research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of Li3Ga(BO3)2

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, USA, and bDepartment of Chemistry, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
*Correspondence e-mail: robertsmith@unomaha.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 December 2016; accepted 21 February 2017; online 28 February 2017)

The crystal structure of trilithium gallium bis­(orthoborate), Li3Ga(BO3)2, is isotypic with Li3Al(BO3)2 in a triclinic cell in space-group type P-1. The three Li and the unique Ga atom are coordinated by four O atoms each in tetra­hedra, and the two B atoms are coordinated by three O atoms in orthoborate triangles. Chains with composition [Ga2(BO3)4]6− extend along the a axis. The Li atoms inter­leave these chains in tetra­hedral inter­stices. A comparison is made between the structure model of the title compound and that of a previously reported model for a compound with the same composition [Abdullaev & Mamedov (1972[Abdullaev, G. K. & Mamedov, Kh. S. (1972). Zh. Strukt. Khim. 13, 943-946.]). Zh. Strukt. Khim. 13, 943–946.]

1. Chemical context

We are examining the alkali metal/gallium/borate phase diagrams, investigations of which have revealed to date, among others, the homologous series A2Ga2O(BO3)2, in which A = Na, K, Rb, and Cs (Corbel & Leblanc, 2000[Corbel, G. & Leblanc, M. (2000). J. Solid State Chem. 154, 344-349.]; Smith, 1995[Smith, R. W. (1995). Acta Cryst. C51, 547-549.]; Smith et al., 1997[Smith, R. W., Kennard, M. A. & Dudik, M. J. (1997). Mater. Res. Bull. 32, 649-656.],2008[Smith, R. W., Hu, C. & DeSpain, C. D. (2008). Acta Cryst. E64, i23.], respectively) and the homologous series A3Ga(BO3)2, in which A = Li, Na, K, Rb, and Cs. We report herein the crystal structure of the lithium analog (Fig. 1[link]) of the latter series, which is the only one which melts congruently, which has a unique structure among the series, and which is isotypic with Li3Al(BO3)2 (He et al., 2002[He, M., Chen, X. L., Gramlich, V., Baerlocher, Ch., Zhou, T. & Hu, B. Q. (2002). J. Solid State Chem. 163, 369-376.]); the other analogs have yet to be crystallized in the form of single crystals, but are structurally distinct from the lithium analog and isotypic with each other based on their powder X-ray diffraction patterns.

[Figure 1]
Figure 1
A projection of the crystal structure of Li3Ga(BO3)2 along the a axis. Infinite [Ga2(BO3)4]6− chains are linked together by sheets of Li atoms in tetra­hedral voids. GaO4 tetra­hedra are light green, LiO4 tetra­hedra are light gray, and BO3 triangles are blue–grey. Corner O atoms have been omitted for clarity.

A crystal structure for this compound was previously reported by Abdullaev & Mamedov (1972[Abdullaev, G. K. & Mamedov, Kh. S. (1972). Zh. Strukt. Khim. 13, 943-946.]) in the same triclinic space-group type P[\overline{1}], and with the same gallium-borate polyhedral pattern but with important differences with the structure reported herein, to wit: slightly different cell parameters and a different reduced cell, a significantly smaller cell volume (i.e., 3% smaller), less regular bond-valence sums (BVS), greater deviations from expected inter­atomic distances, and irregular, five- and six-coordinate lithium-centered polyhedra. Table 1[link] compares inter­atomic distances from the structure reported by Addullaev & Mamedov (1972) and this report, with expected distances using Shannon's radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]); it also lists bond-valence sums for each structure. We have considered as bonds all Li—O distances under 3 Å from the 1972 report because doing so produces more reasonable BVS values, thus rendering some of the lithium atoms as being five- or six-coordinate in the previous structure report. It should be noted that the authors, however, reported all lithium atoms as tetra­hedrally coordinated. The present structure model clearly differs from the 1972 structure model and hence indicates a second possible modification for this composition. Whether a polymorphic relation exists between the two phases remains unknown and needs additional proof by using complementary methods such as thermal analysis.

Table 1
Comparison of the two structures with composition Li3Ga(BO3)2

Structure model Abdullaev & Mamedov (1972[Abdullaev, G. K. & Mamedov, Kh. S. (1972). Zh. Strukt. Khim. 13, 943-946.]) Current work Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.])
Reduced cell (Å, °) 4.90 (2) 6.23 (3) 7.78 (5) 72.9 (5) 90.0 (5) 90.0 (5) 4.8731 (3) 6.2429 (4) 8.0130 (5) 73.346 (6) 89.701 (5) 89.698 (5)  
       
Range of inter­atomic distances (Å)  
Li—O 2.28±0.41 1.965±0.054 1.97
Ga—O 2.07±0.43 1.847±0.021 1.85
B—O 1.31±0.13 1.384±0.038 1.39
       
Bond-valence-sum values and coordination numbers (in brackets)  
Li (1, 2 & 3) 1.14 [4 + 1], 1.01 [4], 1.00 [6] 1.07 [4], 1.03 [4], 1.05 [4]  
Ga (1) 2.38 [4] 2.92 [4]  
B (1 & 2) 3.17 [3], 3.06 [3] 2.91 [3], 2.91 [3]  

2. Structural commentary

The crystal structure of the title compound consists of lithium- and gallium-centered tetra­hedra and boron-centered triangles, all of which share oxygen vertices (Fig.1). Each GaO4 tetra­hedron is linked to four BO3 triangles and six LiO4 tetra­hedra. The gallium-centered tetra­hedra and boron-centered triangles adjoin through shared vertices to form infinite chains of composition [Ga2(BO3)4]6−, with the chains extending parallel to the a axis; lithium cations inter­leave the chains in tetra­hedral inter­stices. Fig. 2[link] shows a comparison of the gallium-borate chains in both the previously reported structure (Abdullaev & Mamedov, 1972[Abdullaev, G. K. & Mamedov, Kh. S. (1972). Zh. Strukt. Khim. 13, 943-946.]) and the structure presented here. The two exhibit the same connectivity but have sizeable differences in bond lengths, bond angles and bond-valence-sum values (see Table 1[link]). Averaged inter­atomic distances for the title structure are consistent with those determined from the ionic radii reported by Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]), viz. 1.97 (5), 1.85 (2), and 1.39 (4) Å for the experimentally determined Li—O, Ga—O, and B—O distances, respectively. We also calculated the bond-valence-um values for each element using the values provided by Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). The results (Table 1[link]) are in good agreement with the expected values of 1, 3, 3 and 2 for Li, Ga, B and O atoms, respectively.

[Figure 2]
Figure 2
A comparison of the infinite [Ga2(BO3)4]6− chains in the structures of Li3Ga(BO3)2 with respect to the model by Abdullaev & Mamedov (1972[Abdullaev, G. K. & Mamedov, Kh. S. (1972). Zh. Strukt. Khim. 13, 943-946.]) (top) and the structure model presented in this manuscript. The connectivity of these two chains are the same but there are important differences in the actual bonding. In our structure model, these chains run down the c axis. Here the GaO4 tetra­hedra are light green and the BO3 triangles are blue–grey (which are shown in light blue–grey in the 1972 structure). Corner O atoms have been omitted for clarity.

Lastly, Fig. 3[link] displays the anisotropic displacement parameters of the atoms within the asymmetric unit of the title structure.

[Figure 3]
Figure 3
The asymmetric unit of the title structure with atom labelling. Displacement ellipsoids are drawn at the 75% probability level.

3. Synthesis and crystallization

Powder samples were made by solid-state reactions starting with stoichiometric proportions of lithium nitrate, gallium(III) nitrate, and boric acid. We first ground the starting materials and fired them in an alumina crucible at 573 K for two h to decompose them to finely divided oxides, after which we progressively heated the samples to 973 K at 50 to 100 K and 24-hour increments, grinding the samples between each successive heat treatment. Samples were single-phase as revealed by powder X-ray diffraction.

Single crystals were grown from the melt. About 500 mg of sample were placed in a platinum dish, heated to 1033 K in a box oven, slow-cooled at 10 K h−1 to about 470 K, and then air-quenched. Several small, clear, colorless crystals were physically removed from the platinum crucible and mounted on a goniometer for a preliminary scan in order to find one of suitable quality.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula Li3Ga(BO3)2
Mr 208.16
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 4.8731 (3), 6.2429 (4), 8.0130 (5)
α, β, γ (°) 73.346 (6), 89.701 (5), 89.698 (5)
V3) 233.54 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.84
Crystal size (mm) 0.09 × 0.03 × 0.01
 
Data collection
Diffractometer Rigaku SCX mini diffractometer
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.785, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2936, 1397, 1265
Rint 0.029
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.09
No. of reflections 1397
No. of parameters 109
Δρmax, Δρmin (e Å−3) 1.04, −0.76
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Trilithium gallium bis(orthoborate) top
Crystal data top
Li3Ga(BO3)2Z = 2
Mr = 208.16F(000) = 196
Triclinic, P1Dx = 2.960 Mg m3
a = 4.8731 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.2429 (4) ÅCell parameters from 1687 reflections
c = 8.0130 (5) Åθ = 2.7–32.5°
α = 73.346 (6)°µ = 5.84 mm1
β = 89.701 (5)°T = 293 K
γ = 89.698 (5)°Plate, clear light colourless
V = 233.54 (3) Å30.09 × 0.03 × 0.01 mm
Data collection top
Rigaku SCX mini
diffractometer
1397 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 30.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 66
Tmin = 0.785, Tmax = 1.000k = 88
2936 measured reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.1042P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.09Δρmax = 1.04 e Å3
1397 reflectionsΔρmin = 0.76 e Å3
109 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystals of Li3Ga(BO3)2 were mounted on MiTeGen Microloop with non-drying immersion oil. The crystal was then optically aligned on the Rigaku SCX-Mini diffractometer using a digital camera. Initial matrix images were collected to determine the unit cell, validity and proper exposure time. Three hemispheres (where φ= 0.0, 120.0 and 240.0) of data were collected with each consisting 180 images each with 1.00° widths and a 1.00° step. The structure of Li3Ga(BO3)2 was refined using SHELXT (Sheldrick, 2015) Intrinsic Phasing and SHELXL (Sheldrick, 2015). Olex2 (Dolomanov et al., 2009) was used as a graphical interface. Images of the above compound were made using CrystalMaker for Windows, version 9.2.8. The refinement proceeded without any incidents and without any need for modelling disorder or twinning or any constraints or restraints.

Refinement of the structure was based on F2 against all reflections. The R-factor R is based on F2>2?(F2), but is not relevant to the choice of reflections for refinement; whereas the weighted R-factor wR and goodness of fit S are based on F2. The maximum electron denisty is 1.035 and is located 1.629 Å from Li(2), 1.960 Å from Li(1) and 2.169 Å from a different Li(1), which leads to nothing reasonable. All other maximum peaks are under 0.600.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ga10.65937 (6)0.22951 (4)0.60906 (4)0.00968 (10)
B10.1691 (6)0.0135 (5)0.7454 (4)0.0088 (5)
B20.6631 (6)0.5014 (5)0.2489 (4)0.0094 (5)
O10.3037 (4)0.1391 (3)0.5958 (2)0.0116 (4)
O20.1202 (4)0.0028 (3)0.7317 (2)0.0101 (4)
O30.2978 (4)0.0830 (3)0.8955 (2)0.0109 (4)
O40.7953 (4)0.3547 (3)0.3900 (2)0.0117 (4)
O50.3833 (4)0.5529 (3)0.2727 (2)0.0100 (4)
O60.7921 (4)0.5853 (3)0.0967 (2)0.0120 (4)
Li10.1828 (10)0.3717 (8)1.0414 (6)0.0154 (10)
Li21.1645 (10)0.2738 (8)0.3670 (6)0.0143 (9)
Li30.6839 (10)0.8785 (8)0.0399 (6)0.0159 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.00877 (15)0.01034 (15)0.00789 (15)0.00023 (10)0.00130 (10)0.00064 (10)
B10.0103 (13)0.0052 (11)0.0106 (12)0.0008 (9)0.0021 (10)0.0018 (10)
B20.0091 (13)0.0088 (12)0.0095 (12)0.0013 (10)0.0002 (10)0.0013 (10)
O10.0098 (9)0.0134 (9)0.0090 (8)0.0028 (7)0.0011 (7)0.0012 (7)
O20.0068 (8)0.0105 (8)0.0098 (8)0.0013 (6)0.0002 (7)0.0020 (7)
O30.0107 (9)0.0104 (8)0.0094 (8)0.0007 (7)0.0018 (7)0.0008 (7)
O40.0110 (9)0.0138 (9)0.0066 (8)0.0017 (7)0.0012 (7)0.0030 (7)
O50.0088 (9)0.0102 (8)0.0104 (8)0.0008 (7)0.0013 (7)0.0017 (7)
O60.0136 (9)0.0114 (9)0.0088 (8)0.0001 (7)0.0029 (7)0.0005 (7)
Li10.019 (2)0.013 (2)0.013 (2)0.0038 (18)0.0013 (18)0.0023 (18)
Li20.012 (2)0.014 (2)0.013 (2)0.0009 (17)0.0008 (17)0.0009 (17)
Li30.013 (2)0.017 (2)0.015 (2)0.0014 (18)0.0000 (18)0.0016 (18)
Geometric parameters (Å, º) top
Ga1—O11.8385 (18)B1—O21.421 (3)
Ga1—O2i1.8440 (18)B1—O31.339 (3)
Ga1—O41.8272 (18)B2—O41.393 (3)
Ga1—O5ii1.8759 (18)B2—O51.423 (3)
B1—O11.393 (3)B2—O61.336 (3)
O1—Ga1—O2i111.84 (8)Li1xii—Li1—Li3vii149.2 (3)
O1—Ga1—O5ii102.08 (8)Li1xii—Li1—Li3ix72.2 (2)
O1—Ga1—Li1iii116.15 (10)Li2ix—Li1—Ga1iii63.94 (14)
O1—Ga1—Li2iv124.51 (10)Li2ix—Li1—Li3viii60.89 (16)
O1—Ga1—Li2v35.98 (10)Li2ix—Li1—Li3ii120.2 (2)
O1—Ga1—Li2vi86.55 (10)Li3ii—Li1—Ga1iii56.40 (12)
O1—Ga1—Li2133.42 (11)Li3vii—Li1—Ga1iii74.07 (15)
O1—Ga1—Li3vii86.54 (11)Li3viii—Li1—Ga1iii117.59 (17)
O2i—Ga1—O5ii111.37 (8)Li3ix—Li1—Ga1iii97.77 (17)
O2i—Ga1—Li1iii76.62 (10)Li3vii—Li1—Li2ix117.0 (2)
O2i—Ga1—Li2iv115.22 (10)Li3ix—Li1—Li2ix114.0 (2)
O2i—Ga1—Li2v135.30 (11)Li3ii—Li1—Li3viii156.5 (2)
O2i—Ga1—Li2vi37.59 (10)Li3vii—Li1—Li3viii107.55 (19)
O2i—Ga1—Li277.78 (10)Li3ix—Li1—Li3viii129.60 (18)
O2i—Ga1—Li3vii39.95 (11)Li3vii—Li1—Li3ii49.58 (19)
O4—Ga1—O1109.76 (8)Li3ix—Li1—Li3ii73.05 (19)
O4—Ga1—O2i110.94 (8)Li3ix—Li1—Li3vii116.4 (2)
O4—Ga1—O5ii110.54 (8)Ga1—Li2—Ga1vi105.15 (13)
O4—Ga1—Li1iii126.18 (10)Ga1i—Li2—Ga1iv70.59 (10)
O4—Ga1—Li234.37 (10)Ga1—Li2—Ga1iv95.24 (13)
O4—Ga1—Li2vi96.01 (11)Ga1i—Li2—Ga1104.73 (14)
O4—Ga1—Li2v74.92 (11)Ga1i—Li2—Ga1vi81.11 (11)
O4—Ga1—Li2iv78.99 (10)Ga1vi—Li2—Ga1iv148.57 (16)
O4—Ga1—Li3vii150.82 (11)Ga1—Li2—Li3xiii135.80 (19)
O5ii—Ga1—Li1iii34.75 (10)Ga1i—Li2—Li3xiii110.84 (17)
O5ii—Ga1—Li2iv33.37 (10)B1viii—Li2—Ga1i136.51 (18)
O5ii—Ga1—Li2v106.86 (11)B1viii—Li2—Ga1vi57.25 (11)
O5ii—Ga1—Li2vi146.78 (10)B1viii—Li2—Ga1iv152.84 (18)
O5ii—Ga1—Li2116.90 (11)B1viii—Li2—Ga177.51 (13)
O5ii—Ga1—Li3vii88.33 (11)B1viii—Li2—B2i135.2 (2)
Li1iii—Ga1—Li2iv52.55 (11)B1viii—Li2—Li1xi97.11 (18)
Li2v—Ga1—Li1iii137.36 (13)B1viii—Li2—Li3xiii58.70 (14)
Li2—Ga1—Li1iii110.42 (13)B2i—Li2—Ga1146.69 (19)
Li2vi—Ga1—Li1iii112.82 (12)B2i—Li2—Ga1vi100.55 (15)
Li2v—Ga1—Li2104.73 (14)B2i—Li2—Ga1i58.67 (11)
Li2—Ga1—Li2vi74.85 (13)B2i—Li2—Ga1iv53.11 (10)
Li2vi—Ga1—Li2iv148.57 (16)B2i—Li2—Li1xi59.61 (14)
Li2v—Ga1—Li2iv109.41 (10)B2i—Li2—Li3xiii76.46 (16)
Li2v—Ga1—Li2vi98.89 (11)O1i—Li2—Ga1vi72.19 (15)
Li2—Ga1—Li2iv84.76 (13)O1i—Li2—Ga175.30 (16)
Li3vii—Ga1—Li1iii59.79 (12)O1i—Li2—Ga1iv90.70 (18)
Li3vii—Ga1—Li2vi59.91 (13)O1i—Li2—Ga1i34.43 (10)
Li3vii—Ga1—Li2v121.95 (13)O1i—Li2—B1viii112.1 (2)
Li3vii—Ga1—Li2117.45 (13)O1i—Li2—B2i93.10 (19)
Li3vii—Ga1—Li2iv112.26 (13)O1i—Li2—O2viii102.8 (2)
O1—B1—O2115.8 (2)O1i—Li2—O5i105.5 (2)
O1—B1—Li2viii104.8 (2)O1i—Li2—Li1xi149.9 (3)
O1—B1—Li3ii113.6 (2)O1i—Li2—Li3xiii124.6 (2)
O2—B1—Li2viii47.04 (15)O2viii—Li2—Ga1vi32.82 (9)
O2—B1—Li3ii111.9 (2)O2viii—Li2—Ga1102.44 (18)
O3—B1—O1123.3 (2)O2viii—Li2—Ga1iv159.9 (2)
O3—B1—O2120.9 (2)O2viii—Li2—Ga1i113.13 (19)
O3—B1—Li2viii113.91 (19)O2viii—Li2—B1viii30.07 (10)
O3—B1—Li3ii42.00 (16)O2viii—Li2—B2i110.6 (2)
Li3ii—B1—Li2viii141.61 (18)O2viii—Li2—Li1xi99.0 (2)
O4—B2—O5117.1 (2)O2viii—Li2—Li3xiii39.36 (13)
O4—B2—Li1viii106.0 (2)O4—Li2—Ga133.11 (10)
O4—B2—Li2v88.65 (18)O4—Li2—Ga1vi121.9 (2)
O4—B2—Li3149.2 (2)O4—Li2—Ga1i131.9 (2)
O5—B2—Li1viii119.8 (2)O4—Li2—Ga1iv87.97 (18)
O5—B2—Li2v41.16 (15)O4—Li2—B1viii71.58 (17)
O5—B2—Li388.65 (18)O4—Li2—B2i136.5 (2)
O6—B2—O4121.2 (2)O4—Li2—O1i107.7 (2)
O6—B2—O5121.6 (2)O4—Li2—O2viii101.6 (2)
O6—B2—Li1viii40.79 (15)O4—Li2—O5i108.5 (2)
O6—B2—Li2v137.1 (2)O4—Li2—Li1xi87.7 (2)
O6—B2—Li337.74 (15)O4—Li2—Li3xiii117.1 (2)
Li1viii—B2—Li2v105.56 (17)O5i—Li2—Ga1iv31.06 (10)
Li1viii—B2—Li370.99 (16)O5i—Li2—Ga1i74.16 (15)
Li3—B2—Li2v122.03 (17)O5i—Li2—Ga1vi127.9 (2)
Ga1—O1—Li2v109.59 (17)O5i—Li2—Ga1125.0 (2)
B1—O1—Ga1120.01 (17)O5i—Li2—B1viii140.4 (2)
B1—O1—Li2v129.9 (2)O5i—Li2—B2i27.93 (10)
Ga1v—O2—Li2viii109.59 (15)O5i—Li2—O2viii129.2 (3)
Ga1v—O2—Li3ix103.87 (16)O5i—Li2—Li1xi44.44 (15)
B1—O2—Ga1v123.74 (16)O5i—Li2—Li3xiii90.06 (19)
B1—O2—Li2viii102.9 (2)Li1xi—Li2—Ga1vi121.89 (19)
B1—O2—Li3ix114.5 (2)Li1xi—Li2—Ga1i116.94 (18)
Li3ix—O2—Li2viii99.6 (2)Li1xi—Li2—Ga1119.78 (18)
B1—O3—Li1120.6 (2)Li1xi—Li2—Ga1iv63.51 (13)
B1—O3—Li3vii133.1 (2)Li1xi—Li2—Li3xiii64.81 (16)
B1—O3—Li3ii110.7 (2)Li3xiii—Li2—Ga1iv120.57 (17)
Li1—O3—Li3ii108.2 (2)Li3xiii—Li2—Ga1vi57.29 (12)
Li1—O3—Li3vii95.7 (2)Ga1x—Li3—Li1ii63.82 (13)
Li3vii—O3—Li3ii81.0 (2)Ga1x—Li3—Li2xiii62.79 (13)
Ga1—O4—Li2112.52 (17)B1ii—Li3—Ga1x121.35 (18)
B2—O4—Ga1127.86 (17)B1ii—Li3—B269.64 (14)
B2—O4—Li2119.6 (2)B1ii—Li3—Li1ii57.56 (14)
Ga1ii—O5—Li1x113.47 (16)B1ii—Li3—Li1x106.5 (2)
Ga1ii—O5—Li2v115.56 (17)B1ii—Li3—Li1xi80.20 (17)
B2—O5—Ga1ii113.05 (16)B1ii—Li3—Li2xiii150.9 (2)
B2—O5—Li1x110.1 (2)B2—Li3—Ga1x168.9 (2)
B2—O5—Li2v110.9 (2)B2—Li3—Li1x60.43 (15)
Li2v—O5—Li1x92.0 (2)B2—Li3—Li1ii127.1 (2)
B2—O6—Li1viii112.8 (2)B2—Li3—Li1xi64.26 (15)
B2—O6—Li1xi130.9 (2)B2—Li3—Li2xiii108.51 (19)
B2—O6—Li3117.0 (2)O2xi—Li3—Ga1x36.18 (10)
Li1xi—O6—Li1viii83.6 (2)O2xi—Li3—B1ii122.9 (2)
Li3—O6—Li1xi95.2 (2)O2xi—Li3—B2141.0 (2)
Li3—O6—Li1viii112.6 (2)O2xi—Li3—Li1ii77.94 (18)
B2viii—Li1—Ga1iii150.65 (19)O2xi—Li3—Li1x130.1 (2)
B2viii—Li1—Li2ix115.6 (2)O2xi—Li3—Li1xi80.86 (19)
B2viii—Li1—Li3ix107.8 (2)O2xi—Li3—Li2xiii41.01 (14)
B2viii—Li1—Li3ii117.46 (19)O2xi—Li3—Li3xiv118.1 (3)
B2viii—Li1—Li3vii81.65 (18)O3ii—Li3—Ga1x97.47 (18)
B2viii—Li1—Li3viii54.76 (14)O3x—Li3—Ga1x73.34 (15)
O3—Li1—Ga1iii90.74 (18)O3x—Li3—B1ii116.5 (2)
O3—Li1—B2viii81.99 (18)O3ii—Li3—B1ii27.27 (10)
O3—Li1—O5vii110.1 (2)O3x—Li3—B2101.3 (2)
O3—Li1—O6viii108.0 (2)O3ii—Li3—B292.9 (2)
O3—Li1—O6ix117.7 (3)O3x—Li3—O2xi103.3 (2)
O3—Li1—Li1xii125.5 (3)O3ii—Li3—O2xi112.5 (2)
O3—Li1—Li2ix153.3 (3)O3x—Li3—O3ii99.0 (2)
O3—Li1—Li3vii42.42 (15)O3ii—Li3—Li1x108.3 (2)
O3—Li1—Li3ii36.20 (14)O3ii—Li3—Li1xi103.2 (2)
O3—Li1—Li3viii133.3 (2)O3x—Li3—Li1x41.91 (14)
O3—Li1—Li3ix75.85 (19)O3ii—Li3—Li1ii35.65 (13)
O5vii—Li1—Ga1iii31.78 (9)O3x—Li3—Li1ii99.1 (2)
O5vii—Li1—B2viii126.2 (2)O3x—Li3—Li1xi153.9 (3)
O5vii—Li1—Li1xii124.5 (3)O3ii—Li3—Li2xiii153.3 (2)
O5vii—Li1—Li2ix43.60 (14)O3x—Li3—Li2xiii92.5 (2)
O5vii—Li1—Li3viii86.42 (18)O3ii—Li3—Li3xiv49.37 (18)
O5vii—Li1—Li3ix126.0 (2)O3x—Li3—Li3xiv49.60 (17)
O5vii—Li1—Li3ii82.63 (18)O6—Li3—Ga1x149.2 (2)
O5vii—Li1—Li3vii76.30 (19)O6—Li3—B1ii82.26 (18)
O6ix—Li1—Ga1iii95.39 (18)O6—Li3—B225.26 (10)
O6viii—Li1—Ga1iii149.8 (2)O6—Li3—O2xi115.8 (3)
O6viii—Li1—B2viii26.37 (10)O6—Li3—O3ii109.1 (2)
O6ix—Li1—B2viii113.2 (2)O6—Li3—O3x116.1 (3)
O6viii—Li1—O5vii118.0 (2)O6—Li3—Li1x74.64 (19)
O6ix—Li1—O5vii106.5 (2)O6—Li3—Li1xi42.94 (15)
O6ix—Li1—O6viii96.4 (2)O6—Li3—Li1ii135.9 (2)
O6viii—Li1—Li1xii48.01 (17)O6—Li3—Li2xiii86.9 (2)
O6ix—Li1—Li1xii48.35 (17)O6—Li3—Li3xiv126.2 (3)
O6viii—Li1—Li2ix92.4 (2)Li1x—Li3—Ga1x112.15 (18)
O6ix—Li1—Li2ix75.35 (18)Li1xi—Li3—Ga1x116.62 (19)
O6viii—Li1—Li3vii103.7 (2)Li1x—Li3—Li1ii130.42 (19)
O6ix—Li1—Li3ii106.1 (2)Li1xi—Li3—Li1x116.4 (2)
O6viii—Li1—Li3ii143.8 (2)Li1xi—Li3—Li1ii106.95 (18)
O6ix—Li1—Li3vii155.5 (3)Li1x—Li3—Li2xiii96.3 (2)
O6viii—Li1—Li3ix109.5 (2)Li1xi—Li3—Li2xiii73.57 (18)
O6ix—Li1—Li3ix41.90 (15)Li2xiii—Li3—Li1ii118.79 (19)
O6ix—Li1—Li3viii96.9 (2)Li3xiv—Li3—Ga1x83.1 (2)
O6viii—Li1—Li3viii33.21 (13)Li3xiv—Li3—B1ii70.0 (2)
Li1xii—Li1—Ga1iii136.1 (3)Li3xiv—Li3—B2100.9 (3)
Li1xii—Li1—B2viii67.7 (2)Li3xiv—Li3—Li1xi150.0 (3)
Li1xii—Li1—Li2ix81.0 (2)Li3xiv—Li3—Li1ii59.6 (2)
Li1xii—Li1—Li3viii57.4 (2)Li3xiv—Li3—Li1x70.8 (2)
Li1xii—Li1—Li3ii144.5 (3)Li3xiv—Li3—Li2xiii136.2 (3)
Ga1—O4—Li2—Ga1iv102.80 (13)O6—B2—O4—Li20.4 (4)
Ga1—O4—Li2—Ga1vi66.9 (3)O6—B2—O5—Ga1ii101.3 (3)
Ga1—O4—Li2—Ga1i41.4 (3)O6—B2—O5—Li1x26.8 (3)
Ga1—O4—Li2—B1viii95.37 (14)O6—B2—O5—Li2v127.1 (3)
Ga1—O4—Li2—B2i127.4 (3)Li1iii—Ga1—O1—B137.0 (2)
Ga1—O4—Li2—O1i12.7 (3)Li1iii—Ga1—O1—Li2v135.94 (19)
Ga1—O4—Li2—O2viii95.0 (2)Li1iii—Ga1—O4—B2105.3 (2)
Ga1—O4—Li2—O5i126.46 (19)Li1iii—Ga1—O4—Li272.3 (2)
Ga1—O4—Li2—Li1xi166.36 (14)Li1viii—B2—O4—Ga1140.43 (17)
Ga1—O4—Li2—Li3xiii133.58 (18)Li1viii—B2—O4—Li242.1 (3)
B2—O4—Li2—Ga1iv75.0 (2)Li1viii—B2—O5—Ga1ii149.04 (15)
B2—O4—Li2—Ga1vi115.2 (2)Li1viii—B2—O5—Li1x21.0 (3)
B2—O4—Li2—Ga1i136.4 (2)Li1viii—B2—O5—Li2v79.3 (3)
B2—O4—Li2—Ga1177.8 (3)Li1viii—B2—O6—Li1xi101.9 (3)
B2—O4—Li2—B1viii86.8 (2)Li1viii—B2—O6—Li3133.1 (3)
B2—O4—Li2—B2i50.5 (4)Li2vi—Ga1—O1—B176.7 (2)
B2—O4—Li2—O1i165.1 (2)Li2v—Ga1—O1—B1173.0 (3)
B2—O4—Li2—O2viii87.2 (3)Li2iv—Ga1—O1—B198.1 (2)
B2—O4—Li2—O5i51.4 (3)Li2—Ga1—O1—B1142.1 (2)
B2—O4—Li2—Li1xi11.5 (3)Li2—Ga1—O1—Li2v44.96 (17)
B2—O4—Li2—Li3xiii48.6 (3)Li2vi—Ga1—O1—Li2v110.28 (16)
O1—Ga1—O4—B242.2 (2)Li2iv—Ga1—O1—Li2v74.9 (2)
O1—Ga1—O4—Li2140.21 (19)Li2—Ga1—O4—B2177.6 (3)
O1—B1—O2—Ga1v38.0 (3)Li2iv—Ga1—O4—B280.7 (2)
O1—B1—O2—Li2viii86.5 (3)Li2vi—Ga1—O4—B2130.6 (2)
O1—B1—O2—Li3ix166.5 (2)Li2v—Ga1—O4—B233.0 (2)
O1—B1—O3—Li1143.3 (3)Li2iv—Ga1—O4—Li296.9 (2)
O1—B1—O3—Li3ii89.1 (3)Li2vi—Ga1—O4—Li251.7 (2)
O1—B1—O3—Li3vii8.1 (5)Li2v—Ga1—O4—Li2149.4 (3)
O2i—Ga1—O1—B148.3 (2)Li2viii—B1—O1—Ga1145.49 (15)
O2i—Ga1—O1—Li2v138.71 (18)Li2viii—B1—O1—Li2v43.1 (4)
O2i—Ga1—O4—B2166.3 (2)Li2viii—B1—O2—Ga1v124.5 (2)
O2i—Ga1—O4—Li216.1 (2)Li2viii—B1—O2—Li3ix107.0 (2)
O2—B1—O1—Ga1165.44 (16)Li2viii—B1—O3—Li114.5 (3)
O2—B1—O1—Li2v5.9 (4)Li2viii—B1—O3—Li3vii120.7 (3)
O2—B1—O3—Li138.4 (4)Li2viii—B1—O3—Li3ii142.1 (2)
O2—B1—O3—Li3ii89.2 (3)Li2v—B2—O4—Ga134.6 (2)
O2—B1—O3—Li3vii173.6 (3)Li2v—B2—O4—Li2147.9 (3)
O3—B1—O1—Ga113.0 (3)Li2v—B2—O5—Ga1ii131.7 (2)
O3—B1—O1—Li2v175.7 (3)Li2v—B2—O5—Li1x100.3 (3)
O3—B1—O2—Ga1v140.4 (2)Li2v—B2—O6—Li1xi151.7 (3)
O3—B1—O2—Li2viii95.1 (3)Li2v—B2—O6—Li1viii49.8 (4)
O3—B1—O2—Li3ix12.0 (3)Li2v—B2—O6—Li383.2 (4)
O4—Ga1—O1—B1171.88 (18)Li3vii—Ga1—O1—B116.7 (2)
O4—Ga1—O1—Li2v15.1 (2)Li3vii—Ga1—O1—Li2v170.3 (2)
O4—B2—O5—Ga1ii80.4 (2)Li3vii—Ga1—O4—B2162.9 (3)
O4—B2—O5—Li1x151.6 (2)Li3vii—Ga1—O4—Li219.4 (3)
O4—B2—O5—Li2v51.3 (3)Li3ii—B1—O1—Ga133.9 (2)
O4—B2—O6—Li1viii78.0 (3)Li3ii—B1—O1—Li2v137.4 (3)
O4—B2—O6—Li1xi23.9 (4)Li3ii—B1—O2—Ga1v94.3 (2)
O4—B2—O6—Li3149.0 (3)Li3ii—B1—O2—Li2viii141.2 (2)
O5ii—Ga1—O1—B170.85 (19)Li3ii—B1—O2—Li3ix34.2 (3)
O5ii—Ga1—O1—Li2v102.13 (18)Li3ii—B1—O3—Li1127.6 (3)
O5ii—Ga1—O4—B269.7 (2)Li3ii—B1—O3—Li3vii97.2 (3)
O5ii—Ga1—O4—Li2107.94 (19)Li3—B2—O4—Ga1139.9 (3)
O5—B2—O4—Ga13.7 (3)Li3—B2—O4—Li237.5 (5)
O5—B2—O4—Li2178.8 (2)Li3—B2—O5—Ga1ii81.93 (16)
O5—B2—O6—Li1viii100.3 (3)Li3—B2—O5—Li1x46.1 (2)
O5—B2—O6—Li1xi157.8 (3)Li3—B2—O5—Li2v146.4 (2)
O5—B2—O6—Li332.7 (4)Li3—B2—O6—Li1viii133.1 (3)
O6—B2—O4—Ga1177.91 (18)Li3—B2—O6—Li1xi125.1 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2; (iv) x+2, y+1, z+1; (v) x1, y, z; (vi) x+2, y, z+1; (vii) x, y1, z+1; (viii) x+1, y, z+1; (ix) x1, y1, z+1; (x) x, y+1, z1; (xi) x+1, y+1, z1; (xii) x, y1, z+2; (xiii) x+2, y+1, z; (xiv) x+1, y+2, z.
Comparison of the two structures with composition Li3Ga(BO3)2 top
Structure modelAbdullaev & Mamedov (1972)Current work
Reduced cell (Å, °)4.90 (2) 6.23 (3) 7.78 (5) 72.9 (5) 90.0 (5) 90.0 (5)4.8731 (3) 6.2429 (4) 8.0130 (5) 73.346 (6) 89.701 (5) 89.698 (5)
Range of interatomic distances (Å)Shannon (1976)
Li—O2.28±0.411.965±0.0541.97
Ga—O2.07±0.431.847±0.0211.85
B—O1.31±0.131.384±0.0381.39
Bond-valence-sum values and coordination numbers (in brackets)
Li (1, 2 & 3)1.14 [4+1], 1.01 [4], 1.00 [6]1.07 [4], 1.03 [4], 1.05 [4]
Ga (1)2.38 [4]2.92 [4]
B (1 & 2)3.17 [3], 3.06 [3]2.91 [3], 2.91 [3]
 

Acknowledgements

EMV would like to acknowledge Creighton University for financial support.

References

First citationAbdullaev, G. K. & Mamedov, Kh. S. (1972). Zh. Strukt. Khim. 13, 943–946.  CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCorbel, G. & Leblanc, M. (2000). J. Solid State Chem. 154, 344–349.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHe, M., Chen, X. L., Gramlich, V., Baerlocher, Ch., Zhou, T. & Hu, B. Q. (2002). J. Solid State Chem. 163, 369–376.  CrossRef CAS Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, R. W. (1995). Acta Cryst. C51, 547–549.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSmith, R. W., Hu, C. & DeSpain, C. D. (2008). Acta Cryst. E64, i23.  CrossRef IUCr Journals Google Scholar
First citationSmith, R. W., Kennard, M. A. & Dudik, M. J. (1997). Mater. Res. Bull. 32, 649–656.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds