

Received 8 March 2017 Accepted 21 March 2017

Edited by T. J. Prior, University of Hull, England

Keywords: crystal structure; copper; catalysis; CO₂ reduction; electrochemistry.

CCDC reference: 1440025

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of [Cu(tmpen)](BF₄)₂ {tmpen is N,N,N',N'-tetrakis[(6-methylpyridin-2-yl)methyl]-ethane-1,2-diamine}

Lin Chen,^a Yakun Guo,^a Gan Ren^a and Ge Sang^{b*}

^aScience and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, People's Republic of China, and ^bInstitute of Materials, China Academy of Engineering Physics, Jiangyou 621908, People's Republic of China. *Correspondence e-mail: chenlin101101@aliyun.com

The mononuclear copper title complex $\{N,N,N',N'$ -tetrakis[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine- $\kappa^6 N$ }copper(II) bis(tetrafluoridoborate), [Cu(C₃₀H₃₆N₆)](BF₄)₂, is conveniently prepared from the reaction of Cu(BF₄)₂·6H₂O with N,N,N',N'-tetrakis[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine (tmpen) in acetonitrile at room temperature in air. The complex shows a distorted octahedral environment around the Cu^{II} cation (site symmetry 2) and adopts the centrosymmetric space group C2/c. The presence of the 6methyl substituent hinders the approach of the pyridine group to the Cu^{II} core. The bond lengths about the Cu^{II} atom are significantly longer than those of analogues without the 6-methyl substituents.

1. Chemical context

Copper complexes with polypyridine ligands are of great interest in catalytic reactions. For example, the copper-based complex CuBr[N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine] (TPEN) is reported as a versatile and highly active catalyst for acrylic, methacrylic and styrenic monomers (Tang et al., 2006). Copper(II) N-benzyl-N,N',N'-tris(pyridin-2-ylmethyl)ethylenediamine (bztpen) displays high catalytic activity for electrochemical proton reduction in acidic aqueous solutions, with a calculated hydrogen-generation rate constant (k_{obs}) of over 10000 s⁻¹ (Zhang *et al.*, 2014). [Cu₂(m-xpt)₂- $(NO_3)_2](PF_6)_2$ [m-xpt = m-xylylenebis(pyridyltriazole)] can selectively capture CO₂ from air and reduce it to oxalate, in the form of an oxalate-bridged complex (Pokharel et al., 2014). Generally, the reduction of a metal complex is accompanied by ligand dissociation (reductive dissociation), which is able to give the appearance of an open site for catalytic reaction. Herein, we describe the structure of the title complex, 1.

OPEN $\widehat{\bigcirc}$ ACCESS

640

The molecular entities in the structure of complex **1**. Atoms N1A, N2A and N3A are generated by the symmetry operation -x, y, $\frac{1}{2} - z$.

2. Structural commentary

In the title complex (Fig. 1), the coordination sphere of the copper(II) atom is distorted octahedral, presumably as a result of the introduction of the 6-methyl substituent. Two pyridine nitrogen atoms (N1, N1') and two amino nitrogen atoms (N2, N2') form the equatorial planar coordination, while the apical positions are occupied by the other two pyridine nitrogen atoms (N3, N3'). The Cu^{II} ion lies almost in the equatorial plane. The Cu–N bond lengths for the two axial pyridine-nitrogen atoms [Cu–N3 = 2.5742 (13) Å] are significantly longer than those for the other four nitrogen atoms [Cu–N1 =

Figure 2

Cyclic voltammograms of complex 1 (1 mM) under Ar in CH₃CN with 0.1 M ^{*n*}Bu₄NBF₄ as the supporting electrolyte.

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1B\cdots F2A^{i}$	0.96	2.50	3,296 (17)	140
$C4-H4A\cdots F4A^{ii}$	0.93	2.50	3.394 (15)	161
$C5-H5B\cdots F3^{iii}$	0.93	2.45	3.355 (9)	164
$C5-H5B\cdots F3A^{iii}$	0.93	2.33	3.194 (13)	155
$C7-H7A\cdots N3^{iv}$	0.97	2.59	3.212 (2)	122
$C8-H8A\cdots F1A^{v}$	0.97	2.48	3.298 (16)	142
$C9-H9A\cdots F3$	0.97	2.55	3.436 (10)	152
$C9-H9B\cdots F4^{v}$	0.97	2.34	3.303 (6)	173
$C12-H12A\cdots F4^{vi}$	0.93	2.45	3.198 (7)	137

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, -y, $z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; (iv) -x, y, $-z + \frac{1}{2}$; (v) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (vi) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1;

2.0571 (13), Cu-N2 = 2.0311 (13) Å]. The long Cu-N3 distance indicates a weak connection between copper and pyridine, which is apt to dissociate under reductive conditions (Tang *et al.*, 2006). As a result of steric hindrance from the methyl group, the N3-Cu1-N3' bond angle is not linear but rather 164.94 (5)°. The pyridine rings in the equatorial plane (N1/C2-C6 and N1'/C2'-C6') subtend a dihedral angle of 35.03 (9)°.

The distortion about the Cu^{II} atom is in favour of the reductive dissociation of one pyridine group. On a cathodic scan under Ar, complex **1** features one reversible couple based on copper at 0.26 V (*vs* $Fc^{+/0}$), assigned to Cu^{II/I} (Fig. 2). The free ligand tmpen is electrochemically silent in the potential range (Fig. 3). The good reversibility of the couple indicates negligible change in the configuation of **1** under reductive conditions.

3. Supramolecular features

While there are no classical hydrogen bonds in the crystal structure, $C-H\cdots N$ and $C-H\cdots F$ interactions are observed (Fig. 4, Table 1).

Figure 3

Cyclic voltammograms of the TMPEN ligand (1 mM) under Ar in CH₃CN with 0.1 M "Bu₄NBF₄ as the supporting electrolyte.

research communications

4. Database survey

There are four published reports of polypyridine copper complexes (Kaur et al., 2015; Meyer et al., 2015; Bania & Deka, 2012; Yoon et al., 2005), but to the best of our knowledge, the title compound has not been reported previously. Among the earliest reports, the copper complex with an N.N.N'.N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) ligand is most similar to title complex in configuration. In the presence of ascorbic acid as a reducing agent, Cu²⁺(TPEN) displays high activity in atom-transfer radical addition (ATRA) reactions (Kaur *et al.*, 2015). In contrast to Cu^{2+} (TPEN), the title complex exhibits greater steric hindrance, which results in an evident Jahn-Teller effect on the configuration. In the title complex, the axial Cu-N bonds to pyridyl nitrogen atoms [2.5742 (13) Å)] are significantly longer than in Cu²⁺(TPEN) [2.377 (3) and 2.308 (2) Å] while the differences in the equatorial Cu-N distances are negligible (Yoon et al., 2005). The other two reported polypyridine copper complexes show similar distorted octahedral coordination spheres around the Cu²⁺ cation, but the ligands are evidently different from the title complex.

5. Synthesis and crystallization

The tetrapyridinediamine ligand N,N,N',N'-tetrakis[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine (tmpen) was prepared according to literature procedures (Mikata *et al.*, 2005). ¹H NMR (CDCl₃, 600 MHz): δ 7.44 (*d*, 4H), 7.31 (*m*, 4H), 6.94 (*d*, 4H), 3.74 (*s*, 8H), 2.75 (*s*, 4H), 2.48 (*s*, 12H). ESI-MS: calculated for [M + H]⁺: m/z 481.65.19; found: 481.31.

Table 2Experimental details.	
Crystal data	
Chemical formula	$[Cu(C_{30}H_{36}N_6)](BF_4)_2$
$M_{ m r}$	717.81
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	296
a, b, c (Å)	18.670 (2), 12.8309 (15), 14.0146 (16)
β (°)	107.193 (2)
$V(A^3)$	3207.2 (6)
Z	4
Radiation type	Μο Κα
$\mu ({\rm mm}^{-1})$	0.76
Crystal size (mm)	$0.30 \times 0.20 \times 0.10$
Data collection	
Diffractometer	Bruker APEXII CCD area detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2013)
T_{\min}, T_{\max}	0.833, 0.927
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10330, 3676, 3334
R _{int}	0.023
$(\sin \theta / \lambda)_{\max} ({\rm \AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.097, 1.06
No. of reflections	3676
No. of parameters	254
No. of restraints	40
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.97, -0.25

Computer programs: *SMART* and *SAINT* (Bruker, 2013), *SHELXTL* (Sheldrick, 2008) and *SHELXL2014* (Sheldrick, 2015).

For the preparation of $[Cu(tmpen)](BF_4)_2$ (1), Cu(BF₄)₂·H₂O (0.16 g, 0.5 mmol) was added to an acetonitrile solution (5 ml) of tmpen (0.2 g, 0.5 mmol). The mixture was stirred at room temperature for 6 h. The blue solution was then transferred to tubes, which were placed in a flask containing ether. Block-shaped crystals were obtained in a yield of 85% (0.25 g). Analysis calculated for C₃₀H₃₆B₂CuF₈N₆ (%): C, 50.52; H, 5.09; N, 11.78; found: 50.51; H, 5.08; N, 11.75; MS (TOF-ES): $m/z = 272.6641 \{[M - 2(BF_4)^-]/2\}^+, 579.3025 [M - 2(BF_4)^-+Cl^-]^+.$

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All F atoms of the BF₄ group were split into two groups and their ccupancies determined *via* a free variable refinement. All hydrogen atoms were refined in riding mode with C—H= 0.93–0.97 and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms.

Funding information

Funding for this research was provided by: China Postdoctoral Science Foundation (award No. 2015M582573); Chinese National Natural Science Foundation (award Nos. 21601164, 21573200, 21573223).

References

- Bania, K. K. & Deka, R. C. (2012). J. Phys. Chem. C, 116, 14295–14310.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kaur, A., Gorse, E. E., Ribelli, T. G., Jerman, C. C. & Pintauer, T. (2015). *Polymer*, **72**, 246–252.
- Meyer, A., Schnakenburg, G., Glaum, R. & Schiemann, O. (2015). Inorg. Chem. 54, 8456-8464.
- Mikata, Y.-J., Wakamatsu, M. & Yano, S. (2005). *Dalton Trans.* pp. 545–550.

- Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nature Comm. 5, 5883–5887.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tang, H., Arulsamy, N., Radosz, M., Shen, Y.-Q., Tsarevsky, N. V., Braunecker, W. A., Tang, W. & Matyjaszewski, K. (2006). J. Am. Chem. Soc. 128, 16277–16285.
- Yoon, D. C., Lee, U., Lee, D. J. & Oh, C. E. (2005). Bull. Korean Chem. Soc. 26, 1097–1100.
- Zhang, P.-L., Wang, M., Yang, Y., Yao, T.-Y. & Sun, L.-C. (2014). Angew. Chem. Int. Ed. 53, 13803–13807.

supporting information

Acta Cryst. (2017). E73, 640-643 [https://doi.org/10.1107/S2056989017004492]

Crystal structure of [Cu(tmpen)](BF₄)₂ {tmpen is *N*,*N*,*N*',*N*'-tetrakis[(6-methyl-pyridin-2-yl)methyl]ethane-1,2-diamine}

Lin Chen, Yakun Guo, Gan Ren and Ge Sang

Computing details

Data collection: *SMART* (Bruker, 2013); cell refinement: *SMART* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

 $\{N, N, N', N'$ -Tetrakis[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine- $\kappa^6 N$ }copper(II) bis(tetrafluoridoborate)

Crystal data	
$[Cu(C_{30}H_{36}N_6)](BF_4)_2$ $M_r = 717.81$ Monoclinic, C2/c a = 18.670 (2) Å b = 12.8309 (15) Å c = 14.0146 (16) Å $\beta = 107.193$ (2)° V = 3207.2 (6) Å ³ Z = 4 F(000) = 1476	$D_x = 1.487 \text{ Mg m}^{-3}$ $D_m = 1.485 \text{ Mg m}^{-3}$ $D_m \text{ measured by none}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5092 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 0.76 \text{ mm}^{-1}$ T = 296 K Block, purple $0.30 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Bruker APEXII CCD area detector diffractometer Radiation source: sealed tube phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013) $T_{min} = 0.833, T_{max} = 0.927$ 10330 measured reflections	3676 independent reflections 3334 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -12 \rightarrow 24$ $k = -16 \rightarrow 16$ $l = -18 \rightarrow 16$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.097$ S = 1.06 3676 reflections 254 parameters	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0549P)^2 + 2.078P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.97$ e Å ⁻³
40 restraints	$\Delta ho_{ m min} = -0.25 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.0000	0.23649 (2)	0.2500	0.02731 (10)	
N1	0.08743 (7)	0.15031 (11)	0.33863 (10)	0.0289 (3)	
N2	0.07204 (7)	0.35197 (10)	0.31608 (10)	0.0286 (3)	
N3	0.07474 (8)	0.26278 (11)	0.12413 (11)	0.0333 (3)	
C1	0.08575 (13)	0.00170 (16)	0.22917 (16)	0.0537 (6)	
H1A	0.0358	0.0242	0.1945	0.081*	
H1B	0.0863	-0.0726	0.2372	0.081*	
H1C	0.1190	0.0209	0.1914	0.081*	
C2	0.11081 (9)	0.05237 (13)	0.32937 (13)	0.0336 (4)	
C3	0.16060 (10)	0.00215 (15)	0.40983 (15)	0.0401 (4)	
H3A	0.1747	-0.0665	0.4036	0.048*	
C4	0.18899 (10)	0.05447 (16)	0.49875 (14)	0.0429 (4)	
H4A	0.2195	0.0201	0.5544	0.052*	
C5	0.17170 (10)	0.15836 (16)	0.50451 (13)	0.0387 (4)	
H5B	0.1938	0.1967	0.5620	0.046*	
C6	0.12094 (9)	0.20416 (14)	0.42312 (12)	0.0302 (3)	
C7	0.09995 (10)	0.31833 (13)	0.42177 (12)	0.0325 (3)	
H7A	0.0613	0.3280	0.4545	0.039*	
H7B	0.1434	0.3593	0.4569	0.039*	
C8	0.02775 (10)	0.45062 (13)	0.30188 (13)	0.0359 (4)	
H8A	0.0611	0.5101	0.3096	0.043*	
H8B	0.0012	0.4556	0.3517	0.043*	
C9	0.13719 (9)	0.36030 (14)	0.27541 (13)	0.0351 (4)	
H9A	0.1751	0.3108	0.3107	0.042*	
H9B	0.1585	0.4295	0.2903	0.042*	
C10	0.12107 (9)	0.34140 (14)	0.16498 (13)	0.0328 (4)	
C11	0.15943 (12)	0.39957 (17)	0.11282 (16)	0.0485 (5)	
H11A	0.1896	0.4552	0.1429	0.058*	
C12	0.15162 (15)	0.3728 (2)	0.01508 (17)	0.0619 (6)	
H12A	0.1770	0.4098	-0.0220	0.074*	
C13	0.10602 (14)	0.2910 (2)	-0.02692 (16)	0.0550 (6)	
H13A	0.1008	0.2714	-0.0925	0.066*	
C14	0.06769 (11)	0.23748 (15)	0.02882 (15)	0.0394 (4)	
C15	0.01701 (13)	0.14901 (19)	-0.01745 (17)	0.0551 (6)	
H15A	0.0011	0.1136	0.0331	0.083*	
H15B	0.0435	0.1012	-0.0475	0.083*	
H15C	-0.0260	0.1755	-0.0676	0.083*	
B1	0.31688 (17)	0.1726 (2)	0.2629 (2)	0.0555 (6)	
F1	0.3874 (4)	0.1486 (8)	0.3288 (7)	0.124 (2)	0.639 (19)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

0.3115 (7)	0.2722 (5)	0.2310 (10)	0.101 (3)	0.639 (19)
0.2668 (5)	0.1626 (7)	0.3154 (7)	0.091 (2)	0.639 (19)
0.3036 (5)	0.1037 (4)	0.1872 (4)	0.0811 (16)	0.639 (19)
0.3844 (7)	0.1315 (12)	0.2879 (15)	0.122 (3)	0.361 (19)
0.2738 (11)	0.1220 (13)	0.1767 (8)	0.119 (4)	0.361 (19)
0.2862 (10)	0.1559 (10)	0.3370 (10)	0.083 (3)	0.361 (19)
0.3273 (13)	0.2753 (11)	0.2471 (18)	0.107 (4)	0.361 (19)
	0.3115 (7) 0.2668 (5) 0.3036 (5) 0.3844 (7) 0.2738 (11) 0.2862 (10) 0.3273 (13)	0.3115 (7)0.2722 (5)0.2668 (5)0.1626 (7)0.3036 (5)0.1037 (4)0.3844 (7)0.1315 (12)0.2738 (11)0.1220 (13)0.2862 (10)0.1559 (10)0.3273 (13)0.2753 (11)	0.3115 (7)0.2722 (5)0.2310 (10)0.2668 (5)0.1626 (7)0.3154 (7)0.3036 (5)0.1037 (4)0.1872 (4)0.3844 (7)0.1315 (12)0.2879 (15)0.2738 (11)0.1220 (13)0.1767 (8)0.2862 (10)0.1559 (10)0.3370 (10)0.3273 (13)0.2753 (11)0.2471 (18)	0.3115 (7)0.2722 (5)0.2310 (10)0.101 (3)0.2668 (5)0.1626 (7)0.3154 (7)0.091 (2)0.3036 (5)0.1037 (4)0.1872 (4)0.0811 (16)0.3844 (7)0.1315 (12)0.2879 (15)0.122 (3)0.2738 (11)0.1220 (13)0.1767 (8)0.119 (4)0.2862 (10)0.1559 (10)0.3370 (10)0.083 (3)0.3273 (13)0.2753 (11)0.2471 (18)0.107 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02415 (15)	0.02360 (15)	0.02934 (16)	0.000	0.00043 (11)	0.000
N1	0.0245 (6)	0.0307 (7)	0.0284 (6)	0.0006 (5)	0.0030 (5)	-0.0015 (5)
N2	0.0284 (6)	0.0289 (7)	0.0272 (6)	-0.0029 (5)	0.0063 (5)	-0.0041 (5)
N3	0.0315 (7)	0.0364 (8)	0.0341 (7)	-0.0066 (6)	0.0127 (6)	-0.0055 (6)
C1	0.0595 (13)	0.0401 (11)	0.0500 (12)	0.0127 (9)	-0.0017 (10)	-0.0144 (9)
C2	0.0275 (8)	0.0323 (8)	0.0385 (9)	0.0028 (6)	0.0058 (7)	-0.0014 (7)
C3	0.0311 (8)	0.0348 (9)	0.0503 (11)	0.0071 (7)	0.0061 (8)	0.0059 (8)
C4	0.0303 (9)	0.0528 (11)	0.0395 (9)	0.0074 (8)	0.0008 (7)	0.0110 (8)
C5	0.0310 (8)	0.0518 (11)	0.0294 (8)	0.0013 (8)	0.0031 (7)	-0.0006 (7)
C6	0.0251 (7)	0.0361 (8)	0.0280 (8)	-0.0007 (6)	0.0056 (6)	-0.0023 (6)
C7	0.0340 (8)	0.0359 (9)	0.0255 (8)	-0.0018 (7)	0.0054 (6)	-0.0055 (6)
C8	0.0412 (9)	0.0254 (8)	0.0396 (9)	-0.0019 (7)	0.0095 (8)	-0.0048 (7)
C9	0.0292 (8)	0.0410 (9)	0.0343 (8)	-0.0108 (7)	0.0083 (7)	-0.0063 (7)
C10	0.0295 (8)	0.0365 (9)	0.0332 (8)	-0.0044 (6)	0.0108 (7)	-0.0036 (7)
C11	0.0513 (11)	0.0490 (11)	0.0486 (11)	-0.0181 (9)	0.0199 (9)	-0.0020 (9)
C12	0.0711 (15)	0.0762 (16)	0.0472 (12)	-0.0258 (13)	0.0311 (11)	0.0008 (11)
C13	0.0630 (14)	0.0714 (15)	0.0368 (10)	-0.0142 (12)	0.0243 (10)	-0.0099 (10)
C14	0.0370 (9)	0.0468 (10)	0.0359 (9)	-0.0035 (7)	0.0134 (8)	-0.0100 (7)
C15	0.0571 (13)	0.0637 (14)	0.0487 (12)	-0.0175 (11)	0.0222 (10)	-0.0265 (10)
B1	0.0770 (18)	0.0415 (12)	0.0585 (15)	-0.0006 (12)	0.0363 (14)	-0.0085 (11)
F1	0.090 (3)	0.132 (5)	0.130 (5)	0.017 (3)	-0.001 (3)	-0.019 (3)
F2	0.130 (5)	0.043 (2)	0.123 (6)	-0.001 (3)	0.026 (4)	0.012 (3)
F3	0.086 (3)	0.109 (4)	0.105 (5)	-0.009(2)	0.067 (3)	-0.023 (3)
F4	0.143 (4)	0.0526 (17)	0.0577 (18)	0.016 (2)	0.045 (2)	-0.0101 (15)
F1A	0.089 (5)	0.102 (5)	0.193 (10)	0.023 (4)	0.068 (6)	-0.033 (7)
F4A	0.169 (9)	0.102 (6)	0.085 (5)	-0.024 (6)	0.036 (5)	-0.057 (4)
F3A	0.146 (9)	0.059 (4)	0.061 (4)	-0.017 (5)	0.056 (5)	-0.011 (3)
F2A	0.166 (9)	0.057 (5)	0.097 (6)	-0.053 (5)	0.034 (7)	0.000 (4)

Geometric parameters (Å, °)

Cu1—N2 ⁱ	2.0311 (13)	С7—Н7В	0.9700	
Cu1—N2	2.0312 (13)	C8—C8 ⁱ	1.516 (3)	
Cu1—N1	2.0571 (13)	C8—H8A	0.9700	
Cu1—N1 ⁱ	2.0571 (13)	C8—H8B	0.9700	
Cu1—N3	2.5742 (13)	C9—C10	1.506 (2)	
Cu1—N3 ⁱ	2.5742 (13)	С9—Н9А	0.9700	

N1—C2	1.349 (2)	C9—H9B	0.9700
N1—C6	1.354 (2)	C10—C11	1.384 (3)
N2—C7	1.482 (2)	C11—C12	1.378 (3)
N2—C9	1.492 (2)	C11—H11A	0.9300
N2—C8	1.493 (2)	C12—C13	1.370 (3)
N3-C10	1.342(2)	C12—H12A	0.9300
N3-C14	1.3 12 (2) 1 343 (2)	C13 - C14	1.387(3)
C1-C2	1.3 13 (2) 1 492 (3)	C13_H13A	0.9300
C1 H1A	0.9600	C14 $C15$	1.497(3)
	0.9600	C_{15} H_{15A}	0.0600
	0.9000	C15_H15R	0.9000
	0.9000	С15—Н15В	0.9600
$C_2 = C_3$	1.390 (2)	CIS—HISC	0.9600
$C_3 - C_4$	1.376(3)	BI—FIA	1.315 (11)
C3—H3A	0.9300	BI—F3A	1.343 (10)
C4—C5	1.379 (3)	B1—F4	1.347 (6)
C4—H4A	0.9300	B1—F2	1.347 (7)
C5—C6	1.380 (2)	B1—F3	1.356 (6)
С5—Н5В	0.9300	B1—F2A	1.360 (12)
C6—C7	1.515 (2)	B1—F4A	1.398 (10)
С7—Н7А	0.9700	B1—F1	1.401 (6)
$N2^{i}$ C ₁₁ 1 N2	86.21 (8)	U7A C7 U7B	108.4
$N_2 = Cu_1 = N_2$	165 41 (5)	M/A = C = M/B	100.4
$N_2 - C_{11} - N_1$	103.41(3)	$N2 - C8 - C8^{\circ}$	100.02 (11)
N2—Cu1—N1	79.43 (0)	$N_2 \longrightarrow C_0 \longrightarrow H_0 A$	109.9
$N2 - CuI - NI^{2}$	/9.43 (6)	C8 - C8 - H8A	109.9
N2—Cu1—N1 ⁴	165.41 (5)	N2—C8—H8B	109.9
NI—Cul—NI ¹	114.97 (8)	C8 ¹ —C8—H8B	109.9
N1—Cu1—N3	89.43 (5)	H8A—C8—H8B	108.3
$N1$ — $Cu1$ — $N3^{1}$	98.67 (5)	N2—C9—C10	116.30 (13)
N2—Cu1—N3	78.28 (5)	N2—C9—H9A	108.2
N2—Cu1—N3 ⁱ	90.69 (5)	С10—С9—Н9А	108.2
N3—Cu1—N3 ⁱ	164.94 (5)	N2—C9—H9B	108.2
C2—N1—C6	118.72 (14)	C10—C9—H9B	108.2
C2—N1—Cu1	131.62 (11)	H9A—C9—H9B	107.4
C6—N1—Cu1	109.44 (11)	N3—C10—C11	123.31 (16)
C7—N2—C9	108.49 (13)	N3—C10—C9	117.86 (15)
C7—N2—C8	113.42 (13)	C11—C10—C9	118.59 (16)
C9—N2—C8	111.74 (13)	C12—C11—C10	118.13 (19)
C7—N2—Cu1	103.48 (10)	C12—C11—H11A	120.9
C9—N2—Cu1	112.51 (10)	C10—C11—H11A	120.9
C8—N2—Cu1	106.97 (10)	C13—C12—C11	119.23 (19)
C10-N3-C14	117.87 (15)	C13—C12—H12A	120.4
C2-C1-H1A	109 5	C11-C12-H12A	120.4
C2 - C1 - H1B	109.5	C12 - C13 - C14	110 71 (10)
HIA_C1_HIR	109.5	$C12 - C13 - H13 \Delta$	120.1
$C^2 - C^1 - H^1C$	109.5	C12 $C13$ $H13A$	120.1
	109.5	N3 C14 C12	120.1
	107.5	$N_{2} = C_{14} = C_{15}$	121.70(10) 11954(17)
	109.3	NJ-014-013	118.34(1/)

N1—C2—C3	120.78 (16)	C13—C14—C15	119.76 (18)
N1—C2—C1	118.43 (15)	C14—C15—H15A	109.5
C3—C2—C1	120.68 (17)	C14—C15—H15B	109.5
C4—C3—C2	119.65 (17)	H15A—C15—H15B	109.5
С4—С3—НЗА	120.2	C14—C15—H15C	109.5
С2—С3—НЗА	120.2	H15A—C15—H15C	109.5
C3—C4—C5	119.35 (17)	H15B—C15—H15C	109.5
C3—C4—H4A	120.3	F1A—B1—F3A	108.9 (10)
C5—C4—H4A	120.3	F4—B1—F2	112.5 (7)
C4—C5—C6	118.58 (17)	F4—B1—F3	111.6 (5)
С4—С5—Н5В	120.7	F2—B1—F3	105.9 (6)
С6—С5—Н5В	120.7	F1A—B1—F2A	105.1 (10)
N1—C6—C5	122.16 (16)	F3A—B1—F2A	113.3 (10)
N1—C6—C7	115.57 (13)	F1A—B1—F4A	107.8 (6)
C5—C6—C7	122.26 (15)	F3A—B1—F4A	109.0 (8)
N2—C7—C6	107.90 (12)	F2A—B1—F4A	112.5 (12)
N2—C7—H7A	110.1	F4—B1—F1	107.0 (4)
С6—С7—Н7А	110.1	F2—B1—F1	113.0 (7)
N2—C7—H7B	110.1	F3—B1—F1	106.6 (5)
С6—С7—Н7В	110.1		
C6—N1—C2—C3	9.0 (2)	C7—N2—C8—C8 ⁱ	-152.37 (17)
C6—N1—C2—C3 Cu1—N1—C2—C3	9.0 (2) -165.01 (13)	C7—N2—C8—C8 ⁱ C9—N2—C8—C8 ⁱ	-152.37 (17) 84.61 (19)
C6—N1—C2—C3 Cu1—N1—C2—C3 C6—N1—C2—C1	9.0 (2) -165.01 (13) -167.28 (18)	C7—N2—C8—C8 ⁱ C9—N2—C8—C8 ⁱ Cu1—N2—C8—C8 ⁱ	-152.37 (17) 84.61 (19) -38.93 (19)
C6—N1—C2—C3 Cu1—N1—C2—C3 C6—N1—C2—C1 Cu1—N1—C2—C1	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3)	C7—N2—C8—C8 ⁱ C9—N2—C8—C8 ⁱ Cu1—N2—C8—C8 ⁱ C7—N2—C9—C10	-152.37 (17) 84.61 (19) -38.93 (19) 151.06 (15)
C6—N1—C2—C3 Cu1—N1—C2—C3 C6—N1—C2—C1 Cu1—N1—C2—C1 N1—C2—C1 N1—C2—C3—C4	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3)	C7—N2—C8—C8 ⁱ C9—N2—C8—C8 ⁱ Cu1—N2—C8—C8 ⁱ C7—N2—C9—C10 C8—N2—C9—C10	-152.37 (17) 84.61 (19) -38.93 (19) 151.06 (15) -83.17 (18)
C6—N1—C2—C3 Cu1—N1—C2—C3 C6—N1—C2—C1 Cu1—N1—C2—C1 N1—C2—C3—C4 C1—C2—C3—C4	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19)	C7—N2—C8—C8 ⁱ C9—N2—C8—C8 ⁱ Cu1—N2—C8—C8 ⁱ C7—N2—C9—C10 C8—N2—C9—C10 Cu1—N2—C9—C10	-152.37 (17) 84.61 (19) -38.93 (19) 151.06 (15) -83.17 (18) 37.18 (18)
C6—N1—C2—C3 Cu1—N1—C2—C3 C6—N1—C2—C1 Cu1—N1—C2—C1 N1—C2—C3—C4 C1—C2—C3—C4 C2—C3—C4—C5	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-152.37 (17) 84.61 (19) -38.93 (19) 151.06 (15) -83.17 (18) 37.18 (18) 2.4 (3)
C6—N1—C2—C3 Cu1—N1—C2—C3 C6—N1—C2—C1 Cu1—N1—C2—C1 N1—C2—C3—C4 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3) 5.7 (3)	C7—N2—C8—C8 ⁱ C9—N2—C8—C8 ⁱ Cu1—N2—C8—C8 ⁱ C7—N2—C9—C10 C8—N2—C9—C10 Cu1—N2—C9—C10 C14—N3—C10—C11 C14—N3—C10—C9	-152.37 (17) 84.61 (19) -38.93 (19) 151.06 (15) -83.17 (18) 37.18 (18) 2.4 (3) -171.80 (17)
C6—N1—C2—C3 Cu1—N1—C2—C3 C6—N1—C2—C1 Cu1—N1—C2—C1 N1—C2—C3—C4 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C2—N1—C6—C5	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3) 5.7 (3) -7.8 (2)	C7—N2—C8—C8 ⁱ C9—N2—C8—C8 ⁱ Cu1—N2—C8—C8 ⁱ C7—N2—C9—C10 C8—N2—C9—C10 Cu1—N2—C9—C10 C14—N3—C10—C11 C14—N3—C10—C9 N2—C9—C10—N3	-152.37 (17) 84.61 (19) -38.93 (19) 151.06 (15) -83.17 (18) 37.18 (18) 2.4 (3) -171.80 (17) -41.5 (2)
C6—N1—C2—C3 Cu1—N1—C2—C3 C6—N1—C2—C1 Cu1—N1—C2—C1 N1—C2—C3—C4 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C2—N1—C6—C5 Cu1—N1—C6—C5	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3) 5.7 (3) -7.8 (2) 167.40 (14)	C7—N2—C8—C8 ⁱ C9—N2—C8—C8 ⁱ Cu1—N2—C8—C8 ⁱ C7—N2—C9—C10 C8—N2—C9—C10 Cu1—N2—C9—C10 C14—N3—C10—C11 C14—N3—C10—C9 N2—C9—C10—N3 N2—C9—C10—C11	-152.37 (17) 84.61 (19) -38.93 (19) 151.06 (15) -83.17 (18) 37.18 (18) 2.4 (3) -171.80 (17) -41.5 (2) 143.95 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3) 5.7 (3) -7.8 (2) 167.40 (14) 171.25 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-152.37 (17) 84.61 (19) -38.93 (19) 151.06 (15) -83.17 (18) 37.18 (18) 2.4 (3) -171.80 (17) -41.5 (2) 143.95 (18) -2.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3) 5.7 (3) -7.8 (2) 167.40 (14) 171.25 (15) -13.52 (17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-152.37 (17) 84.61 (19) -38.93 (19) 151.06 (15) -83.17 (18) 37.18 (18) 2.4 (3) -171.80 (17) -41.5 (2) 143.95 (18) -2.4 (3) 171.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3) 5.7 (3) -7.8 (2) 167.40 (14) 171.25 (15) -13.52 (17) 0.5 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -152.37\ (17)\\ 84.61\ (19)\\ -38.93\ (19)\\ 151.06\ (15)\\ -83.17\ (18)\\ 37.18\ (18)\\ 2.4\ (3)\\ -171.80\ (17)\\ -41.5\ (2)\\ 143.95\ (18)\\ -2.4\ (3)\\ 171.8\ (2)\\ 0.6\ (4)\end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3) 5.7 (3) -7.8 (2) 167.40 (14) 171.25 (15) -13.52 (17) 0.5 (3) -178.54 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -152.37\ (17)\\ 84.61\ (19)\\ -38.93\ (19)\\ 151.06\ (15)\\ -83.17\ (18)\\ 37.18\ (18)\\ 2.4\ (3)\\ -171.80\ (17)\\ -41.5\ (2)\\ 143.95\ (18)\\ -2.4\ (3)\\ 171.8\ (2)\\ 0.6\ (4)\\ 0.9\ (4)\end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3) 5.7 (3) -7.8 (2) 167.40 (14) 171.25 (15) -13.52 (17) 0.5 (3) -178.54 (16) -73.22 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -152.37\ (17)\\ 84.61\ (19)\\ -38.93\ (19)\\ 151.06\ (15)\\ -83.17\ (18)\\ 37.18\ (18)\\ 2.4\ (3)\\ -171.80\ (17)\\ -41.5\ (2)\\ 143.95\ (18)\\ -2.4\ (3)\\ 171.8\ (2)\\ 0.6\ (4)\\ 0.9\ (4)\\ -0.7\ (3)\end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3) 5.7 (3) -7.8 (2) 167.40 (14) 171.25 (15) -13.52 (17) 0.5 (3) -178.54 (16) -73.22 (16) 162.00 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -152.37\ (17)\\ 84.61\ (19)\\ -38.93\ (19)\\ 151.06\ (15)\\ -83.17\ (18)\\ 37.18\ (18)\\ 2.4\ (3)\\ -171.80\ (17)\\ -41.5\ (2)\\ 143.95\ (18)\\ -2.4\ (3)\\ 171.8\ (2)\\ 0.6\ (4)\\ 0.9\ (4)\\ -0.7\ (3)\\ 179.19\ (19)\end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3) 5.7 (3) -7.8 (2) 167.40 (14) 171.25 (15) -13.52 (17) 0.5 (3) -178.54 (16) -73.22 (16) 162.00 (13) 46.47 (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -152.37(17)\\ 84.61(19)\\ -38.93(19)\\ 151.06(15)\\ -83.17(18)\\ 37.18(18)\\ 2.4(3)\\ -171.80(17)\\ -41.5(2)\\ 143.95(18)\\ -2.4(3)\\ 171.8(2)\\ 0.6(4)\\ 0.9(4)\\ -0.7(3)\\ 179.19(19)\\ -0.9(4)\end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0 (2) -165.01 (13) -167.28 (18) 18.7 (3) -2.9 (3) 173.28 (19) -4.6 (3) 5.7 (3) -7.8 (2) 167.40 (14) 171.25 (15) -13.52 (17) 0.5 (3) -178.54 (16) -73.22 (16) 162.00 (13) 46.47 (14) -22.45 (19)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -152.37\ (17)\\ 84.61\ (19)\\ -38.93\ (19)\\ 151.06\ (15)\\ -83.17\ (18)\\ 37.18\ (18)\\ 2.4\ (3)\\ -171.80\ (17)\\ -41.5\ (2)\\ 143.95\ (18)\\ -2.4\ (3)\\ 171.8\ (2)\\ 0.6\ (4)\\ 0.9\ (4)\\ -0.7\ (3)\\ 179.19\ (19)\\ -0.9\ (4)\\ 179.2\ (2)\end{array}$

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1B···F2A ⁱⁱ	0.96	2.50	3.296 (17)	140
C4—H4A…F4A ⁱⁱⁱ	0.93	2.50	3.394 (15)	161

supporting information

C5—H5 <i>B</i> ···F3 ^{iv}	0.93	2.45	3.355 (9)	164
C5—H5 B ···F3 A^{iv}	0.93	2.33	3.194 (13)	155
C7—H7A···N3 ⁱ	0.97	2.59	3.212 (2)	122
C8—H8 A ···F1 A ^v	0.97	2.48	3.298 (16)	142
C9—H9A…F3	0.97	2.55	3.436 (10)	152
C9—H9 B ···F4 ^v	0.97	2.34	3.303 (6)	173
C12—H12A····F4 ^{vi}	0.93	2.45	3.198 (7)	137

Symmetry codes: (i) -x, y, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2; (iii) x, -y, z+1/2; (iv) -x+1/2, -y+1/2, -z+1; (v) -x+1/2, y+1/2, -z+1/2; (vi) -x+1/2, -y+1/2, -z+1/2; (vi) -x+1/2, -y+1/2, -z+1/2; (vi) -x+1/2, -y+1/2, -z+1/2; (vi) -x+1/2, -y+1/2, -z+1/2; (vi) -x+1/2, -z+1/2; (vi) -x+1/2; (vi) -x+1/2, -z+1/2; (vi) -x+1/2, -z+1/2; (vi) -x+1/2; (vi) -x+1/2