research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 22,24,25-tri­methyl-8,11,14-trioxa-25-aza­tetra­cyclo­[19.3.1.02,7.015,20]penta­cosa-2,4,6,15(20),16,18-hexaen-23-one

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam, bGraduate University of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam, cDepartment of Biotechnology, Vietnam–Russia Tropical Centre, 58 Nguyen Van Huyen, Hanoi, Vietnam, dFaculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam, eOrganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, fInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and gX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: ngvtuyen@hotmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 23 November 2016; accepted 25 December 2016; online 6 January 2017)

The title compound, C24H29NO4, is the product of a Petrenko–Kritchenko condensation of 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane, pentan-3-one and methyl­ammonium acetate in ethanol. The mol­ecule has mirror symmetry. The aza-14-crown-3 ether ring adopts a bowl conformation stabilized by a weak intra­molecular C—H⋯O hydrogen bond. The conformation of the C—O—C—C—O—C—C—O—C polyether chain is t–g+–t–t–g–t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the benzene rings fused to the aza-14-crown-4-ether moiety is 72.68 (4)°. The piperidinone ring adopts a chair conformation. The nitro­gen atom has a trigonal–pyramidal geometry, the sum of the bond angles being 335.9°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions, forming zigzag chains propagating along the [100] direction.

1. Chemical context

Macroheterocycles containing both crown ether and aza­heterocyclic moieties are prospective compounds not only as metal-ion receptors (Pedersen, 1988[Pedersen, C. J. (1988). Angew. Chem. 100, 1053-1059.]), but also as membrane ion-transporting vehicles (Gökel & Murillo, 1996[Gökel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.]), as active components of environmental chemistry (Bradshaw & Izatt, 1997[Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.]), for the design of organic sensors (Costero et al., 2005[Costero, A. M., Bañuls, M. J., Aurell, M. J., Ochando, L. E. & Doménech, A. J. (2005). Tetrahedron, 61, 10309-10320.]), in nanosized on-off switches and other mol­ecular electronic devices (Natali & Giordani, 2012[Natali, M. & Giordani, S. (2012). Chem. Soc. Rev. 41, 4010-4029.]). Moreover, they can possess anti­bacterial (An et al., 1998[An, H., Wang, T., Mohan, V., Griffey, R. H. & Cook, P. D. (1998). Tetrahedron, 54, 3999-4012.]) and anti­cancer properties (Artiemenko et al., 2002[Artiemenko, A. G., Kovdienko, N. A., Kuz'min, V. E., Kamalov, G. L., Lozitskaya, R. N., Fedchuk, A. S., Lozitsky, V. P., Dyachenko, N. S. & Nosach, L. N. (2002). Exp. Oncol. 24, 123-127.]; Le et al., 2014[Le, T. A., Truong, H. H., Nguyen, P. T. T., Pham, H. T., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajo, A. T. (2014). Macroheterocycles, 7, 386-390.], 2015[Le, A. T., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). Mendeleev Commun. 25, 224-225.]), and other useful biological activity (Anh & Soldatenkov, 2016[Le, A. T. & Soldatenkov, A. T. (2016). Chem. Heterocycl. Compd, 52, 152-154.]; Tran et al., 2016[Tran, T. T. V., Anh, L. T., Nguyen, H. H., Truong, H. H. & Soldatenkov, A. T. (2016). Acta Cryst. E72, 663-666.]).

Recently, we have developed effective methods for the synthesis of aza­crown ethers containing γ-piperidone (Levov et al., 2006[Levov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35-36.], 2008[Levov, A. N., Anh, L. T., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 457-462.]; Anh et al., 2008[Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.], 2012a[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386-o1387.],b[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588-o1589.],c[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165-o2166.]; Hieu et al. (2011[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocyc. Compd. 47, 1307-1308.], 2012a[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431-o2432.],b[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848-o2849.]) or γ-aryl­pyridine (Anh & Soldatenkov, 2016[Le, A. T. & Soldatenkov, A. T. (2016). Chem. Heterocycl. Compd, 52, 152-154.]; Tran et al., 2016[Tran, T. T. V., Anh, L. T., Nguyen, H. H., Truong, H. H. & Soldatenkov, A. T. (2016). Acta Cryst. E72, 663-666.]) subunits. This chemistry allowed us to make systematic studies of the fine structural features of a novel series of aza­crown macrocycles using X-ray diffraction. Such data should be of use for the subsequent design of more certain drug-like macroheterocyclic mol­ecules bearing new would-be pharmacophore groups.

In attempts to apply this chemistry for obtaining aza­crown ethers which contain a 1,3,5-trimethyl-substituted γ-piperidine moiety, we studied the condensation of di­ethyl­ketone and 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane in the presence of methyl­ammonium acetate taken both as the nitro­gen source and as the template in ethanol/acetic acid solution. The reaction proceeded smoothly to give the expected aza­crown title mol­ecule, (I)[link], with 32% yield.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]), the product of a Petrenko–Kritchenko condensation of 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane, pentan-3-one and methyl­ammonium acetate in ethanol, crystallizes in the ortho­rhom­bic space group Pnma and, in the crystal, occupies a special position on a mirror plane. The aza-14-crown-3 ether ring adopts a bowl conformation stabilized by the weak intra­molecular C16—H16B⋯O11 hydrogen bond (Table 1[link], Fig. 1[link]). The distances from the center of the macrocycle cavity (defined as the centroid of atoms O8/O11/O8A/N14) to the O8, O11 and N14 atoms are 2.265 (2), 1.880 (2) and 2.393 (2) Å, respectively [atoms with the suffix A are related by the symmetry operation x, [{1\over 2}] − y, z.]. The conformation of the C7—O8—C9—C10—O11—C10A—C9A—O8A—C7A polyether chain is t–g+–t–t–g–t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 72.68 (4)°. The piperidinone ring adopts a chair conformation. The nitro­gen N14 atom has a trigonal–pyramidal geometry (sum of the bond angles is 335.9°).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O12i 0.99 2.58 3.449 (2) 147
C16—H16B⋯O11 0.96 2.57 3.530 (3) 180
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The dashed line indicates the intra­molecular C—H⋯O hydrogen bond. Atoms with the suffix A are related by the symmetry operation x, [{1\over 2}] − y, z.

The mol­ecule of (I)[link] possesses four asymmetric centers at the C1, C13, C13A and C1A carbon atoms and can have potentially numerous diastereomers. The crystal of (I)[link] is racemic and consists of enanti­omeric pairs with the following relative configuration of the centers: rac-1R*,13S*,13AR*,1AS*.

3. Supra­molecular features

In the crystal, mol­ecules of (I)[link] form zigzag chains along [100] via weak C—H⋯O inter­actions (Table 1[link], Figs. 2[link] and 3[link]). ππ stacking is observed in the crystal, the distance between parallel benzene rings is 3.446 (3) Å and the shortest inter­molecular C5⋯C7i distance is 3.495 (2) Å [symmetry code: (i) 1 − x, 1 − y, −z].

[Figure 2]
Figure 2
Crystal packing of (I)[link] along the b axis demonstrating the zigzag hydrogen-bonded chains along [100]. Dashed lines indicate the intra- and inter­molecular C—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
A portion of the crystal packing of (I)[link] indicating the inter­molecular ππ stacking inter­actions. Dashed lines indicate the intra- and inter­molecular C—H⋯O hydrogen bonds.

4. Synthesis and crystallization

Methyl­ammonium acetate (3.85 g, 50 mmol) was added to a solution of 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane (3.14 g, 10.0 mmol) and di­ethyl­ketone (1.41 g, 10.0 mmol) in ethanol/acetic acid (40 mL/1 mL) mixture. The reaction mixture was stirred at 293 K for three days (monitored by TLC until the disappearance of the starting heterocyclic ketone spot). At the end of the reaction, the formed precipitate was filtered off, washed with ethanol and recrystallized from ethanol solution to give 2.1 g of crystals of (I)[link] (yield 32% m.p. 485–487 K). IR (KBr), ν/cm−1: 1702. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 0.89 (d, 6H, CH3, J = 6.7 Hz), 1.86 (c, 3H, NCH3), 3.19 (d, 2H, H1, H21, J = 10.8 Hz), 3.76–4.16 (m, 10H, Hether and H22, H24), 6.78–7.26 (m, 8H, Harom). Analysis calculated for C24H29NO4: C, 67.72; H, 7.31; N, 5.64. Found: C, 67.54; H, 7.42; N, 5.41.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were placed in calculated positions with C—H = 0.95 Å (aryl-H), 0.96 Å (methyl-H), 0.98 Å (methyl­ene-H) or 1.00 Å (methine-H) and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) for all other atoms].

Table 2
Experimental details

Crystal data
Chemical formula C24H29NO4
Mr 395.48
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 120
a, b, c (Å) 8.1468 (5), 20.3402 (11), 12.0155 (7)
V3) 1991.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.970, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 25079, 3128, 2469
Rint 0.065
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.130, 1.02
No. of reflections 3128
No. of parameters 140
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.23
Computer programs: APEX2 (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SAINT (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

22,24,25-Trimethyl-8,11,14-trioxa-25-azatetracyclo[19.3.1.02,7.015,20]pentacosa-2,4,6,15 (20),16,18-hexaen-23-one top
Crystal data top
C24H29NO4Dx = 1.319 Mg m3
Mr = 395.48Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 4090 reflections
a = 8.1468 (5) Åθ = 3.0–29.2°
b = 20.3402 (11) ŵ = 0.09 mm1
c = 12.0155 (7) ÅT = 120 K
V = 1991.1 (2) Å3Prism, colourless
Z = 40.20 × 0.15 × 0.15 mm
F(000) = 848
Data collection top
Bruker APEXII CCD
diffractometer
2469 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
φ and ω scansθmax = 30.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1111
Tmin = 0.970, Tmax = 0.980k = 2929
25079 measured reflectionsl = 1716
3128 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: mixed
wR(F2) = 0.130H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.046P)2 + 1.66P]
where P = (Fo2 + 2Fc2)/3
3128 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58338 (18)0.30912 (7)0.07447 (12)0.0151 (3)
H10.46390.30290.09030.018*
C20.60218 (18)0.37109 (7)0.00494 (12)0.0156 (3)
C30.75023 (19)0.40480 (7)0.00526 (13)0.0190 (3)
H30.84320.39000.03540.023*
C40.7652 (2)0.45976 (7)0.07366 (14)0.0223 (3)
H40.86700.48220.07930.027*
C50.6301 (2)0.48134 (7)0.13342 (13)0.0223 (3)
H50.63980.51880.18030.027*
C60.4808 (2)0.44885 (7)0.12557 (13)0.0195 (3)
H60.38880.46370.16720.023*
C70.46690 (18)0.39412 (7)0.05590 (12)0.0162 (3)
O80.32384 (13)0.35995 (5)0.04244 (9)0.0194 (2)
C90.19912 (19)0.36553 (8)0.12588 (13)0.0201 (3)
H9A0.13870.40740.11720.024*
H9B0.24880.36450.20110.024*
C100.08483 (19)0.30816 (7)0.11056 (13)0.0197 (3)
H10A0.01190.31290.15970.024*
H10B0.04620.30620.03250.024*
O110.17272 (19)0.25000.13785 (13)0.0192 (3)
C120.6367 (3)0.25000.24937 (18)0.0157 (4)
O120.5743 (2)0.25000.34102 (13)0.0219 (3)
C130.67442 (18)0.31314 (7)0.18726 (12)0.0160 (3)
H130.79510.31470.17220.019*
N140.6428 (2)0.25000.01435 (14)0.0148 (3)
C150.6282 (2)0.37347 (7)0.25565 (13)0.0192 (3)
H15A0.68330.37150.32810.029*
H15B0.66260.41330.21610.029*
H15C0.50910.37440.26670.029*
C160.6033 (3)0.25000.10474 (17)0.0186 (4)
H16A0.64890.28850.13900.028*
H16B0.48640.25000.11410.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0192 (7)0.0111 (6)0.0151 (6)0.0006 (5)0.0007 (5)0.0001 (5)
C20.0197 (7)0.0118 (6)0.0154 (6)0.0002 (5)0.0012 (5)0.0008 (5)
C30.0200 (7)0.0152 (6)0.0217 (7)0.0009 (5)0.0016 (6)0.0010 (5)
C40.0240 (8)0.0169 (7)0.0259 (8)0.0028 (6)0.0061 (6)0.0005 (6)
C50.0317 (8)0.0133 (6)0.0219 (7)0.0005 (6)0.0075 (6)0.0042 (6)
C60.0248 (7)0.0161 (7)0.0177 (7)0.0031 (6)0.0015 (6)0.0026 (5)
C70.0202 (7)0.0124 (6)0.0158 (7)0.0003 (5)0.0018 (5)0.0004 (5)
O80.0198 (5)0.0201 (5)0.0183 (5)0.0026 (4)0.0035 (4)0.0054 (4)
C90.0208 (7)0.0203 (7)0.0193 (7)0.0025 (6)0.0038 (6)0.0033 (6)
C100.0176 (7)0.0217 (7)0.0199 (7)0.0033 (6)0.0015 (6)0.0008 (6)
O110.0177 (7)0.0183 (7)0.0216 (8)0.0000.0020 (6)0.000
C120.0152 (9)0.0157 (9)0.0162 (9)0.0000.0047 (7)0.000
O120.0306 (9)0.0190 (7)0.0160 (7)0.0000.0006 (6)0.000
C130.0161 (6)0.0149 (6)0.0169 (7)0.0019 (5)0.0014 (5)0.0001 (5)
N140.0193 (8)0.0104 (7)0.0147 (8)0.0000.0017 (6)0.000
C150.0245 (8)0.0144 (6)0.0187 (7)0.0008 (6)0.0002 (6)0.0028 (5)
C160.0271 (11)0.0154 (9)0.0134 (9)0.0000.0003 (8)0.000
Geometric parameters (Å, º) top
C1—N141.4840 (17)C9—H9B0.9900
C1—C21.5197 (19)C10—O111.4211 (17)
C1—C131.547 (2)C10—H10A0.9900
C1—H11.0000C10—H10B0.9900
C2—C31.393 (2)O11—C10i1.4211 (17)
C2—C71.403 (2)C12—O121.213 (3)
C3—C41.393 (2)C12—C13i1.5168 (18)
C3—H30.9500C12—C131.5168 (18)
C4—C51.385 (2)C13—C151.524 (2)
C4—H40.9500C13—H131.0000
C5—C61.388 (2)N14—C161.467 (3)
C5—H50.9500N14—C1i1.4840 (17)
C6—C71.397 (2)C15—H15A0.9800
C6—H60.9500C15—H15B0.9800
C7—O81.3666 (18)C15—H15C0.9800
O8—C91.4319 (18)C16—H16A0.9595
C9—C101.504 (2)C16—H16B0.9593
C9—H9A0.9900
N14—C1—C2111.82 (12)H9A—C9—H9B108.6
N14—C1—C13108.23 (12)O11—C10—C9107.80 (13)
C2—C1—C13112.92 (12)O11—C10—H10A110.1
N14—C1—H1107.9C9—C10—H10A110.1
C2—C1—H1107.9O11—C10—H10B110.1
C13—C1—H1107.9C9—C10—H10B110.1
C3—C2—C7118.03 (13)H10A—C10—H10B108.5
C3—C2—C1122.95 (13)C10—O11—C10i112.69 (16)
C7—C2—C1118.96 (13)O12—C12—C13i122.11 (9)
C2—C3—C4121.51 (15)O12—C12—C13122.11 (9)
C2—C3—H3119.2C13i—C12—C13115.71 (18)
C4—C3—H3119.2C12—C13—C15111.50 (13)
C5—C4—C3119.40 (15)C12—C13—C1106.80 (12)
C5—C4—H4120.3C15—C13—C1113.36 (12)
C3—C4—H4120.3C12—C13—H13108.3
C4—C5—C6120.68 (14)C15—C13—H13108.3
C4—C5—H5119.7C1—C13—H13108.3
C6—C5—H5119.7C16—N14—C1i113.80 (10)
C5—C6—C7119.40 (14)C16—N14—C1113.80 (10)
C5—C6—H6120.3C1i—N14—C1108.27 (15)
C7—C6—H6120.3C13—C15—H15A109.5
O8—C7—C6123.03 (14)C13—C15—H15B109.5
O8—C7—C2116.00 (12)H15A—C15—H15B109.5
C6—C7—C2120.97 (14)C13—C15—H15C109.5
C7—O8—C9118.82 (11)H15A—C15—H15C109.5
O8—C9—C10106.99 (12)H15B—C15—H15C109.5
O8—C9—H9A110.3N14—C16—H16A109.5
C10—C9—H9A110.3N14—C16—H16B109.4
O8—C9—H9B110.3H16A—C16—H16B109.5
C10—C9—H9B110.3
N14—C1—C2—C380.51 (18)C2—C7—O8—C9159.44 (13)
C13—C1—C2—C341.84 (19)C7—O8—C9—C10161.82 (12)
N14—C1—C2—C796.59 (16)O8—C9—C10—O1167.31 (16)
C13—C1—C2—C7141.06 (13)C9—C10—O11—C10i171.15 (10)
C7—C2—C3—C40.1 (2)O12—C12—C13—C151.4 (2)
C1—C2—C3—C4177.05 (14)C13i—C12—C13—C15178.58 (11)
C2—C3—C4—C50.3 (2)O12—C12—C13—C1122.9 (2)
C3—C4—C5—C60.1 (2)C13i—C12—C13—C154.2 (2)
C4—C5—C6—C70.5 (2)N14—C1—C13—C1258.80 (16)
C5—C6—C7—O8179.15 (14)C2—C1—C13—C12176.87 (13)
C5—C6—C7—C20.9 (2)N14—C1—C13—C15178.02 (12)
C3—C2—C7—O8179.34 (13)C2—C1—C13—C1553.68 (16)
C1—C2—C7—O83.41 (19)C2—C1—N14—C1638.57 (19)
C3—C2—C7—C60.7 (2)C13—C1—N14—C16163.56 (14)
C1—C2—C7—C6176.59 (13)C2—C1—N14—C1i166.15 (9)
C6—C7—O8—C920.6 (2)C13—C1—N14—C1i68.85 (18)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O12ii0.992.583.449 (2)147
C16—H16B···O110.962.573.530 (3)180
Symmetry code: (ii) x1/2, y+1/2, z1/2.
 

Funding information

Funding for this research was provided by: National Foundation for Science and Technology Development (award No. 104.01-2014.39); Ministry of Education and Science of the Russian Federation (award No. 02.a03.21.0008 of June 24, 2016).

References

First citationAn, H., Wang, T., Mohan, V., Griffey, R. H. & Cook, P. D. (1998). Tetrahedron, 54, 3999–4012.  Web of Science CrossRef CAS Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165–o2166.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.  Google Scholar
First citationArtiemenko, A. G., Kovdienko, N. A., Kuz'min, V. E., Kamalov, G. L., Lozitskaya, R. N., Fedchuk, A. S., Lozitsky, V. P., Dyachenko, N. S. & Nosach, L. N. (2002). Exp. Oncol. 24, 123–127.  Google Scholar
First citationBradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostero, A. M., Bañuls, M. J., Aurell, M. J., Ochando, L. E. & Doménech, A. J. (2005). Tetrahedron, 61, 10309–10320.  Web of Science CSD CrossRef CAS Google Scholar
First citationGökel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432.  Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocyc. Compd. 47, 1307–1308.  Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431–o2432.  CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848–o2849.  CSD CrossRef IUCr Journals Google Scholar
First citationLe, A. T. & Soldatenkov, A. T. (2016). Chem. Heterocycl. Compd, 52, 152–154.  Web of Science CrossRef CAS Google Scholar
First citationLe, T. A., Truong, H. H., Nguyen, P. T. T., Pham, H. T., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajo, A. T. (2014). Macroheterocycles, 7, 386–390.  Web of Science CrossRef CAS Google Scholar
First citationLe, A. T., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). Mendeleev Commun. 25, 224–225.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Anh, L. T., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 457–462.  Google Scholar
First citationLevov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–36.  Web of Science CSD CrossRef Google Scholar
First citationNatali, M. & Giordani, S. (2012). Chem. Soc. Rev. 41, 4010–4029.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPedersen, C. J. (1988). Angew. Chem. 100, 1053–1059.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTran, T. T. V., Anh, L. T., Nguyen, H. H., Truong, H. H. & Soldatenkov, A. T. (2016). Acta Cryst. E72, 663–666.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds