm{Ir}-(\mathrm{C} 1 / \mathrm{C} 2)=2.047(4)$ and $\mathrm{Ir}-(\mathrm{C} 9 / \mathrm{C} 10)=$ 2.069 (4) \AA, and two longer distances, $\mathrm{Ir}-(\mathrm{C} 5 / \mathrm{C} 6)=2.138$ (4) and $\operatorname{Ir}-(\mathrm{C} 13 / \mathrm{C} 14)=2.141$ (4) \AA (Table 2). This is likely due to its intermediacy between the geometric extremes of SP and TBP. Ideal SP geometry $\left(\tau_{5}=0\right)$ would have very similar Ir-mid-point $(\mathrm{C}=\mathrm{C})$ distances as they would involve the same metal and ligand orbitals, while ideal TBP geometry $\left(\tau_{5}=1\right)$ would involve different orbitals, dependent upon on whether the ligand's $\mathrm{C}=\mathrm{C}$ bond lay in an axial or an equatorial position. We see the former (SP) in $\operatorname{Ir}\left(\mathrm{SnCl}_{3}\right)(\mathrm{nbd})_{2}(\mathrm{nbd}=$ norbornadiene; Malosh et al., 2013), for which $\tau_{5}=0.06$ and the $\operatorname{Ir}-$ mid-point $(\mathrm{C}=\mathrm{C})$ distances are similar, ranging from 2.067 (4) to 2.089 (4) \AA. An example towards TBP is found in $\left[\mathrm{IrCl}(\operatorname{cod})\left(\mathrm{CC}^{*}\right)\right]^{+}\left(\mathrm{CC}^{*}=\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\left(\eta^{6}-(1,1-\mathrm{di}(2-\right.\right.\right.$ propen-

Figure 2
The molecular structure of $\mathrm{IrCl}(\operatorname{cod})_{2}$, with displacement ellipsoids drawn at the 50% probability level.

Table 2
Comparison of bond lengths (\AA) and τ_{5} parameters for selected five-coordinate Ir complexes containing four substituted ethylene ligands and a terminal chlorido or stannato ligand, according to the labeling in Fig. 3.

Feature	$\mathrm{IrCl}(\operatorname{cod})_{2}$	COIRSN ${ }^{a}$	DIVPAB b	DIVNUT ${ }^{c}$	DIVPIJ ${ }^{d}$	PUYCOB ${ }^{e}$
$M-X^{f}$	2.5573 (8)	2.642 (2)	2.7090 (4)	2.6606 (4)	2.5850 (9)	2.3883 (15)
$M-[A]$	2.047 (4)	2.068 (31)	2.062 (4)	2.067 (4)	2.101 (5)	2.048 (8)
$M-[B]$	2.138 (4)	2.135 (26)	2.114 (4)	2.089 (4)	2.119 (5)	2.057 (8)
$M-[C]$	2.069 (4)	2.053 (34)	2.069 (4)	2.076 (4)	2.104 (5)	2.118 (8)
$M-[D]$	2.141 (4)	2.134 (24)	2.126 (4)	2.089 (4)	2.109 (5)	2.170 (8)
$\mathrm{C}=\mathrm{C}[A]$	1.437 (5)	1.320 (40)	1.425 (5)	1.408 (6)	1.415(8)	1.395 (9)
$\mathrm{C}=\mathrm{C}[B]$	1.389 (4)	1.450 (44)	1.416 (5)	1.415 (7)	1.389 (7)	1.372 (12)
$\mathrm{C}=\mathrm{C}[C]$	1.418 (5)	1.361 (44)	1.411 (5)	1.400 (7)	1.394 (7)	1.393 (8)
$\mathrm{C}=\mathrm{C}[D]$	1.389 (4)	1.375 (41)	1.407 (5)	1.423 (7)	1.404 (8)	1.386 (9)
$\tau_{5}{ }^{g}$	0.52	0.53	0.55	0.10	0.06	0.76

Notes: (a) $\operatorname{Ir}\left(\mathrm{SnCl}_{3}\right)(\operatorname{cod})_{2}$ (Porta et al., 1967); (b) $\operatorname{Ir}\left(\mathrm{SnMe}_{3}\right)(\operatorname{cod})_{2}\left(\right.$ Malosh et al., 2013); (c) $\operatorname{Ir}\left(\mathrm{SnMe}_{3}\right)(\mathrm{nbd})_{2}$ (Malosh et al., 2013); (d) $\operatorname{Ir}\left(\mathrm{SnCl}_{3}\right)(\mathrm{nbd})_{2}(\operatorname{Malosh}$ et al., 2013); (e) $\left[\mathrm{IrCl}(\operatorname{cod})\left(\mathrm{CC}^{*}\right)\right]^{+}$(Marcén et al., 2002); (f) $X=\mathrm{Sn}$ or Cl; (g) Addison et al. (1984).
yl)-3-butenyl)benzene)]; Marcén et al., 2002), for which $\tau_{5}=$ 0.76 .

3. Supramolecular features

Although there are no significant intermolecular interactions, the packing has adopted a supramolecular arrangement. Individual molecules are aligned in columns parallel to [010], which are then arranged in an overall pseudo-hexagonal packing (Fig. 4).

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.38, update No. 1, November 2016, Groom et al., 2016) revealed just a few related five-coordinate iridium complexes with four unconjugated substituted ethylene

Figure 3
Lettering scheme used for bonds in Table 2. Letters $A-D$ are the midpoints of the $\mathrm{C}=\mathrm{C}$ bonds. In cases of cyclodienes, consecutive letters A, B and/or C, D are on the same ligand; axial ligand X is $\operatorname{Sn} R_{3}$ or Cl .
ligands and a halido or stannato ligand in the fifth coordination site: $\mathrm{Ir}\left(\mathrm{SnCl}_{3}\right)(\operatorname{cod})_{2}(\mathrm{CSD}$ refcode COIRSN; Porta et al., 1967), $\operatorname{Ir}\left(\mathrm{SnMe}_{3}\right)(\operatorname{cod})_{2}$ (refcode DIVPAB), $\operatorname{Ir}\left(\mathrm{SnCl}_{3}\right)(\mathrm{nbd})_{2}$ (refcode DIVPIJ), $\operatorname{Ir}\left(\mathrm{SnMe}_{3}\right)(\mathrm{nbd})_{2}$ (refcode DIVNUT); Malosh et al., 2013), and $\left[\operatorname{IrCl}(\operatorname{cod})\left(\mathrm{CC}^{*}\right)\right]^{+}$(refcode PUYCOB; Marcén et al., 2002). A report on the structure of $\operatorname{IrCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{4}$ exists, but no positional parameters were given (van der Ent \& van Soest, 1970), which is unfortunate because a comparison of this species with $\mathrm{IrCl}(\operatorname{cod})_{2}$ would ostensibly show how the bite-angle restrictions imposed by the cod rings affect the overall geometry. The geometries of the two tincontaining compounds with cod are closely related to that of the title complex. Both $\operatorname{Ir}\left(\mathrm{SnCl}_{3}\right)(\operatorname{cod})_{2}$ and $\operatorname{Ir}\left(\mathrm{SnMe}_{3}\right)(\operatorname{cod})_{2}$ exhibit the same long-short variation of the Ir -midpoint $(\mathrm{C}=\mathrm{C})$ bond lengths within each cod ligand and have similar τ_{5} parameters of 0.53 and 0.55 , respectively (Table 2). Malosh and coworkers concluded that the bulk of the cod ligands relative to that of the nbd ligands was responsible for the geometric distortion from SP geometry, specifically due to $\mathrm{CH}_{2} \cdots \mathrm{Me}$ and $\mathrm{CH}_{2} \cdots \mathrm{Cl}$ repulsions (Malosh et al., 2013). And indeed the two nbd complexes have near-perfect $\mathrm{SP} \tau_{5}$ values of 0.10 and 0.06 . In complex $\left[\mathrm{IrCl}(\operatorname{cod})\left(\mathrm{CC}^{*}\right)\right]^{+}$, the non-cod diene is part of a 1,1-di(2-propenyl)-3-butenyl)benzene unit that is η^{6}-coordinating to an $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$cationic fragment. The pentacoordinated saturated (18 electron) iridium atom approaches a TBP geometry more than the other complexes mentioned $\left(\tau_{5}=0.76\right)$, with the two apical positions being occupied by one $\mathrm{C}=\mathrm{C}$ bond of the cod ligand and the chlorido ligand. The angles in the equatorial plane range between 109.73 (17) and $126.61(16)^{\circ}$. The restriction of the cod ligand with its bite angle of 84.9 (2) ${ }^{\circ}$ prevents the structure from ever achieving perfect TBP geometry, and this holds more so for structures with nbd ligands whose bite angles are even more acute. The $\operatorname{Ir}-$ mid-point $(\mathrm{C}=\mathrm{C})$ bond lengths differ, showing significantly longer bond lengths to the allylic $\mathrm{C}=\mathrm{C}$ centroids [avg. 2.144 (11) \AA] than to the $\operatorname{cod} \mathrm{C}=\mathrm{C}$ diolefin centroids [avg. 2.052 (11) \AA]. The terminal $\mathrm{Ir}-\mathrm{Cl}$ distance in $\mathrm{IrCl}(\operatorname{cod})_{2}$ of 2.5573 (8) \AA is longer than all of the 214 structures with five-coordinate iridium in the CSD containing an $\operatorname{IrCl}\left(\eta^{2}: \eta^{2}\right.$ -

Figure 4
Pseudo-hexagonal arrangement of rows of molecules aligned along [010].
cod) fragment (avg. $2.368 \AA$), which may be attributable to its tendency to form the well-known stable cationic complex, $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right]^{+}$, whose structure (refcode TUQWOS) displays the anticipated d^{8} square-planar geometry with $\left[\mathrm{BAr}^{\mathrm{F}}\right]^{-}$\{tetra-kis[3,5-bis(trifluoromethyl)phenyl]borate\} as the non-coordinating anion (Woodmansee et al., 2010).

5. Synthesis and crystallization

All operations and routine manipulations were performed under a nitrogen atmosphere, either on a high-vacuum line using modified Schlenk techniques or in a Vacuum Atmospheres Company Dri-Lab. A preparation of $\mathrm{IrCl}(\mathrm{cod})_{2}$ via a cyclooctene-ligated dimer has been reported previously (Onderdelinden \& van der Ent, 1972).

A two-necked round-bottom flask was charged with $\mathrm{IrCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(6.0 \mathrm{~g}, 0.017 \mathrm{~mol})$ and $\operatorname{cod}(20 \mathrm{~g}, 0.18 \mathrm{~mol})$ in 80 ml of ethanol under nitrogen. The reaction mixture was refluxed for 24 h , followed by removal of the solvent under vacuum. As the ethanol evaporated, the red-orange solution became more yellow as the cod concentration increased, leading to the isolation of a yellow solid ($5.32 \mathrm{~g}, 70.5 \%$). The product was recrystallized by refluxing in a mixture 35 ml of methanol and 5 ml of cod, followed by cooling to obtain shiny yellow needles of $\operatorname{IrCl}(\operatorname{cod})_{2}(5.06 \mathrm{~g}, 67.0 \%)$.

Table 3
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{IrCl}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$
M_{r}	444.00
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	100
$a, b, c(\AA)$	$12.8756(8), 13.3719(8)$,
$V\left(\AA^{3}\right)$	$15.9033(10)$
Z	$2738.1(3)$
Radiation type	8
$\mu\left(\mathrm{~mm}^{-1}\right)$	Mo $\mathrm{K} \alpha$
Crystal size (mm)	9.93
	$0.24 \times 0.20 \times 0.20$
Data collection	
Diffractometer	Bruker SMART APEXII CCD
	platform
Absorption correction	Multi-scan $(S A D A B S ;$ Krause $e t$
	al., 2015)
$T_{\text {min }}, T_{\text {max }}$	$0.173,0.278$
No. of measured, independent and	$83189,7755,5394$
\quad observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.112
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	0.883
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.035,0.072,1.01$
No. of reflections	7755
No. of parameters	163
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	$1.34,-1.86$

[^0]
6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were treated in the ridingmodel approximation, with $\mathrm{C}($ methine $)-\mathrm{H}=1.00 \mathrm{~A}$, $C($ methylene $)-\mathrm{H}=0.99 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The maximum and minimum electron densities are found 1.09 and $0.55 \AA$, respectively, from the iridium atom.

Acknowledgements

The authors acknowledge support by the NSF under the CCI Center for Enabling New Technologies through Catalysis (CENTC), CHE-1205189. AKFR thanks the NSF CENTC REU program for support.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Bruker (2016). APEX3 and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.
Byrn, M. P., Curtis, C. J., Khan, S. I., Sawin, P. A., Tsurumi, R. \& Strouse, C. E. (1990). J. Am. Chem. Soc. 112, 1865-1874.
Ent, A. van der \& van Soest, T. C. (1970). Chem. Commun. pp. 225226.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Herde, J. L., Lambert, J. C. \& Senoff, C. V. (1974). Inorg. Synth. 15, 18-20.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Leigh, G. J. \& Richards, R. L. (1982). In Comprehensive Organometallic Chemistry: the synthesis, reactions, and structures of organometallic compounds, edited by G. Wilkinson, F. G. A. Stone \& E. W. Abel, Vol. 5, pp. 599-603. New York: Pergamon Press.
Lide, D. R. (2002-2003). Chem. Phys. 83rd ed. Florida: CRC Press.
Malosh, T. J., Shapley, J. R., Lawson, R. J., Hay, D. N. T. \& Rohrabaugh, T. N. Jr (2013). J. Organomet. Chem. 745-746, 98105.

Marcén, S., Jiménez, M. V., Dobrinovich, I. T., Lahoz, F. J., Oro, L. A., Ruiz, J. \& Astruc, D. (2002). Organometallics, 21, 326-330.
Onderdelinden, A. L. \& van der Ent, A. (1972). Inorg. Chim. Acta, 6, 420-426.
Porta, P., Powell, H. M., Mawby, R. J. \& Venanzi, L. M. (1967). J. Chem. Soc. A, pp. 455-465.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Winkhaus, G. \& Singer, H. (1966). Chem. Ber. 99, 3610-3618.
Woodmansee, D. H., Müller, M.-A., Neuburger, M. \& Pfaltz, A. (2010). Chem. Sci. 1, 72-78.

supporting information

Crystal structure of chloridobis[(1,2,5,6-ף)-cycloocta-1,5-diene]iridium(I)

A. K. Fazlur Rahman, Miles Wilklow-Marnell, William W. Brennessel and William D. Jones

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Chloridobis[(1,2,5,6- η)-cycloocta-1,5-diene]iridium(I)

Crystal data

$\left[\operatorname{IrCl}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$
$M_{r}=444.00$
Orthorhombic, Pbca
$a=12.8756$ (8) \AA
$b=13.3719$ (8) \AA
$c=15.9033$ (10) \AA
$V=2738.1(3) \AA^{3}$
$Z=8$
$F(000)=1712$

Data collection

Bruker SMART APEXII CCD platform diffractometer
Radiation source: fine-focus sealed tube ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.173, T_{\text {max }}=0.278$
83189 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.072$
$S=1.01$
7755 reflections
163 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$D_{\mathrm{x}}=2.154 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5121 reflections
$\theta=2.5-29.0^{\circ}$
$\mu=9.93 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, yellow
$0.24 \times 0.20 \times 0.20 \mathrm{~mm}$

7755 independent reflections
5394 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.112$
$\theta_{\text {max }}=38.9^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-22 \rightarrow 22$
$k=-23 \rightarrow 23$
$l=-27 \rightarrow 27$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0214 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.34 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.86 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ir1	0.27908 (2)	0.39530 (2)	0.59862 (2)	0.00769 (3)
Cl1	0.13983 (6)	0.50996 (6)	0.66069 (5)	0.01377 (14)
C1	0.1656 (3)	0.2813 (2)	0.5723 (2)	0.0116 (5)
H1A	0.145496	0.241248	0.622824	0.014*
C2	0.2626 (2)	0.2509 (2)	0.5357 (2)	0.0123 (6)
H2A	0.296862	0.194607	0.566472	0.015*
C3	0.2855 (3)	0.2514 (3)	0.4419 (2)	0.0143 (6)
H3A	0.219685	0.241850	0.410691	0.017*
Н3 В	0.331572	0.194314	0.428387	0.017*
C4	0.3373 (3)	0.3486 (3)	0.4120 (2)	0.0157 (6)
H4A	0.413620	0.341604	0.416347	0.019*
H4B	0.319781	0.360032	0.352151	0.019*
C5	0.3028 (3)	0.4380 (2)	0.4632 (2)	0.0126 (6)
H5A	0.347039	0.498657	0.455193	0.015*
C6	0.2005 (2)	0.4593 (2)	0.4845 (2)	0.0114 (6)
H6A	0.186019	0.532519	0.489222	0.014*
C7	0.1063 (3)	0.3986 (2)	0.4565 (2)	0.0142 (6)
H7A	0.122928	0.363524	0.403371	0.017*
H7B	0.047558	0.444498	0.445506	0.017*
C8	0.0736 (3)	0.3211 (3)	0.5234 (2)	0.0157 (6)
H8A	0.023939	0.352582	0.562866	0.019*
H8B	0.037702	0.264779	0.495361	0.019*
C9	0.4463 (2)	0.4276 (2)	0.5992 (2)	0.0129 (5)
H9A	0.476894	0.435608	0.541763	0.015*
C10	0.3907 (2)	0.5127 (2)	0.6275 (2)	0.0127 (6)
H10A	0.390267	0.569889	0.587016	0.015*
C11	0.3863 (3)	0.5434 (2)	0.7186 (2)	0.0145 (6)
H11A	0.334721	0.597717	0.724955	0.017*
H11B	0.454933	0.570368	0.735239	0.017*
C12	0.3573 (3)	0.4571 (2)	0.7786 (2)	0.0143 (6)
H12A	0.421967	0.428574	0.802348	0.017*
H12B	0.316321	0.484671	0.825894	0.017*
C13	0.2957 (3)	0.3738 (2)	0.7378 (2)	0.0122 (6)
H13A	0.228508	0.359314	0.766834	0.015*
C14	0.3391 (3)	0.2906 (2)	0.6990 (2)	0.0121 (5)
H14A	0.296863	0.228253	0.705481	0.014*
C15	0.4533 (3)	0.2717 (2)	0.6889 (2)	0.0143 (6)
H15A	0.463587	0.216505	0.648278	0.017*
H15B	0.482493	0.250336	0.743567	0.017*

C16	$0.5120(2)$	$0.3639(2)$	$0.6581(2)$	$0.0132(6)$
H16A	0.533137	0.404768	0.707119	0.016^{*}
H16B	0.575745	0.342441	0.628395	0.016^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ir1	$0.00792(5)$	$0.00752(5)$	$0.00763(5)$	$-0.00044(4)$	$-0.00014(4)$	$0.00038(4)$
C11	$0.0124(3)$	$0.0145(3)$	$0.0144(4)$	$0.0035(3)$	$0.0018(3)$	$0.0005(3)$
C1	$0.0128(13)$	$0.0107(13)$	$0.0111(13)$	$-0.0039(11)$	$-0.0013(11)$	$0.0010(10)$
C2	$0.0142(14)$	$0.0104(13)$	$0.0123(14)$	$-0.0015(11)$	$-0.0020(11)$	$-0.0017(11)$
C3	$0.0144(14)$	$0.0176(14)$	$0.0109(14)$	$-0.0007(12)$	$-0.0019(12)$	$-0.0048(11)$
C4	$0.0157(14)$	$0.0192(15)$	$0.0124(15)$	$0.0007(12)$	$0.0012(12)$	$-0.0017(12)$
C5	$0.0131(13)$	$0.0136(14)$	$0.0112(14)$	$-0.0016(11)$	$0.0016(11)$	$0.0035(11)$
C6	$0.0152(14)$	$0.0103(13)$	$0.0088(13)$	$0.0003(10)$	$-0.0017(11)$	$0.0034(10)$
C7	$0.0114(13)$	$0.0173(14)$	$0.0138(14)$	$-0.0011(12)$	$-0.0040(11)$	$0.0007(12)$
C8	$0.0131(14)$	$0.0182(15)$	$0.0157(16)$	$-0.0057(12)$	$-0.0012(12)$	$-0.0014(12)$
C9	$0.0117(13)$	$0.0132(13)$	$0.0137(14)$	$0.0000(10)$	$0.0007(12)$	$-0.0007(12)$
C10	$0.0136(13)$	$0.0109(13)$	$0.0137(15)$	$-0.0019(11)$	$0.0017(12)$	$-0.0002(11)$
C11	$0.0163(14)$	$0.0125(14)$	$0.0148(16)$	$-0.0018(11)$	$-0.0025(12)$	$-0.0040(11)$
C12	$0.0153(14)$	$0.0170(15)$	$0.0106(14)$	$0.0025(12)$	$-0.0018(11)$	$-0.0025(11)$
C13	$0.0145(14)$	$0.0146(14)$	$0.0076(13)$	$0.0001(11)$	$0.0011(11)$	$-0.0005(10)$
C14	$0.0159(14)$	$0.0109(13)$	$0.0094(13)$	$-0.0004(11)$	$-0.0012(12)$	$0.0043(10)$
C15	$0.0150(14)$	$0.0121(14)$	$0.0158(16)$	$0.0046(11)$	$-0.0035(12)$	$-0.0004(11)$
C16	$0.0106(13)$	$0.0153(14)$	$0.0137(15)$	$0.0026(11)$	$-0.0026(11)$	$-0.0022(12)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Ir1—C1	$2.152(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9900
$\mathrm{Ir} 1-\mathrm{C} 10$	$2.178(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9900
$\mathrm{Ir} 1-\mathrm{C} 2$	$2.185(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9900
$\mathrm{Ir} 1-\mathrm{C} 9$	$2.196(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9900
$\mathrm{Ir} 1-\mathrm{C} 13$	$2.242(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.418(5)$
$\mathrm{Ir} 1-\mathrm{C} 6$	$2.248(3)$	$\mathrm{C} 9-\mathrm{C} 16$	$1.522(5)$
$\mathrm{Ir} 1-\mathrm{C} 5$	$2.249(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	1.0000
$\mathrm{Ir} 1-\mathrm{C} 14$	$2.260(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.506(5)$
$\mathrm{Ir} 1-\mathrm{C} 11$	$2.5573(8)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	1.0000
$\mathrm{C} 1-\mathrm{C} 2$	$1.437(5)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.543(5)$
$\mathrm{C} 1-\mathrm{C} 8$	$1.514(5)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9900
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	1.0000	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9900
$\mathrm{C} 2-\mathrm{C} 3$	$1.521(5)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.514(5)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	1.0000	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9900
$\mathrm{C} 3-\mathrm{C} 4$	$1.537(5)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9900
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900	$\mathrm{C} 13-\mathrm{C} 14$	$1.389(4)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9900	$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	1.0000
$\mathrm{C} 4-\mathrm{C} 5$	$1.512(5)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.500(4)$
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A}$	0.9900	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	1.0000
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~B}$	0.9900	$\mathrm{C} 15-\mathrm{C} 16$	$1.527(5)$

C5-C6	1.389 (4)
C5-H5A	1.0000
C6-C7	1.525 (4)
C6-H6A	1.0000
C7-C8	1.543 (5)
C1-Ir1-C10	178.38 (12)
C1-Ir1-C2	38.68 (12)
C10-Ir1-C2	142.92 (12)
C1-Ir1-C9	143.67 (12)
C10-Ir1-C9	37.84 (12)
C2-Ir1-C9	105.71 (12)
C1-Ir1-C13	99.56 (12)
C10-Ir1-C13	79.68 (12)
C2-Ir1-C13	110.35 (12)
C9-Ir1-C13	85.84 (12)
C1-Ir1-C6	78.85 (12)
C10-Ir1-C6	101.16 (12)
C2-Ir1-C6	85.57 (12)
C9-Ir1-C6	111.72 (12)
C13-Ir1-C6	152.77 (12)
C1-Ir1-C5	94.89 (12)
C10-Ir1-C5	85.98 (12)
C2-Ir1-C5	78.39 (12)
C9-Ir1-C5	79.69 (12)
C13-Ir1-C5	164.79 (12)
C6-Ir1-C5	36.00 (11)
C1-Ir1-C14	86.02 (12)
C10-Ir1-C14	94.13 (12)
C2-Ir1-C14	78.99 (12)
C9-Ir1-C14	77.53 (12)
C13-Ir1-C14	35.94 (11)
C6-Ir1-C14	163.81 (12)
C5-Ir1-C14	141.95 (12)
C1-Ir1-Cl1	91.36 (9)
C10-Ir1-Cl1	87.07 (9)
C2-Ir1-Cl1	129.69 (8)
C9--Ir1-Cl1	124.61 (9)
C13-Ir1-C11	76.29 (8)
C6-Ir1-Cl1	76.57 (9)
C5-Ir1-Cl1	108.22 (9)
C14-Ir1-Cl1	109.78 (9)
C2-C1-C8	124.9 (3)
C2-C1-Ir1	71.90 (18)
C8-C1-Ir1	112.5 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	113.5
C8- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	113.5
Ir1-C1-H1A	113.5

C15-H15A	0.9900
C15-H15B	0.9900
C16-H16A	0.9900
C16-H16B	0.9900

125.0 (3)
72.04 (18)
113.0 (2)
113.3
113.3
113.3
111.9 (3)
109.2
109.2
109.2
109.2
107.9
112.1 (3)
109.2
109.2
109.2
109.2
107.9
122.2 (3)
70.37 (18)
115.9 (2)
113.8
113.8
113.8
122.9 (3)
71.79 (18)
112.0 (2)
114.3
114.3
114.3
113.6 (3)
108.8
108.8
108.8
108.8
107.7
114.3 (3)
108.7
108.7
108.7
108.7
107.6

C1-C2-C3	124.4 (3)
C1-C2-Ir1	69.42 (18)
C3-C2-Ir1	115.3 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	113.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	113.5
Ir1-C2-H2A	113.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	113.0 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.0
C2-C3-H3B	109.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.0
H3A-C3-H3B	107.8
C5-C4-C3	112.0 (3)
C5-C4-H4A	109.2
C3-C4-H4A	109.2
C5-C4-H4B	109.2
C3-C4-H4B	109.2
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	107.9
C6-C5-C4	124.9 (3)
C6-C5-Ir1	71.96 (18)
C4-C5-Ir1	110.8 (2)
C6-C5-H5A	113.9
C4-C5-H5A	113.9
Ir1-C5-H5A	113.9
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-2.0 (5)
Ir $1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-107.2 (3)
C8-C1-C2-Ir1	105.2 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	93.2 (4)
Ir1-C2-C3-C4	11.7 (4)
C2-C3-C4-C5	-31.5 (4)
C3-C4-C5-C6	-46.1 (4)
C3-C4-C5--Ir1	35.8 (3)
C4-C5-C6-C7	-2.8(5)
Ir1-C5-C6-C7	-106.0 (3)
C4-C5-C6--Ir1	103.2 (3)
C5-C6-C7-C8	95.7 (4)
Ir1-C6-C7-C8	12.1 (3)
C2-C1-C8-C7	-44.6 (4)
Ir1- $\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7$	38.5 (3)
C6-C7-C8-C1	-32.5 (4)

C14-C13-C12	124.7 (3)
C14-C13-Ir1	72.71 (18)
C12-C13-Ir	112.3 (2)
C14-C13-H13A	113.4
C12-C13-H13A	113.4
Ir1-C13-H13A	113.4
C13-C14-C15	125.1 (3)
C13-C14-Ir	71.35 (18)
C15-C14-Ir1	111.3 (2)
C13-C14-H14A	113.8
C15-C14-H14A	113.8
Ir1-C14-H14A	113.8
C14-C15-C16	112.6 (3)
C14-C15-H15A	109.1
C16-C15-H15A	109.1
C14-C15-H15B	109.1
C16-C15-H15B	109.1
H15A-C15-H15B	107.8
C9-C16-C15	112.0 (3)
C9-C16-H16A	109.2
C15-C16-H16A	109.2
C9-C16-H16B	109.2
C15-C16-H16B	109.2
H16A-C16-H16B	107.9
C16-C9-C10-C11	-4.0 (5)
Ir1-C9-C10-C11	104.9 (3)
C16-C9-C10-Ir1	-108.9 (3)
C9-C10-C11-C12	-49.6 (4)
Ir1-C10-C11-C12	32.3 (3)
C10-C11-C12-C13	-24.8 (4)
C11-C12-C13-C14	89.4 (4)
C11-C12-C13-Ir1	5.6 (3)
C12-C13-C14-C15	-2.1 (5)
Ir1-C13-C14-C15	103.4 (3)
C12-C13-C14-Ir1	-105.5 (3)
C13-C14-C15-C16	-45.8 (4)
Ir1-C14-C15-C16	35.9 (3)
C10-C9-C16-C15	97.1 (4)
Ir1-C9-C16-C15	14.8 (4)
C14-C15-C16-C9	-33.3 (4)

[^0]: Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014 (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

