research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Inter­action between maleic acid and N-R-furfuryl­amines: crystal structure of 2-methyl-N-[(5-phenyl­furan-2-yl)meth­yl]propan-2-aminium (2Z)-3-carb­­oxy­acrylate and N-[(5-iodo­furan-2-yl)meth­yl]-2-methyl­propan-2-aminium (2Z)-3-carb­­oxy­prop-2-enoate

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, bNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, cInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and dX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B–334, Moscow 119991, Russian Federation
*Correspondence e-mail: vnkhrustalev@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 February 2017; accepted 4 March 2017; online 14 March 2017)

The title mol­ecular salts, C15H20NO+·C4H3O4, (I), and C9H15INO+·C4H3O4, (II), have very similar mol­ecular geometries for both cation and anion. The anions of both (I) and (II) are practically planar (r.m.s. deviations = 0.062 and 0.072 Å, respectively) and adopt a rare symmetrical geometry with the hy­droxy H atom approximately equidistant from the two O atoms. In their crystals, the cations and anions in both (I) and (II) form tight ionic pairs via strong N—H⋯O hydrogen bonds, with a roughly perpendicular disposition of the anion to the furan ring of the cation. This ion-pair conformation appears to correlate with the lack of reactivity of these salts in [4 + 2] cyclo­addition reactions. In the extended structures of (I) and (II), the ion pairs form hydrogen-bonded chains propagating along [010] and [001], respectively, via N—H⋯O hydrogen bonds.

1. Chemical context

Owing to the fact that the furan ring contains a system of conjugated double bonds, it usually acts as an effective diene in intra- and inter­molecular Diels–Alder reactions with electron-deficient dienophiles. The [4 + 2] cyclo­addition of furans with maleic acid leading to structurally diverse 7-oxabi­cyclo[2.2.1]heptenes has been investigated for a long time (Diels & Alder, 1931[Diels, O. & Alder, K. (1931). Justus Liebigs Ann. Chem. 490, 257-266.]; Berson & Swidler, 1953[Berson, J. A. & Swidler, R. (1953). J. Am. Chem. Soc. 75, 1721-1726.], 1954[Berson, J. A. & Swidler, R. (1954). J. Am. Chem. Soc. 76, 4060-4069.]; Eggelte et al., 1973[Eggelte, T. A., de Koning, H. & Huisman, H. O. (1973). Tetrahedron, 29, 2491-2493.]; Sprague et al., 1985[Sprague, P. W., Heikes, J. E., Gougoutas, J. Z., Malley, M. F., Harris, D. N. & Greenberg, R. (1985). J. Med. Chem. 28, 1580-1590.]). However, there are only fragmentary data concerning the reactions of halogen- or aryl-substituted furans with maleic acid (Sheinkman et al., 1972[Sheinkman, A. K., Deikalo, A. A., Stupnikova, T. V., Klyuev, N. A. & Mal'tseva, G. A. (1972). Chem. Heterocycl. Compd. 8, 993-997.]; Shih et al., 1975[Shih, W., Lau, N. & Seltzer, S. (1975). J. Org. Chem. 40, 1269-1274.]). It is known that the inter­action between maleic acid and furfuryl­amines leads usually to the formation of the salts, but is not accompanied by the [4 + 2] cyclo­addition (Clitherow, 1983[Clitherow, J. W. (1983). Patent US4413135A1.]; Price et al., 1985[Price, B. J., Clitherow, J. W., Bradshaw, J., Martin-Smith, M., Judd, D. B. & Hayes, R. (1985). Patent US4524071A1.]; Brown, 1986[Brown, T. H. (1986). Patent US4567176A1.]; Pelosi et al., 2002[Pelosi, S. S. Jr, Yu, C.-N. & Calcagno, M. A. (2002). Patent EP1231208A2.]; Craig et al., 2008[Craig, A. S., Ho, T. C. T. & McClure, M. S. (2008). Patent WO2008/154469A1.]; Metsger et al., 2010[Metsger, L., Mittelman, A. & Yurkovski, S. (2010). Pat. US2010/87459A1.]).

The main goal of this work was to study the cyclo­addition reaction between 5-R-furfuryl-tert-butyl­amines and maleic acid. The inter­action between the corresponding amines and maleic acid at room temperature leads to the salts (I)[link] and (II)[link] only (Fig. 1[link]). Unexpectedly, attempts to achieve thermal cyclization of salts (I)[link] and (II)[link] did not result in isolation of the targeted 7-oxabi­cyclo­[2.2.1]heptenes: the initial maleates remained unchanged at temperatures up to 413 K (Fig. 2[link]). In order to explain this fact by an understanding of their stereochemical features, an X-ray diffraction study of compounds (I)[link] and (II)[link] was undertaken.

[Scheme 1]
[Scheme 2]
[Figure 1]
Figure 1
Synthesis of maleic salts (I)[link] and (II)[link] from N-[(5-R-furan-2-yl)meth­yl]-2-methyl­propan-2-amines.
[Figure 2]
Figure 2
The attempted thermal cyclization of salts (I)[link] (R = Ph) and (II)[link] (R = I).

2. Structural commentary

Compounds (I)[link], C15H20NO+·C4H3O4, and (II)[link], C9H15INO+·C4H3O4, represent secondary amine salts of maleic acid and have very similar mol­ecular geometries (Figs. 3[link] and 4[link]) for both cation and anion. The saturated C2–C1–N1–C(t-Bu) backbone of the ammonium cation is twisted by 72.66 (7) and 63.2 (2)° relative to the furan ring in (I)[link] and (II)[link], respectively. The phenyl substituent of the cation in (I)[link] is almost coplanar to the furan ring (r.m.s. deviation is 0.006 Å). The anions of (I)[link] and (II)[link] are practically planar (r.m.s. deviations are 0.062 and 0.072 Å, respectively). It inter­esting to note that the hydrogen atom of the hy­droxy group of the anion is arranged at almost equal distances from the two oxygen atoms in both (I)[link] and (II)[link] (Tables 1[link] and 2[link], Figs. 3[link] and 4[link]). Thus, the anions of (I)[link] and (II)[link] adopt a rare symmetrical geometry.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯O3 1.160 (17) 1.257 (17) 2.4142 (14) 175.3 (15)
N1—H1A⋯O2i 0.968 (15) 1.790 (15) 2.7547 (15) 174.9 (13)
N1—H1B⋯O4ii 0.936 (15) 1.860 (15) 2.7803 (14) 167.4 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯O3 1.18 (5) 1.25 (5) 2.425 (3) 172 (4)
N1—H1A⋯O2 0.88 (4) 1.97 (4) 2.828 (3) 167 (3)
N1—H1B⋯O4i 0.88 (4) 1.92 (4) 2.792 (4) 172 (3)
Symmetry code: (i) x, y, z+1.
[Figure 3]
Figure 3
The mol­ecular structure of salt (I)[link]. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed lines indicate the intra­molecular O—H⋯O and inter­molecular N—H⋯O hydrogen bonds.
[Figure 4]
Figure 4
The mol­ecular structure of salt (II)[link]. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed lines indicate the intra­molecular O—H⋯O and inter­molecular N—H⋯O hydrogen bonds.

Importantly, the cations and anions in both (I)[link] and (II)[link] form tight ion pairs via strong N1—H1A⋯O2 hydrogen bonds (Tables 1[link] and 2[link], Figs. 3[link] and 4[link]). Within the tight ion pairs, the anion is roughly perpendicular to the furan ring of the cation, the inter­planar angles being 72.01 (4) and 67.94 (12)° in (I)[link] and (II)[link], respectively. Apparently, the formation of the robust tight ion pairs with a definite cation–anion conformation inhibits the desired cyclization reaction, preventing the closure of the cations and anions.

3. Supra­molecular features

Despite the sterically different substituents at the furyl ring of the aminium cations, compounds (I)[link] and (II)[link] organize similar supra­molecular structures in the solid state. So, in the crystal of (I)[link], the tight ion pairs form hydrogen-bonded chains propagating along [010] via strong N1—H1B⋯O4 links (Table 1[link], Fig. 5[link]). In the crystal of (II)[link], the analogous hydrogen-bonded chains propagate along [001] (Table 2[link], Fig. 6[link]). In both (I)[link] and (II)[link], the chains are further packed in stacks along [100] (Figs. 5[link] and 6[link]).

[Figure 5]
Figure 5
The crystal structure of (I)[link], illustrating the hydrogen-bonded chains propagating along [010]. Dashed lines indicate the intra­molecular O—H⋯O and inter­molecular N—H⋯O hydrogen bonds.
[Figure 6]
Figure 6
The crystal structure of (II)[link], illustrating the hydrogen-bonded chains propagating along [001]. Dashed lines indicate the intra­molecular O—H⋯O and inter­molecular N—H⋯O hydrogen bonds.

4. Synthesis and crystallization

The starting N-[(5-R-furan-2-yl)meth­yl]-2-methyl­propan-2-amines were synthesized according to the procedure described recently (Zubkov et al., 2016[Zubkov, F. I., Golubev, V. D., Zaytsev, V. P., Bakhanovich, O. V., Nikitina, E. V., Khrustalev, V. N., Aysin, R. R., Timofeeva, T. V., Novikov, R. A. & Varlamov, A. V. (2016). Chem. Heterocycl. Compd, 52, 225-236.]).

General procedure. A solution of the corresponding amine (1 mmol) and maleic acid (0.12 g, 1.1 mmol) in acetone (5 ml) was stirred for 1 h. The precipitated crystals were filtered off and recrystallized from an i-PrOH–DMF mixture [for (I)] or MeOH [for (II)] to give the analytically pure maleates (I)[link] and (II)[link].

2-Methyl-N-[(5-phenyl­furan-2-yl)meth­yl]propan-2-amin­ium (2Z)-3-carb­oxy­acrylate (I). Colourless prisms. Yield 0.26 g (72%). M.p. = 485.1–486.1 K (i-PrOH–DMF). IR (KBr), ν (cm−1): 1591, 1630, 3435. 1H NMR (DMSO, 600 MHz, 301 K): δ = 1.36 (s, 9H, t-Bu), 4.30 (s, 2H, CH2—N), 6.04 (s, 2H, –CH=CH–), 6.74 (d, 1H, H3, furyl, J = 3.4), 7.00 (d, 1H, H4, furyl, J = 3.4), 7.34 (br t, 1H, H4, Ph, J = 7.6), 7.46 (ddd, 2H, H3 and H5, Ph, J = 8.2, J = 7.6, J = 1.4), 7.76 (dd, 2H, H2 and H6, Ph, J = 8.2, J = 1.4), 8.89 (br s, 1H, CO2H). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 25.7 (3C, CH3), 38.0 (CH2—N), 57.3 (N—C), 100.0 (2C, –CH=CH–), 107.4 (C4, fur­yl), 114.3 (C3, fur­yl), 124.2, 128.5, 129.5, 130.3, 136.7 (C1, Ph), 146.6 (C2, fur­yl), 154.5 (C5, fur­yl), 167.8 (2C, CO2). MS (APCI): m/z = 230 [M − 115]+.

N-[(5-Iodo­furan-2-yl)meth­yl]-2-methyl­propan-2-aminium (2Z)-3-carb­oxy­prop-2-enoate (II). Colourless needles. Yield 0.31 g (79%). M.p. = 452.1–453.3 K (CH3OH). IR (KBr), ν (cm−1): 1576, 1631, 2800, 3012. 1H NMR (DMSO, 600 MHz, 301 K): δ = 1.26 (s, 9H, t-Bu), 4.19 (s, 2H, CH2—N), 5.99–6.00 (m, 2H, –CH=CH–), 6.54 (d, 1H, H3, furyl, J = 3.3), 6.73 (d, 1H, H4, furyl, J = 3.3), 8.89 (br s, 1H, CO2H). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 25.6 (3C, CH3), 37.4 (CH2—N), 57.3 (N—C), 100.0 (C5, fur­yl), 115.3 (C4, fur­yl), 121.8 (C3, fur­yl), 136.6 (2C, —CH=CH—), 151.1 [C2, fur­yl], 167.7 (2C, CO2). MS (APCI): m/z = 280 [M − 115]+.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. X-ray diffraction studies for (II)[link] were carried out on the `Belok' beamline of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C15H20NO+·C4H3O4 C9H15INO+·C4H3O4
Mr 345.38 395.18
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 120 100
a, b, c (Å) 7.5177 (4), 9.8339 (6), 12.1951 (7) 5.7501 (12), 28.272 (6), 9.6402 (19)
α, β, γ (°) 94.387 (1), 94.552 (1), 91.578 (1) 90, 93.17 (3), 90
V3) 895.57 (9) 1564.8 (6)
Z 2 4
Radiation type Mo Kα Synchrotron, λ = 0.96990 Å
μ (mm−1) 0.09 4.69
Crystal size (mm) 0.30 × 0.25 × 0.20 0.30 × 0.05 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD Rayonix SX165 CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.966, 0.977 0.460, 0.860
No. of measured, independent and observed [I > 2σ(I)] reflections 14165, 6555, 3947 21875, 3146, 2714
Rint 0.047 0.068
(sin θ/λ)max−1) 0.760 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.122, 1.00 0.040, 0.100, 1.02
No. of reflections 6555 3146
No. of parameters 238 194
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.26 0.94, −1.21
Computer programs: APEX2 (Bruker, 2005[Bruker. (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), Automar (MarXperts, 2015[MarXperts. (2015). Automar. marXperts GmbH, Norderstedt, Germany.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

The hydrogen atoms of the amino and hy­droxy groups were localized in a difference-Fourier map and refined isotropically with fixed displacement parameters [Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O)]. All other hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined using the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3 groups and 1.2Ueq(C) for all other atoms].

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005) for (I); Automar (MarXperts, 2015) for (II). Cell refinement: SAINT (Bruker, 2001) for (I); iMosflm (Battye et al., 2011) for (II). Data reduction: SAINT (Bruker, 2001) for (I); iMosflm (Battye et al., 2011) for (II). For both compounds, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) 2-Methyl-N-[(5-phenylfuran-2-yl)methyl]propan-2-aminium (2Z)-3-carboxyacrylate top
Crystal data top
C15H20NO+·C4H3O4Z = 2
Mr = 345.38F(000) = 368
Triclinic, P1Dx = 1.281 Mg m3
a = 7.5177 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8339 (6) ÅCell parameters from 2186 reflections
c = 12.1951 (7) Åθ = 2.6–31.5°
α = 94.387 (1)°µ = 0.09 mm1
β = 94.552 (1)°T = 120 K
γ = 91.578 (1)°Prism, colourless
V = 895.57 (9) Å30.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3947 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
φ and ω scansθmax = 32.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1111
Tmin = 0.966, Tmax = 0.977k = 1414
14165 measured reflectionsl = 1818
6555 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
6555 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92461 (12)0.90909 (9)0.24482 (7)0.0223 (2)
N11.20595 (14)0.76402 (11)0.11610 (9)0.0175 (2)
H1A1.2498 (18)0.6949 (15)0.1627 (12)0.021*
H1B1.2370 (19)0.8484 (15)0.1545 (12)0.021*
C11.00641 (17)0.74679 (14)0.09978 (11)0.0223 (3)
H1C0.95960.81020.04610.027*
H1D0.97360.65250.06910.027*
C20.92419 (17)0.77432 (13)0.20536 (11)0.0216 (3)
C30.84120 (18)0.69612 (15)0.27361 (12)0.0264 (3)
H30.82330.59980.26520.032*
C40.78576 (19)0.78600 (15)0.36059 (12)0.0272 (3)
H40.72290.76100.42100.033*
C50.83939 (17)0.91370 (14)0.34107 (11)0.0222 (3)
C60.82740 (17)1.04880 (14)0.39825 (11)0.0229 (3)
C70.89734 (18)1.16539 (15)0.35647 (12)0.0262 (3)
H70.95501.15720.28980.031*
C80.88348 (19)1.29304 (16)0.41130 (12)0.0296 (3)
H80.93251.37160.38240.036*
C90.79823 (19)1.30640 (16)0.50820 (12)0.0302 (3)
H90.78811.39400.54540.036*
C100.72778 (19)1.19148 (16)0.55059 (11)0.0286 (3)
H100.66891.20050.61670.034*
C110.74308 (18)1.06376 (16)0.49678 (11)0.0260 (3)
H110.69600.98540.52690.031*
C121.30888 (17)0.75667 (13)0.01359 (11)0.0200 (3)
C131.50545 (18)0.75962 (15)0.05686 (12)0.0265 (3)
H13A1.53260.84180.10670.040*
H13B1.58040.76040.00530.040*
H13C1.52940.67850.09690.040*
C141.25942 (19)0.62298 (14)0.05538 (12)0.0262 (3)
H14A1.13460.62400.08530.039*
H14B1.27510.54650.00890.039*
H14C1.33680.61260.11630.039*
C151.26620 (19)0.88007 (15)0.05105 (12)0.0262 (3)
H15A1.29180.96390.00290.039*
H15B1.13970.87530.07790.039*
H15C1.33970.88040.11390.039*
O20.34880 (14)0.57638 (10)0.25174 (8)0.0310 (2)
O30.19310 (13)0.40290 (11)0.15970 (8)0.0306 (2)
O40.34720 (13)0.00091 (10)0.23666 (8)0.0279 (2)
O50.19913 (12)0.15695 (10)0.14960 (8)0.0255 (2)
H5O0.190 (2)0.2747 (18)0.1531 (13)0.038*
C160.31067 (18)0.45314 (14)0.23545 (11)0.0226 (3)
C170.40964 (18)0.36056 (14)0.30859 (11)0.0235 (3)
H170.48300.40610.36800.028*
C180.41217 (18)0.22465 (14)0.30440 (11)0.0226 (3)
H180.48880.18920.36020.027*
C190.31356 (17)0.11924 (14)0.22580 (11)0.0210 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0221 (5)0.0253 (5)0.0199 (5)0.0034 (4)0.0041 (4)0.0016 (4)
N10.0174 (5)0.0160 (5)0.0189 (5)0.0008 (4)0.0002 (4)0.0010 (4)
C10.0167 (6)0.0276 (7)0.0217 (6)0.0006 (5)0.0003 (5)0.0016 (5)
C20.0178 (6)0.0236 (7)0.0225 (6)0.0032 (5)0.0012 (5)0.0011 (5)
C30.0246 (7)0.0266 (7)0.0281 (7)0.0009 (6)0.0022 (6)0.0025 (6)
C40.0254 (7)0.0333 (8)0.0242 (7)0.0024 (6)0.0068 (6)0.0056 (6)
C50.0181 (6)0.0320 (7)0.0172 (6)0.0057 (5)0.0023 (5)0.0039 (5)
C60.0183 (6)0.0309 (7)0.0197 (6)0.0072 (5)0.0001 (5)0.0022 (5)
C70.0242 (7)0.0325 (8)0.0223 (7)0.0043 (6)0.0039 (5)0.0022 (6)
C80.0276 (7)0.0318 (8)0.0293 (8)0.0040 (6)0.0008 (6)0.0020 (6)
C90.0289 (7)0.0348 (8)0.0252 (7)0.0090 (6)0.0028 (6)0.0064 (6)
C100.0252 (7)0.0417 (9)0.0189 (7)0.0105 (6)0.0005 (5)0.0004 (6)
C110.0227 (7)0.0359 (8)0.0197 (7)0.0077 (6)0.0006 (5)0.0038 (6)
C120.0189 (6)0.0220 (6)0.0193 (6)0.0012 (5)0.0031 (5)0.0007 (5)
C130.0207 (6)0.0299 (8)0.0291 (7)0.0013 (6)0.0037 (6)0.0026 (6)
C140.0260 (7)0.0261 (7)0.0257 (7)0.0021 (6)0.0042 (6)0.0051 (6)
C150.0287 (7)0.0276 (7)0.0229 (7)0.0005 (6)0.0025 (6)0.0062 (5)
O20.0433 (6)0.0204 (5)0.0294 (6)0.0081 (4)0.0000 (5)0.0026 (4)
O30.0296 (5)0.0296 (6)0.0318 (6)0.0042 (4)0.0079 (4)0.0075 (4)
O40.0333 (6)0.0196 (5)0.0301 (5)0.0014 (4)0.0006 (4)0.0001 (4)
O50.0256 (5)0.0284 (5)0.0215 (5)0.0018 (4)0.0041 (4)0.0021 (4)
C160.0233 (6)0.0250 (7)0.0203 (6)0.0077 (5)0.0039 (5)0.0025 (5)
C170.0254 (7)0.0222 (7)0.0217 (7)0.0024 (5)0.0045 (5)0.0003 (5)
C180.0225 (6)0.0226 (7)0.0218 (6)0.0029 (5)0.0042 (5)0.0021 (5)
C190.0206 (6)0.0230 (7)0.0191 (6)0.0007 (5)0.0031 (5)0.0000 (5)
Geometric parameters (Å, º) top
O1—C21.3747 (16)C11—H110.9500
O1—C51.3796 (15)C12—C151.5247 (19)
N1—C11.5007 (16)C12—C141.5259 (18)
N1—C121.5198 (16)C12—C131.5279 (18)
N1—H1A0.968 (15)C13—H13A0.9800
N1—H1B0.936 (15)C13—H13B0.9800
C1—C21.4817 (18)C13—H13C0.9800
C1—H1C0.9900C14—H14A0.9800
C1—H1D0.9900C14—H14B0.9800
C2—C31.352 (2)C14—H14C0.9800
C3—C41.424 (2)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.353 (2)C15—H15C0.9800
C4—H40.9500O2—C161.2351 (17)
C5—C61.4609 (19)O3—C161.2866 (17)
C6—C71.396 (2)O3—H5O1.257 (17)
C6—C111.4022 (19)O4—C191.2300 (16)
C7—C81.387 (2)O5—C191.2979 (16)
C7—H70.9500O5—H5O1.160 (17)
C8—C91.388 (2)C16—C171.4947 (19)
C8—H80.9500C17—C181.3343 (18)
C9—C101.387 (2)C17—H170.9500
C9—H90.9500C18—C191.4952 (18)
C10—C111.384 (2)C18—H180.9500
C10—H100.9500
C2—O1—C5106.85 (10)C10—C11—H11119.7
C1—N1—C12117.49 (10)C6—C11—H11119.7
C1—N1—H1A108.0 (8)N1—C12—C15108.92 (10)
C12—N1—H1A108.0 (8)N1—C12—C14109.41 (11)
C1—N1—H1B109.6 (9)C15—C12—C14111.64 (11)
C12—N1—H1B106.5 (9)N1—C12—C13105.08 (10)
H1A—N1—H1B106.6 (12)C15—C12—C13111.28 (11)
C2—C1—N1111.02 (10)C14—C12—C13110.29 (11)
C2—C1—H1C109.4C12—C13—H13A109.5
N1—C1—H1C109.4C12—C13—H13B109.5
C2—C1—H1D109.4H13A—C13—H13B109.5
N1—C1—H1D109.4C12—C13—H13C109.5
H1C—C1—H1D108.0H13A—C13—H13C109.5
C3—C2—O1109.83 (12)H13B—C13—H13C109.5
C3—C2—C1134.49 (13)C12—C14—H14A109.5
O1—C2—C1115.65 (12)C12—C14—H14B109.5
C2—C3—C4106.78 (13)H14A—C14—H14B109.5
C2—C3—H3126.6C12—C14—H14C109.5
C4—C3—H3126.6H14A—C14—H14C109.5
C5—C4—C3107.10 (12)H14B—C14—H14C109.5
C5—C4—H4126.4C12—C15—H15A109.5
C3—C4—H4126.4C12—C15—H15B109.5
C4—C5—O1109.43 (12)H15A—C15—H15B109.5
C4—C5—C6134.61 (13)C12—C15—H15C109.5
O1—C5—C6115.96 (12)H15A—C15—H15C109.5
C7—C6—C11118.51 (13)H15B—C15—H15C109.5
C7—C6—C5121.38 (12)C16—O3—H5O111.3 (7)
C11—C6—C5120.11 (13)C19—O5—H5O111.7 (8)
C8—C7—C6120.65 (13)O2—C16—O3123.38 (13)
C8—C7—H7119.7O2—C16—C17116.77 (12)
C6—C7—H7119.7O3—C16—C17119.85 (12)
C7—C8—C9120.20 (15)C18—C17—C16130.78 (13)
C7—C8—H8119.9C18—C17—H17114.6
C9—C8—H8119.9C16—C17—H17114.6
C10—C9—C8119.80 (14)C17—C18—C19130.28 (12)
C10—C9—H9120.1C17—C18—H18114.9
C8—C9—H9120.1C19—C18—H18114.9
C11—C10—C9120.17 (13)O4—C19—O5123.00 (12)
C11—C10—H10119.9O4—C19—C18117.33 (12)
C9—C10—H10119.9O5—C19—C18119.67 (12)
C10—C11—C6120.67 (14)
C12—N1—C1—C2172.59 (11)C11—C6—C7—C80.0 (2)
C5—O1—C2—C30.25 (14)C5—C6—C7—C8179.45 (13)
C5—O1—C2—C1178.57 (11)C6—C7—C8—C90.6 (2)
N1—C1—C2—C3109.20 (17)C7—C8—C9—C100.4 (2)
N1—C1—C2—O173.02 (14)C8—C9—C10—C110.3 (2)
O1—C2—C3—C40.17 (15)C9—C10—C11—C60.9 (2)
C1—C2—C3—C4177.70 (14)C7—C6—C11—C100.8 (2)
C2—C3—C4—C50.53 (16)C5—C6—C11—C10178.73 (12)
C3—C4—C5—O10.70 (16)C1—N1—C12—C1567.55 (14)
C3—C4—C5—C6178.87 (14)C1—N1—C12—C1454.73 (14)
C2—O1—C5—C40.60 (14)C1—N1—C12—C13173.13 (11)
C2—O1—C5—C6179.06 (11)O2—C16—C17—C18172.20 (14)
C4—C5—C6—C7179.94 (15)O3—C16—C17—C187.4 (2)
O1—C5—C6—C70.51 (18)C16—C17—C18—C191.3 (3)
C4—C5—C6—C110.5 (2)C17—C18—C19—O4176.22 (14)
O1—C5—C6—C11179.98 (11)C17—C18—C19—O53.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O31.160 (17)1.257 (17)2.4142 (14)175.3 (15)
N1—H1A···O2i0.968 (15)1.790 (15)2.7547 (15)174.9 (13)
N1—H1B···O4ii0.936 (15)1.860 (15)2.7803 (14)167.4 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
(II) N-[(5-Iodofuran-2-yl)methyl]-2-methylpropan-2-aminium (2Z)-3-carboxyprop-2-enoate top
Crystal data top
C9H15INO+·C4H3O4F(000) = 784
Mr = 395.18Dx = 1.678 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.96990 Å
a = 5.7501 (12) ÅCell parameters from 600 reflections
b = 28.272 (6) Åθ = 3.5–35.0°
c = 9.6402 (19) ŵ = 4.69 mm1
β = 93.17 (3)°T = 100 K
V = 1564.8 (6) Å3Needle, colourless
Z = 40.30 × 0.05 × 0.03 mm
Data collection top
Rayonix SX165 CCD
diffractometer
2714 reflections with I > 2σ(I)
φ scanRint = 0.068
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 38.5°, θmin = 3.5°
Tmin = 0.460, Tmax = 0.860h = 77
21875 measured reflectionsk = 3636
3146 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0377P)2 + 3.P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3146 reflectionsΔρmax = 0.94 e Å3
194 parametersΔρmin = 1.21 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.0047 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.75296 (5)0.48487 (2)0.86223 (3)0.05279 (17)
O10.4289 (4)0.56119 (7)0.7766 (3)0.0273 (5)
O20.6669 (4)0.62755 (8)0.4628 (2)0.0250 (5)
O30.4201 (4)0.64214 (9)0.2824 (3)0.0284 (5)
O40.7068 (4)0.65296 (8)0.1219 (2)0.0242 (5)
O50.4335 (4)0.65188 (8)0.0330 (3)0.0272 (5)
H5O0.434 (7)0.6447 (14)0.153 (5)0.041*
N10.3606 (4)0.65833 (8)0.6639 (3)0.0172 (5)
H1A0.436 (6)0.6486 (12)0.592 (4)0.021*
H1B0.462 (7)0.6587 (12)0.735 (4)0.021*
C10.1674 (5)0.62389 (10)0.6907 (4)0.0227 (7)
H1C0.11090.62930.78450.027*
H1D0.03550.62890.62190.027*
C20.2549 (5)0.57433 (10)0.6802 (4)0.0247 (7)
C30.2006 (7)0.53816 (12)0.5920 (5)0.0379 (9)
H30.08760.53850.51630.045*
C40.3478 (8)0.49932 (12)0.6355 (5)0.0425 (10)
H40.35110.46870.59500.051*
C50.4796 (6)0.51500 (11)0.7450 (4)0.0307 (9)
C60.2890 (5)0.71010 (10)0.6427 (3)0.0189 (7)
C70.5174 (5)0.73740 (10)0.6298 (4)0.0236 (7)
H7A0.61510.73390.71570.035*
H7B0.48290.77100.61370.035*
H7C0.60010.72480.55160.035*
C80.1369 (5)0.71450 (11)0.5089 (4)0.0241 (7)
H8A0.22190.70250.43100.036*
H8B0.09680.74780.49260.036*
H8C0.00610.69610.51710.036*
C90.1632 (5)0.72673 (10)0.7693 (4)0.0225 (7)
H9A0.01640.70940.77440.034*
H9B0.13080.76070.76110.034*
H9C0.26180.72080.85370.034*
C100.6235 (5)0.63160 (9)0.3358 (4)0.0198 (7)
C110.8219 (5)0.62384 (10)0.2425 (3)0.0213 (7)
H110.96250.61310.28840.026*
C120.8311 (5)0.62967 (10)0.1049 (4)0.0225 (7)
H120.97760.62250.06900.027*
C130.6458 (5)0.64577 (10)0.0025 (3)0.0196 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0535 (2)0.04314 (19)0.0625 (3)0.02765 (12)0.00979 (16)0.01596 (12)
O10.0296 (12)0.0202 (10)0.0322 (15)0.0075 (9)0.0039 (11)0.0029 (9)
O20.0267 (12)0.0268 (11)0.0221 (14)0.0022 (9)0.0057 (10)0.0000 (9)
O30.0182 (11)0.0421 (13)0.0254 (14)0.0036 (9)0.0057 (10)0.0003 (10)
O40.0217 (11)0.0293 (11)0.0218 (13)0.0005 (8)0.0017 (10)0.0046 (9)
O50.0164 (10)0.0397 (13)0.0257 (14)0.0047 (9)0.0030 (9)0.0035 (10)
N10.0150 (12)0.0167 (11)0.0201 (15)0.0015 (9)0.0032 (11)0.0001 (10)
C10.0178 (14)0.0199 (14)0.031 (2)0.0007 (11)0.0050 (13)0.0017 (13)
C20.0235 (15)0.0194 (14)0.032 (2)0.0016 (11)0.0062 (14)0.0039 (13)
C30.042 (2)0.0239 (16)0.046 (3)0.0080 (14)0.0075 (18)0.0007 (16)
C40.054 (2)0.0180 (15)0.056 (3)0.0022 (16)0.011 (2)0.0060 (17)
C50.0343 (18)0.0207 (15)0.038 (2)0.0063 (12)0.0127 (17)0.0074 (14)
C60.0180 (14)0.0159 (13)0.0231 (19)0.0027 (10)0.0033 (13)0.0002 (11)
C70.0210 (15)0.0182 (13)0.032 (2)0.0006 (11)0.0046 (14)0.0021 (13)
C80.0237 (15)0.0224 (14)0.0260 (19)0.0045 (11)0.0001 (14)0.0007 (13)
C90.0198 (14)0.0214 (13)0.0267 (19)0.0024 (11)0.0046 (13)0.0040 (13)
C100.0189 (14)0.0144 (12)0.026 (2)0.0001 (10)0.0054 (13)0.0007 (12)
C110.0180 (14)0.0229 (14)0.0232 (19)0.0023 (11)0.0034 (13)0.0016 (13)
C120.0164 (14)0.0230 (14)0.029 (2)0.0026 (11)0.0065 (13)0.0003 (13)
C130.0172 (13)0.0181 (13)0.0235 (19)0.0005 (10)0.0014 (13)0.0007 (12)
Geometric parameters (Å, º) top
I1—C52.068 (4)C4—C51.341 (6)
O1—C51.376 (4)C4—H40.9500
O1—C21.379 (4)C6—C81.523 (5)
O2—C101.241 (4)C6—C91.527 (4)
O3—C101.287 (4)C6—C71.535 (4)
O3—H5O1.25 (5)C7—H7A0.9800
O4—C131.238 (4)C7—H7B0.9800
O5—C131.297 (3)C7—H7C0.9800
O5—H5O1.18 (5)C8—H8A0.9800
N1—C11.510 (4)C8—H8B0.9800
N1—C61.531 (4)C8—H8C0.9800
N1—H1A0.88 (4)C9—H9A0.9800
N1—H1B0.88 (4)C9—H9B0.9800
C1—C21.494 (4)C9—H9C0.9800
C1—H1C0.9900C10—C111.507 (4)
C1—H1D0.9900C11—C121.340 (5)
C2—C31.355 (5)C11—H110.9500
C3—C41.435 (6)C12—C131.515 (5)
C3—H30.9500C12—H120.9500
C5—O1—C2105.2 (3)N1—C6—C7105.5 (2)
C10—O3—H5O107.7 (19)C6—C7—H7A109.5
C13—O5—H5O107 (2)C6—C7—H7B109.5
C1—N1—C6116.4 (2)H7A—C7—H7B109.5
C1—N1—H1A109 (2)C6—C7—H7C109.5
C6—N1—H1A109 (2)H7A—C7—H7C109.5
C1—N1—H1B110 (2)H7B—C7—H7C109.5
C6—N1—H1B105 (2)C6—C8—H8A109.5
H1A—N1—H1B107 (3)C6—C8—H8B109.5
C2—C1—N1109.8 (2)H8A—C8—H8B109.5
C2—C1—H1C109.7C6—C8—H8C109.5
N1—C1—H1C109.7H8A—C8—H8C109.5
C2—C1—H1D109.7H8B—C8—H8C109.5
N1—C1—H1D109.7C6—C9—H9A109.5
H1C—C1—H1D108.2C6—C9—H9B109.5
C3—C2—O1110.7 (3)H9A—C9—H9B109.5
C3—C2—C1133.1 (3)C6—C9—H9C109.5
O1—C2—C1116.2 (3)H9A—C9—H9C109.5
C2—C3—C4106.4 (4)H9B—C9—H9C109.5
C2—C3—H3126.8O2—C10—O3123.0 (3)
C4—C3—H3126.8O2—C10—C11117.3 (3)
C5—C4—C3106.0 (3)O3—C10—C11119.7 (3)
C5—C4—H4127.0C12—C11—C10130.2 (3)
C3—C4—H4127.0C12—C11—H11114.9
C4—C5—O1111.8 (3)C10—C11—H11114.9
C4—C5—I1132.4 (3)C11—C12—C13130.5 (3)
O1—C5—I1115.7 (3)C11—C12—H12114.8
C8—C6—C9112.1 (3)C13—C12—H12114.8
C8—C6—N1109.2 (2)O4—C13—O5122.9 (3)
C9—C6—N1108.9 (2)O4—C13—C12117.4 (3)
C8—C6—C7110.1 (3)O5—C13—C12119.7 (3)
C9—C6—C7110.8 (3)
C6—N1—C1—C2168.5 (3)C2—O1—C5—C40.1 (4)
C5—O1—C2—C30.4 (4)C2—O1—C5—I1175.9 (2)
C5—O1—C2—C1179.6 (3)C1—N1—C6—C866.1 (3)
N1—C1—C2—C3115.3 (4)C1—N1—C6—C956.6 (4)
N1—C1—C2—O163.7 (4)C1—N1—C6—C7175.5 (3)
O1—C2—C3—C40.5 (4)O2—C10—C11—C12173.7 (3)
C1—C2—C3—C4179.6 (3)O3—C10—C11—C126.0 (5)
C2—C3—C4—C50.5 (4)C10—C11—C12—C130.3 (5)
C3—C4—C5—O10.2 (4)C11—C12—C13—O4172.5 (3)
C3—C4—C5—I1174.7 (3)C11—C12—C13—O56.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O31.18 (5)1.25 (5)2.425 (3)172 (4)
N1—H1A···O20.88 (4)1.97 (4)2.828 (3)167 (3)
N1—H1B···O4i0.88 (4)1.92 (4)2.792 (4)172 (3)
Symmetry code: (i) x, y, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of the Russian Federation (award No. 4.1154.2017).

References

First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerson, J. A. & Swidler, R. (1953). J. Am. Chem. Soc. 75, 1721–1726.  CrossRef CAS Web of Science Google Scholar
First citationBerson, J. A. & Swidler, R. (1954). J. Am. Chem. Soc. 76, 4060–4069.  CrossRef CAS Web of Science Google Scholar
First citationBrown, T. H. (1986). Patent US4567176A1.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker. (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClitherow, J. W. (1983). Patent US4413135A1.  Google Scholar
First citationCraig, A. S., Ho, T. C. T. & McClure, M. S. (2008). Patent WO2008/154469A1.  Google Scholar
First citationDiels, O. & Alder, K. (1931). Justus Liebigs Ann. Chem. 490, 257–266.  CrossRef Google Scholar
First citationEggelte, T. A., de Koning, H. & Huisman, H. O. (1973). Tetrahedron, 29, 2491–2493.  CrossRef CAS Web of Science Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarXperts. (2015). Automar. marXperts GmbH, Norderstedt, Germany.  Google Scholar
First citationMetsger, L., Mittelman, A. & Yurkovski, S. (2010). Pat. US2010/87459A1.  Google Scholar
First citationPelosi, S. S. Jr, Yu, C.-N. & Calcagno, M. A. (2002). Patent EP1231208A2.  Google Scholar
First citationPrice, B. J., Clitherow, J. W., Bradshaw, J., Martin-Smith, M., Judd, D. B. & Hayes, R. (1985). Patent US4524071A1.  Google Scholar
First citationSheinkman, A. K., Deikalo, A. A., Stupnikova, T. V., Klyuev, N. A. & Mal'tseva, G. A. (1972). Chem. Heterocycl. Compd. 8, 993–997.  CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShih, W., Lau, N. & Seltzer, S. (1975). J. Org. Chem. 40, 1269–1274.  CrossRef CAS Web of Science Google Scholar
First citationSprague, P. W., Heikes, J. E., Gougoutas, J. Z., Malley, M. F., Harris, D. N. & Greenberg, R. (1985). J. Med. Chem. 28, 1580–1590.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationZubkov, F. I., Golubev, V. D., Zaytsev, V. P., Bakhanovich, O. V., Nikitina, E. V., Khrustalev, V. N., Aysin, R. R., Timofeeva, T. V., Novikov, R. A. & Varlamov, A. V. (2016). Chem. Heterocycl. Compd, 52, 225–236.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds