research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [Cu(tmpen)](BF4)2 {tmpen is N,N,N′,N′-tetra­kis­[(6-methyl­pyridin-2-yl)meth­yl]ethane-1,2-di­amine}

aScience and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, People's Republic of China, and bInstitute of Materials, China Academy of Engineering Physics, Jiangyou 621908, People's Republic of China
*Correspondence e-mail: chenlin101101@aliyun.com

Edited by T. J. Prior, University of Hull, England (Received 8 March 2017; accepted 21 March 2017; online 31 March 2017)

The mononuclear copper title complex {N,N,N′,N′-tetra­kis­[(6-methyl­pyridin-2-yl)meth­yl]ethane-1,2-di­amine-κ6N}copper(II) bis­(tetra­fluorido­borate), [Cu(C30H36N6)](BF4)2, is conveniently prepared from the reaction of Cu(BF4)2·6H2O with N,N,N′,N′-tetra­kis­[(6-methyl­pyridin-2-yl)meth­yl]ethane-1,2-di­amine (tmpen) in aceto­nitrile at room temperature in air. The complex shows a distorted octa­hedral environment around the CuII cation (site symmetry 2) and adopts the centrosymmetric space group C2/c. The presence of the 6-methyl substituent hinders the approach of the pyridine group to the CuII core. The bond lengths about the CuII atom are significantly longer than those of analogues without the 6-methyl substituents.

1. Chemical context

Copper complexes with polypyridine ligands are of great inter­est in catalytic reactions. For example, the copper-based complex CuBr[N,N,N′,N′-tetra­kis­(2-pyridyl­meth­yl)ethyl­ene­di­amine] (TPEN) is reported as a versatile and highly active catalyst for acrylic, methacrylic and styrenic monomers (Tang et al., 2006[Tang, H., Arulsamy, N., Radosz, M., Shen, Y.-Q., Tsarevsky, N. V., Braunecker, W. A., Tang, W. & Matyjaszewski, K. (2006). J. Am. Chem. Soc. 128, 16277-16285.]). Copper(II) N-benzyl-N,N′,N′-tris­(pyridin-2-ylmeth­yl)ethyl­enedi­amine (bztpen) displays high catalytic activity for electrochemical proton reduction in acidic aqueous solutions, with a calculated hydrogen-generation rate constant (kobs) of over 10000 s−1 (Zhang et al., 2014[Zhang, P.-L., Wang, M., Yang, Y., Yao, T.-Y. & Sun, L.-C. (2014). Angew. Chem. Int. Ed. 53, 13803-13807.]). [Cu2(m-xpt)2(NO3)2](PF6)2 [m-xpt = m-xylylenebis(pyridyl­triazole)] can selectively capture CO2 from air and reduce it to oxalate, in the form of an oxalate-bridged complex (Pokharel et al., 2014[Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nature Comm. 5, 5883-5887.]). Generally, the reduction of a metal complex is accompanied by ligand dissociation (reductive dissociation), which is able to give the appearance of an open site for catalytic reaction. Herein, we describe the structure of the title complex, 1.

[Scheme 1]

2. Structural commentary

In the title complex (Fig. 1[link]), the coordination sphere of the copper(II) atom is distorted octa­hedral, presumably as a result of the introduction of the 6-methyl substituent. Two pyridine nitro­gen atoms (N1, N1′) and two amino nitro­gen atoms (N2, N2′) form the equatorial planar coordination, while the apical positions are occupied by the other two pyridine nitro­gen atoms (N3, N3′). The CuII ion lies almost in the equatorial plane. The Cu—N bond lengths for the two axial pyridine-nitro­gen atoms [Cu—N3 = 2.5742 (13) Å] are significantly longer than those for the other four nitro­gen atoms [Cu—N1 = 2.0571 (13), Cu—N2 = 2.0311 (13) Å]. The long Cu—N3 distance indicates a weak connection between copper and pyridine, which is apt to dissociate under reductive conditions (Tang et al., 2006[Tang, H., Arulsamy, N., Radosz, M., Shen, Y.-Q., Tsarevsky, N. V., Braunecker, W. A., Tang, W. & Matyjaszewski, K. (2006). J. Am. Chem. Soc. 128, 16277-16285.]). As a result of steric hindrance from the methyl group, the N3—Cu1—N3′ bond angle is not linear but rather 164.94 (5)°. The pyridine rings in the equatorial plane (N1/C2–C6 and N1′/C2′–C6′) subtend a dihedral angle of 35.03 (9)°.

[Figure 1]
Figure 1
The molecular entities in the structure of complex 1. Atoms N1A, N2A and N3A are generated by the symmetry operationx, y, [{1\over 2}] − z.

The distortion about the CuII atom is in favour of the reductive dissociation of one pyridine group. On a cathodic scan under Ar, complex 1 features one reversible couple based on copper at 0.26 V (vs Fc+/0), assigned to CuII/I (Fig. 2[link]). The free ligand tmpen is electrochemically silent in the potential range (Fig. 3[link]). The good reversibility of the couple indicates negligible change in the configuation of 1 under reductive conditions.

[Figure 2]
Figure 2
Cyclic voltammograms of complex 1 (1 mM) under Ar in CH3CN with 0.1 M nBu4NBF4 as the supporting electrolyte.
[Figure 3]
Figure 3
Cyclic voltammograms of the TMPEN ligand (1 mM) under Ar in CH3CN with 0.1 M nBu4NBF4 as the supporting electrolyte.

3. Supramolecular features

While there are no classical hydrogen bonds in the crystal structure, C—H⋯N and C—H⋯F inter­actions are observed (Fig. 4[link], Table 1[link]).<

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯F2Ai 0.96 2.50 3.296 (17) 140
C4—H4A⋯F4Aii 0.93 2.50 3.394 (15) 161
C5—H5B⋯F3iii 0.93 2.45 3.355 (9) 164
C5—H5B⋯F3Aiii 0.93 2.33 3.194 (13) 155
C7—H7A⋯N3iv 0.97 2.59 3.212 (2) 122
C8—H8A⋯F1Av 0.97 2.48 3.298 (16) 142
C9—H9A⋯F3 0.97 2.55 3.436 (10) 152
C9—H9B⋯F4v 0.97 2.34 3.303 (6) 173
C12—H12A⋯F4vi 0.93 2.45 3.198 (7) 137
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x, y, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 4]
Figure 4
The crystal packing showing the C—H⋯F hydrogen bonds.

4. Database survey

There are four published reports of polypyridine copper complexes (Kaur et al., 2015[Kaur, A., Gorse, E. E., Ribelli, T. G., Jerman, C. C. & Pintauer, T. (2015). Polymer, 72, 246-252.]; Meyer et al., 2015[Meyer, A., Schnakenburg, G., Glaum, R. & Schiemann, O. (2015). Inorg. Chem. 54, 8456-8464.]; Bania & Deka, 2012[Bania, K. K. & Deka, R. C. (2012). J. Phys. Chem. C, 116, 14295-14310.]; Yoon et al., 2005[Yoon, D. C., Lee, U., Lee, D. J. & Oh, C. E. (2005). Bull. Korean Chem. Soc. 26, 1097-1100.]) , but to the best of our knowledge, the title compound has not been reported previously. Among the earliest reports, the copper complex with an N,N,N′,N′-tetra­kis­(2-pyridyl­meth­yl)ethyl­enedi­amine (TPEN) ligand is most similar to title complex in configuration. In the presence of ascorbic acid as a reducing agent, Cu2+(TPEN) displays high activity in atom-transfer radical addition (ATRA) reactions (Kaur et al., 2015[Kaur, A., Gorse, E. E., Ribelli, T. G., Jerman, C. C. & Pintauer, T. (2015). Polymer, 72, 246-252.]). In contrast to Cu2+(TPEN), the title complex exhibits greater steric hindrance, which results in an evident Jahn–Teller effect on the configuration. In the title complex, the axial Cu—N bonds to pyridyl nitro­gen atoms [2.5742 (13) Å)] are significantly longer than in Cu2+(TPEN) [2.377 (3) and 2.308 (2) Å] while the differences in the equatorial Cu—N distances are negligible (Yoon et al., 2005[Yoon, D. C., Lee, U., Lee, D. J. & Oh, C. E. (2005). Bull. Korean Chem. Soc. 26, 1097-1100.]). The other two reported polypyridine copper complexes show similar distorted octa­hedral coordination spheres around the Cu2+ cation, but the ligands are evidently different from the title complex.

5. Synthesis and crystallization

The tetra­pyridinedi­amine ligand N,N,N′,N′-tetra­kis­[(6-methyl­pyridin-2-yl)meth­yl]ethane-1,2-di­amine (tmpen) was prepared according to literature procedures (Mikata et al., 2005[Mikata, Y.-J., Wakamatsu, M. & Yano, S. (2005). Dalton Trans. pp. 545-550.]). 1H NMR (CDCl3, 600 MHz): δ 7.44 (d, 4H), 7.31 (m, 4H), 6.94 (d, 4H), 3.74 (s, 8H), 2.75 (s, 4H), 2.48 (s, 12H). ESI–MS: calculated for [M + H]+: m/z 481.65.19; found: 481.31.

For the preparation of [Cu(tmpen)](BF4)2 (1), Cu(BF4)2·H2O (0.16 g, 0.5 mmol) was added to an aceto­nitrile solution (5 ml) of tmpen (0.2 g, 0.5 mmol). The mixture was stirred at room temperature for 6 h. The blue solution was then transferred to tubes, which were placed in a flask containing ether. Block-shaped crystals were obtained in a yield of 85% (0.25 g). Analysis calculated for C30H36B2CuF8N6 (%): C, 50.52; H, 5.09; N, 11.78; found: 50.51; H, 5.08; N, 11.75; MS (TOF–ES): m/z =272.6641 {[M − 2(BF4)]/2}+, 579.3025 [M − 2(BF4)+Cl]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All F atoms of the BF4 group were split into two groups and their ccupancies determined via a free variable refinement. All hydrogen atoms were refined in riding mode with C—H= 0.93–0.97 and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C30H36N6)](BF4)2
Mr 717.81
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 18.670 (2), 12.8309 (15), 14.0146 (16)
β (°) 107.193 (2)
V3) 3207.2 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.76
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.833, 0.927
No. of measured, independent and observed [I > 2σ(I)] reflections 10330, 3676, 3334
Rint 0.023
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.06
No. of reflections 3676
No. of parameters 254
No. of restraints 40
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.97, −0.25
Computer programs: SMART and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2013); cell refinement: SMART (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

{N,N,N',N'-Tetrakis[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine-κ6N}copper(II) bis(tetrafluoridoborate) top
Crystal data top
[Cu(C30H36N6)](BF4)2F(000) = 1476
Mr = 717.81Dx = 1.487 Mg m3
Dm = 1.485 Mg m3
Dm measured by none
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.670 (2) ÅCell parameters from 5092 reflections
b = 12.8309 (15) Åθ = 2.3–27.5°
c = 14.0146 (16) ŵ = 0.76 mm1
β = 107.193 (2)°T = 296 K
V = 3207.2 (6) Å3Block, purple
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
3334 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.023
phi and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1224
Tmin = 0.833, Tmax = 0.927k = 1616
10330 measured reflectionsl = 1816
3676 independent reflections
Refinement top
Refinement on F240 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0549P)2 + 2.078P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3676 reflectionsΔρmax = 0.97 e Å3
254 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.23649 (2)0.25000.02731 (10)
N10.08743 (7)0.15031 (11)0.33863 (10)0.0289 (3)
N20.07204 (7)0.35197 (10)0.31608 (10)0.0286 (3)
N30.07474 (8)0.26278 (11)0.12413 (11)0.0333 (3)
C10.08575 (13)0.00170 (16)0.22917 (16)0.0537 (6)
H1A0.03580.02420.19450.081*
H1B0.08630.07260.23720.081*
H1C0.11900.02090.19140.081*
C20.11081 (9)0.05237 (13)0.32937 (13)0.0336 (4)
C30.16060 (10)0.00215 (15)0.40983 (15)0.0401 (4)
H3A0.17470.06650.40360.048*
C40.18899 (10)0.05447 (16)0.49875 (14)0.0429 (4)
H4A0.21950.02010.55440.052*
C50.17170 (10)0.15836 (16)0.50451 (13)0.0387 (4)
H5B0.19380.19670.56200.046*
C60.12094 (9)0.20416 (14)0.42312 (12)0.0302 (3)
C70.09995 (10)0.31833 (13)0.42177 (12)0.0325 (3)
H7A0.06130.32800.45450.039*
H7B0.14340.35930.45690.039*
C80.02775 (10)0.45062 (13)0.30188 (13)0.0359 (4)
H8A0.06110.51010.30960.043*
H8B0.00120.45560.35170.043*
C90.13719 (9)0.36030 (14)0.27541 (13)0.0351 (4)
H9A0.17510.31080.31070.042*
H9B0.15850.42950.29030.042*
C100.12107 (9)0.34140 (14)0.16498 (13)0.0328 (4)
C110.15943 (12)0.39957 (17)0.11282 (16)0.0485 (5)
H11A0.18960.45520.14290.058*
C120.15162 (15)0.3728 (2)0.01508 (17)0.0619 (6)
H12A0.17700.40980.02200.074*
C130.10602 (14)0.2910 (2)0.02692 (16)0.0550 (6)
H13A0.10080.27140.09250.066*
C140.06769 (11)0.23748 (15)0.02882 (15)0.0394 (4)
C150.01701 (13)0.14901 (19)0.01745 (17)0.0551 (6)
H15A0.00110.11360.03310.083*
H15B0.04350.10120.04750.083*
H15C0.02600.17550.06760.083*
B10.31688 (17)0.1726 (2)0.2629 (2)0.0555 (6)
F10.3874 (4)0.1486 (8)0.3288 (7)0.124 (2)0.639 (19)
F20.3115 (7)0.2722 (5)0.2310 (10)0.101 (3)0.639 (19)
F30.2668 (5)0.1626 (7)0.3154 (7)0.091 (2)0.639 (19)
F40.3036 (5)0.1037 (4)0.1872 (4)0.0811 (16)0.639 (19)
F1A0.3844 (7)0.1315 (12)0.2879 (15)0.122 (3)0.361 (19)
F4A0.2738 (11)0.1220 (13)0.1767 (8)0.119 (4)0.361 (19)
F3A0.2862 (10)0.1559 (10)0.3370 (10)0.083 (3)0.361 (19)
F2A0.3273 (13)0.2753 (11)0.2471 (18)0.107 (4)0.361 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02415 (15)0.02360 (15)0.02934 (16)0.0000.00043 (11)0.000
N10.0245 (6)0.0307 (7)0.0284 (6)0.0006 (5)0.0030 (5)0.0015 (5)
N20.0284 (6)0.0289 (7)0.0272 (6)0.0029 (5)0.0063 (5)0.0041 (5)
N30.0315 (7)0.0364 (8)0.0341 (7)0.0066 (6)0.0127 (6)0.0055 (6)
C10.0595 (13)0.0401 (11)0.0500 (12)0.0127 (9)0.0017 (10)0.0144 (9)
C20.0275 (8)0.0323 (8)0.0385 (9)0.0028 (6)0.0058 (7)0.0014 (7)
C30.0311 (8)0.0348 (9)0.0503 (11)0.0071 (7)0.0061 (8)0.0059 (8)
C40.0303 (9)0.0528 (11)0.0395 (9)0.0074 (8)0.0008 (7)0.0110 (8)
C50.0310 (8)0.0518 (11)0.0294 (8)0.0013 (8)0.0031 (7)0.0006 (7)
C60.0251 (7)0.0361 (8)0.0280 (8)0.0007 (6)0.0056 (6)0.0023 (6)
C70.0340 (8)0.0359 (9)0.0255 (8)0.0018 (7)0.0054 (6)0.0055 (6)
C80.0412 (9)0.0254 (8)0.0396 (9)0.0019 (7)0.0095 (8)0.0048 (7)
C90.0292 (8)0.0410 (9)0.0343 (8)0.0108 (7)0.0083 (7)0.0063 (7)
C100.0295 (8)0.0365 (9)0.0332 (8)0.0044 (6)0.0108 (7)0.0036 (7)
C110.0513 (11)0.0490 (11)0.0486 (11)0.0181 (9)0.0199 (9)0.0020 (9)
C120.0711 (15)0.0762 (16)0.0472 (12)0.0258 (13)0.0311 (11)0.0008 (11)
C130.0630 (14)0.0714 (15)0.0368 (10)0.0142 (12)0.0243 (10)0.0099 (10)
C140.0370 (9)0.0468 (10)0.0359 (9)0.0035 (7)0.0134 (8)0.0100 (7)
C150.0571 (13)0.0637 (14)0.0487 (12)0.0175 (11)0.0222 (10)0.0265 (10)
B10.0770 (18)0.0415 (12)0.0585 (15)0.0006 (12)0.0363 (14)0.0085 (11)
F10.090 (3)0.132 (5)0.130 (5)0.017 (3)0.001 (3)0.019 (3)
F20.130 (5)0.043 (2)0.123 (6)0.001 (3)0.026 (4)0.012 (3)
F30.086 (3)0.109 (4)0.105 (5)0.009 (2)0.067 (3)0.023 (3)
F40.143 (4)0.0526 (17)0.0577 (18)0.016 (2)0.045 (2)0.0101 (15)
F1A0.089 (5)0.102 (5)0.193 (10)0.023 (4)0.068 (6)0.033 (7)
F4A0.169 (9)0.102 (6)0.085 (5)0.024 (6)0.036 (5)0.057 (4)
F3A0.146 (9)0.059 (4)0.061 (4)0.017 (5)0.056 (5)0.011 (3)
F2A0.166 (9)0.057 (5)0.097 (6)0.053 (5)0.034 (7)0.000 (4)
Geometric parameters (Å, º) top
Cu1—N2i2.0311 (13)C7—H7B0.9700
Cu1—N22.0312 (13)C8—C8i1.516 (3)
Cu1—N12.0571 (13)C8—H8A0.9700
Cu1—N1i2.0571 (13)C8—H8B0.9700
Cu1—N32.5742 (13)C9—C101.506 (2)
Cu1—N3i2.5742 (13)C9—H9A0.9700
N1—C21.349 (2)C9—H9B0.9700
N1—C61.354 (2)C10—C111.384 (3)
N2—C71.482 (2)C11—C121.378 (3)
N2—C91.492 (2)C11—H11A0.9300
N2—C81.493 (2)C12—C131.370 (3)
N3—C101.342 (2)C12—H12A0.9300
N3—C141.343 (2)C13—C141.387 (3)
C1—C21.492 (3)C13—H13A0.9300
C1—H1A0.9600C14—C151.497 (3)
C1—H1B0.9600C15—H15A0.9600
C1—H1C0.9600C15—H15B0.9600
C2—C31.390 (2)C15—H15C0.9600
C3—C41.376 (3)B1—F1A1.315 (11)
C3—H3A0.9300B1—F3A1.343 (10)
C4—C51.379 (3)B1—F41.347 (6)
C4—H4A0.9300B1—F21.347 (7)
C5—C61.380 (2)B1—F31.356 (6)
C5—H5B0.9300B1—F2A1.360 (12)
C6—C71.515 (2)B1—F4A1.398 (10)
C7—H7A0.9700B1—F11.401 (6)
N2i—Cu1—N286.31 (8)H7A—C7—H7B108.4
N2i—Cu1—N1165.41 (5)N2—C8—C8i108.82 (11)
N2—Cu1—N179.43 (6)N2—C8—H8A109.9
N2i—Cu1—N1i79.43 (6)C8i—C8—H8A109.9
N2—Cu1—N1i165.41 (5)N2—C8—H8B109.9
N1—Cu1—N1i114.97 (8)C8i—C8—H8B109.9
N1—Cu1—N389.43 (5)H8A—C8—H8B108.3
N1—Cu1—N3i98.67 (5)N2—C9—C10116.30 (13)
N2—Cu1—N378.28 (5)N2—C9—H9A108.2
N2—Cu1—N3i90.69 (5)C10—C9—H9A108.2
N3—Cu1—N3i164.94 (5)N2—C9—H9B108.2
C2—N1—C6118.72 (14)C10—C9—H9B108.2
C2—N1—Cu1131.62 (11)H9A—C9—H9B107.4
C6—N1—Cu1109.44 (11)N3—C10—C11123.31 (16)
C7—N2—C9108.49 (13)N3—C10—C9117.86 (15)
C7—N2—C8113.42 (13)C11—C10—C9118.59 (16)
C9—N2—C8111.74 (13)C12—C11—C10118.13 (19)
C7—N2—Cu1103.48 (10)C12—C11—H11A120.9
C9—N2—Cu1112.51 (10)C10—C11—H11A120.9
C8—N2—Cu1106.97 (10)C13—C12—C11119.23 (19)
C10—N3—C14117.87 (15)C13—C12—H12A120.4
C2—C1—H1A109.5C11—C12—H12A120.4
C2—C1—H1B109.5C12—C13—C14119.71 (19)
H1A—C1—H1B109.5C12—C13—H13A120.1
C2—C1—H1C109.5C14—C13—H13A120.1
H1A—C1—H1C109.5N3—C14—C13121.70 (18)
H1B—C1—H1C109.5N3—C14—C15118.54 (17)
N1—C2—C3120.78 (16)C13—C14—C15119.76 (18)
N1—C2—C1118.43 (15)C14—C15—H15A109.5
C3—C2—C1120.68 (17)C14—C15—H15B109.5
C4—C3—C2119.65 (17)H15A—C15—H15B109.5
C4—C3—H3A120.2C14—C15—H15C109.5
C2—C3—H3A120.2H15A—C15—H15C109.5
C3—C4—C5119.35 (17)H15B—C15—H15C109.5
C3—C4—H4A120.3F1A—B1—F3A108.9 (10)
C5—C4—H4A120.3F4—B1—F2112.5 (7)
C4—C5—C6118.58 (17)F4—B1—F3111.6 (5)
C4—C5—H5B120.7F2—B1—F3105.9 (6)
C6—C5—H5B120.7F1A—B1—F2A105.1 (10)
N1—C6—C5122.16 (16)F3A—B1—F2A113.3 (10)
N1—C6—C7115.57 (13)F1A—B1—F4A107.8 (6)
C5—C6—C7122.26 (15)F3A—B1—F4A109.0 (8)
N2—C7—C6107.90 (12)F2A—B1—F4A112.5 (12)
N2—C7—H7A110.1F4—B1—F1107.0 (4)
C6—C7—H7A110.1F2—B1—F1113.0 (7)
N2—C7—H7B110.1F3—B1—F1106.6 (5)
C6—C7—H7B110.1
C6—N1—C2—C39.0 (2)C7—N2—C8—C8i152.37 (17)
Cu1—N1—C2—C3165.01 (13)C9—N2—C8—C8i84.61 (19)
C6—N1—C2—C1167.28 (18)Cu1—N2—C8—C8i38.93 (19)
Cu1—N1—C2—C118.7 (3)C7—N2—C9—C10151.06 (15)
N1—C2—C3—C42.9 (3)C8—N2—C9—C1083.17 (18)
C1—C2—C3—C4173.28 (19)Cu1—N2—C9—C1037.18 (18)
C2—C3—C4—C54.6 (3)C14—N3—C10—C112.4 (3)
C3—C4—C5—C65.7 (3)C14—N3—C10—C9171.80 (17)
C2—N1—C6—C57.8 (2)N2—C9—C10—N341.5 (2)
Cu1—N1—C6—C5167.40 (14)N2—C9—C10—C11143.95 (18)
C2—N1—C6—C7171.25 (15)N3—C10—C11—C122.4 (3)
Cu1—N1—C6—C713.52 (17)C9—C10—C11—C12171.8 (2)
C4—C5—C6—N10.5 (3)C10—C11—C12—C130.6 (4)
C4—C5—C6—C7178.54 (16)C11—C12—C13—C140.9 (4)
C9—N2—C7—C673.22 (16)C10—N3—C14—C130.7 (3)
C8—N2—C7—C6162.00 (13)C10—N3—C14—C15179.19 (19)
Cu1—N2—C7—C646.47 (14)C12—C13—C14—N30.9 (4)
N1—C6—C7—N222.45 (19)C12—C13—C14—C15179.2 (2)
C5—C6—C7—N2156.64 (16)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···F2Aii0.962.503.296 (17)140
C4—H4A···F4Aiii0.932.503.394 (15)161
C5—H5B···F3iv0.932.453.355 (9)164
C5—H5B···F3Aiv0.932.333.194 (13)155
C7—H7A···N3i0.972.593.212 (2)122
C8—H8A···F1Av0.972.483.298 (16)142
C9—H9A···F30.972.553.436 (10)152
C9—H9B···F4v0.972.343.303 (6)173
C12—H12A···F4vi0.932.453.198 (7)137
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z.
 

Funding information

Funding for this research was provided by: China Postdoctoral Science Foundation (award No. 2015M582573); Chinese National Natural Science Foundation (award Nos. 21601164, 21573200, 21573223).

References

First citationBania, K. K. & Deka, R. C. (2012). J. Phys. Chem. C, 116, 14295–14310.  CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaur, A., Gorse, E. E., Ribelli, T. G., Jerman, C. C. & Pintauer, T. (2015). Polymer, 72, 246–252.  CrossRef CAS Google Scholar
First citationMeyer, A., Schnakenburg, G., Glaum, R. & Schiemann, O. (2015). Inorg. Chem. 54, 8456–8464.  CrossRef CAS PubMed Google Scholar
First citationMikata, Y.-J., Wakamatsu, M. & Yano, S. (2005). Dalton Trans. pp. 545–550.  CrossRef Google Scholar
First citationPokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nature Comm. 5, 5883–5887.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTang, H., Arulsamy, N., Radosz, M., Shen, Y.-Q., Tsarevsky, N. V., Braunecker, W. A., Tang, W. & Matyjaszewski, K. (2006). J. Am. Chem. Soc. 128, 16277–16285.  CrossRef PubMed CAS Google Scholar
First citationYoon, D. C., Lee, U., Lee, D. J. & Oh, C. E. (2005). Bull. Korean Chem. Soc. 26, 1097–1100.  CAS Google Scholar
First citationZhang, P.-L., Wang, M., Yang, Y., Yao, T.-Y. & Sun, L.-C. (2014). Angew. Chem. Int. Ed. 53, 13803–13807.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds