research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,4′-di­nitro-[1,1′-biphen­yl]-2-amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of , Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, cSpraying Systems Company Turkey, Esentepe Mah. Kore Şehitleri Cad. Kaya Aldoğan Sok., Serhan apt. No. 3 Daire:3 Şişli İstanbul, Turkey, and dDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 February 2017; accepted 13 March 2017; online 21 March 2017)

In the title biphenyl derivative, C12H9N3O4, the dihedral angle between the benzene rings is 52.84 (10)°. The nitro group attached to the benzene ring is inclined to the ring by 4.03 (2)°, while the nitro group attached to the amino-substituted benzene ring is inclined to the ring by 8.84 (2)°. In the crystal, mol­ecules are linked by two pairs of N—H⋯O hydrogen bonds, forming chains propagating along [101]. Within the chains, these N—H⋯O hydrogen bonds result in the formation of R22(20) and R22(14) ring motifs. The latter ring motif is reinforced by a pair of C—H⋯O hydrogen bonds, enclosing R21(6) ring motifs. The chains are linked by a second C—H⋯O hydrogen bond, forming a three-dimensional supra­molecular structure.

1. Chemical context

Biphenyl and its derivatives have been shown to play an important role in fighting cancer and arteriosclerosis in humans (Umeda et al., 2005[Umeda, Y., Aiso, S., Yamazaki, K., Ohnishi, M., Arito, H., Nagano, K., Yamamoto, S. & Matsushima, T. (2005). J. Vet. Med. Sci. 67, 417-424.]). The dihedral angle between the phenyl rings of biphenyl derivatives is associated with their affinity for cellular target mol­ecules and, therefore, can correlate with their toxicity. The parent compound, biphenyl, adopts a planar conformation in the solid state with a dihedral angle of 0° (Trotter, 1961[Trotter, J. (1961). Acta Cryst. 14, 1135-1140.]). The calculated dihedral angle for biphenyl derivatives without ortho substituents is ca 41° (Shaikh et al., 2008[Shaikh, N. S., Parkin, S., Luthe, G. & Lehmler, H.-J. (2008). Chemosphere, 70, 1694-1698.]). Deviations from the energetically most favourable conformation are most likely the result of crystal packing effects, which allow such compounds to adopt an energetically favorable conformation in the solid state by maximizing the lattice energy. Many research groups have calculated the inter-ring torsion angle of biphenyl in the solid state (Brock, 1980[Brock, C. P. (1980). Acta Cryst. B36, 968-971.]; Brock & Minton, 1989[Brock, C. P. & Minton, P. (1989). J. Am. Chem. Soc. 111, 4586-4593.]; Bastiansen & Samdal, 1985[Bastiansen, O. & Samdal, S. (1985). J. Mol. Struct. 128, 115-125.]), and in the gas phase (Bastiansen & Traetteberg, 1962[Bastiansen, O. & Traetteberg, M. (1962). Tetrahedron, 17, 147-154.]). We report here a detailed description of the mol­ecular structure and supra­molecular features of the title biphenyl derivative, 4,4′-di­nitro-[1,1′-biphen­yl]-2-amine, (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (I)[link], is illus­trated in Fig. 1[link]. The dihedral angle between the two rings of the biphenyl unit is 52.84 (10)°. The nitro group (N3/O3/O4) is inclined to the benzene ring (C7–C12) to which it is attached by 4.03 (2)°. The nitro group (N1/O1/O2) is inclined to the amino-substituted benzene ring (C1–C6), to which it is attached, by 8.84 (2)°. The amino N atom, N2, lies in the plane of the C1–C6 benzene ring, and the N2—C5 bond length of 1.375 (3) Å clearly indicates a single bond. The C1—N1 distance of 1.466 (3) Å is slightly less than the C10—N3 bond distance of 1.477 (3) Å, which indicates that the 2-amino group containing a benzene ring (C1–C6) is more conjugated with the nitro group (N1/O1/O2) than is the other nitro group (N3/O3/O4) with respect to the C7–C12 benzene ring. The bond length of the C4—C7 bridge is 1.482 (3) Å, which indicates a single bond, and is similar to the same bond length of 1.494 (2) Å reported for dimethyl 2,2′-di­nitro­biphenyl-4,4′-di­carboxyl­ate (Lehane et al., 2014[Lehane, R. L., Golen, J. A., Rheingold, A. L. & Manke, D. R. (2014). Acta Cryst. E70, o305.]), and ca 1.493 Å observed in 2,2′-di­nitro­biphenyl (Sekine et al., 1994[Sekine, A., Ohashi, Y., Yoshimura, K., Yagi, M. & Higuchi, J. (1994). Acta Cryst. C50, 1101-1104.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by two pairs of N—H⋯O hydrogen bonds, forming chains propagating along the [101] direction. Within the chains, these N—H⋯O hydrogen bonds result in the formation of R22(20) and R22(14) ring motifs (Table 1[link] and Fig. 2[link]). The latter ring motif is reinforced by a pair of C—H⋯O hydrogen bonds, enclosing R21(6) ring motifs (Table 1[link] and Fig. 2[link]). The chains are linked by a second C—H⋯O hydrogen bond (Table 1[link]), forming a three-dimensional supra­molecular structure, as illustrated in Figs. 3[link] and 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.92 (2) 2.36 (2) 3.229 (3) 157 (2)
N2—H2A⋯O4ii 0.89 (2) 2.50 (2) 3.345 (3) 157 (2)
C6—H6⋯O1i 0.93 2.54 3.308 (3) 140
C9—H9⋯O3iii 0.93 2.57 3.496 (3) 174
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the N—H⋯O and C—H⋯O hydrogen bonds (dashed lines; see Table 1[link]), in the crystal of (I)[link], forming chains that propagate along [101].
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of (I)[link]. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only H atoms H2A, H2B, H6 and H9 have been included.
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of (I)[link]. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only H atoms H2A, H2B, H6 and H9 have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structure of two similar compounds viz 4′-nitro-2-bi­phenyl­amine (II) (CSD refcode DIWFEU; Sutherland & Ali-Adib, 1986[Sutherland, H. H. & Ali-Adib, Z. (1986). Acta Cryst. C42, 432-433.]) and 4,4′-di­nitro­biphenyl (III) (DNTDPH; Boonstra, 1963[Boonstra, E. G. (1963). Acta Cryst. 16, 816-823.]). In (II), the benzene rings are inclined to one another by 54.64 (6)°, compared to ca 32.91° in (III), and to 52.84 (2)° in the title compound (I)[link]. In (II), the nitro group is inclined to the benzene ring to which it is attached by 7.08 (6)°, compared to ca 3.55 and 10.14° in (III) and 8.3 (2)° in the title compound (I)[link].

5. Synthesis and crystallization

The title compound (I)[link], was prepared by a literature procedure (Ol'khovik et al., 2008[Ol'khovik, V. K., Pap, A. A., Vasilevskii, V. A., Galinovskii, N. A. & Tereshko, S. N. (2008). Russ. J. Org. Chem. 44, 1172-1179.]). Orange prismatic crystals, suitable for single-crystal X-ray analysis, were grown by slow evaporation of a solution in ethanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.93–0.96 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C12H9N3O4
Mr 259.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 14.2940 (11), 7.0352 (6), 11.6043 (9)
β (°) 99.437 (6)
V3) 1151.15 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.34 × 0.20 × 0.07
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.980, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 6476, 2566, 1052
Rint 0.044
(sin θ/λ)max−1) 0.646
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.092, 0.81
No. of reflections 2566
No. of parameters 180
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.10, −0.12
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

4,4'-Dinitro-[1,1'-biphenyl]-2-amine top
Crystal data top
C12H9N3O4F(000) = 536
Mr = 259.22Dx = 1.496 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.2940 (11) ÅCell parameters from 3570 reflections
b = 7.0352 (6) Åθ = 2.1–27.8°
c = 11.6043 (9) ŵ = 0.12 mm1
β = 99.437 (6)°T = 296 K
V = 1151.15 (16) Å3Prism, orange
Z = 40.34 × 0.20 × 0.07 mm
Data collection top
Stoe IPDS 2
diffractometer
2566 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1052 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.044
Detector resolution: 6.67 pixels mm-1θmax = 27.4°, θmin = 2.9°
rotation method scansh = 1818
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 89
Tmin = 0.980, Tmax = 0.993l = 1411
6476 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.0353P)2]
where P = (Fo2 + 2Fc2)/3
2566 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.10 e Å3
2 restraintsΔρmin = 0.12 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61664 (11)0.3867 (2)0.93876 (16)0.0867 (5)
N10.60769 (13)0.3912 (3)0.8317 (2)0.0701 (5)
O30.08732 (12)0.2401 (3)0.36959 (17)0.1108 (7)
O20.67457 (11)0.3941 (3)0.77943 (16)0.1004 (6)
N20.26998 (16)0.4451 (3)0.8191 (2)0.0831 (6)
N30.02768 (15)0.3445 (4)0.3418 (2)0.0899 (7)
O40.04065 (12)0.4408 (3)0.25269 (19)0.1165 (7)
C50.34478 (14)0.4181 (3)0.76003 (19)0.0575 (5)
C60.43668 (14)0.4150 (3)0.82181 (19)0.0597 (5)
H60.4471620.4291200.9025890.072*
C40.33093 (14)0.3924 (3)0.63808 (18)0.0578 (5)
C20.50098 (15)0.3718 (3)0.64471 (19)0.0630 (6)
H20.5530810.3584870.6067540.076*
C80.21562 (15)0.4992 (3)0.4654 (2)0.0704 (6)
H80.2607030.5855790.4484360.084*
C70.23591 (14)0.3858 (3)0.56438 (18)0.0604 (5)
C10.51178 (14)0.3912 (3)0.76354 (19)0.0565 (5)
C120.16757 (15)0.2578 (3)0.5889 (2)0.0737 (6)
H120.1801460.1812710.6550060.088*
C30.41015 (15)0.3728 (3)0.58389 (19)0.0642 (6)
H30.4012570.3597850.5030760.077*
C110.08146 (16)0.2435 (3)0.5161 (2)0.0787 (7)
H110.0356050.1582260.5322430.094*
C100.06496 (16)0.3583 (4)0.4192 (2)0.0709 (6)
C90.13043 (16)0.4857 (3)0.3926 (2)0.0754 (6)
H90.1172720.5616540.3262830.090*
H2B0.2854 (15)0.490 (3)0.8945 (17)0.106 (9)*
H2A0.2140 (13)0.484 (4)0.780 (2)0.114 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0876 (11)0.1025 (13)0.0647 (12)0.0106 (9)0.0035 (9)0.0071 (11)
N10.0702 (12)0.0638 (12)0.0744 (15)0.0050 (10)0.0068 (12)0.0060 (12)
O30.0786 (11)0.1494 (18)0.1005 (16)0.0237 (12)0.0033 (10)0.0310 (13)
O20.0715 (10)0.1330 (15)0.0988 (14)0.0058 (11)0.0202 (10)0.0176 (12)
N20.0719 (13)0.1179 (18)0.0591 (14)0.0019 (12)0.0092 (11)0.0076 (13)
N30.0814 (16)0.1079 (19)0.0760 (18)0.0001 (13)0.0000 (14)0.0284 (14)
O40.1077 (14)0.1460 (18)0.0828 (15)0.0023 (12)0.0234 (11)0.0033 (14)
C50.0680 (13)0.0557 (13)0.0501 (13)0.0050 (10)0.0135 (11)0.0001 (10)
C60.0709 (13)0.0582 (13)0.0481 (12)0.0029 (10)0.0045 (11)0.0007 (10)
C40.0708 (13)0.0515 (12)0.0512 (13)0.0050 (10)0.0102 (11)0.0016 (11)
C20.0746 (14)0.0591 (14)0.0573 (15)0.0005 (11)0.0171 (12)0.0026 (11)
C80.0774 (14)0.0767 (15)0.0542 (14)0.0036 (12)0.0025 (12)0.0066 (12)
C70.0715 (13)0.0594 (13)0.0490 (13)0.0049 (11)0.0063 (11)0.0043 (11)
C10.0645 (12)0.0457 (12)0.0580 (15)0.0001 (10)0.0063 (11)0.0007 (11)
C120.0873 (15)0.0735 (15)0.0578 (15)0.0149 (13)0.0047 (13)0.0043 (13)
C30.0862 (15)0.0601 (13)0.0468 (13)0.0011 (11)0.0123 (12)0.0004 (11)
C110.0838 (16)0.0794 (16)0.0702 (18)0.0193 (13)0.0045 (13)0.0057 (15)
C100.0702 (14)0.0817 (17)0.0562 (16)0.0010 (12)0.0033 (12)0.0183 (13)
C90.0838 (15)0.0808 (17)0.0577 (15)0.0032 (13)0.0001 (13)0.0054 (13)
Geometric parameters (Å, º) top
O1—N11.228 (2)C2—C11.369 (3)
N1—O21.214 (2)C2—C31.372 (3)
N1—C11.466 (3)C2—H20.9300
O3—N31.209 (2)C8—C91.367 (3)
N2—C51.375 (3)C8—C71.389 (3)
N2—H2B0.922 (17)C8—H80.9300
N2—H2A0.894 (17)C7—C121.392 (3)
N3—O41.224 (3)C12—C111.378 (3)
N3—C101.477 (3)C12—H120.9300
C5—C61.390 (3)C3—H30.9300
C5—C41.408 (3)C11—C101.373 (3)
C6—C11.370 (3)C11—H110.9300
C6—H60.9300C10—C91.368 (3)
C4—C31.389 (3)C9—H90.9300
C4—C71.482 (3)
O2—N1—O1123.1 (2)C7—C8—H8119.5
O2—N1—C1118.3 (2)C8—C7—C12118.8 (2)
O1—N1—C1118.63 (19)C8—C7—C4120.41 (19)
C5—N2—H2B115.9 (14)C12—C7—C4120.6 (2)
C5—N2—H2A119.6 (17)C2—C1—C6122.8 (2)
H2B—N2—H2A116 (2)C2—C1—N1119.0 (2)
O3—N3—O4123.1 (2)C6—C1—N1118.2 (2)
O3—N3—C10118.6 (3)C11—C12—C7120.5 (2)
O4—N3—C10118.3 (3)C11—C12—H12119.7
N2—C5—C6119.4 (2)C7—C12—H12119.7
N2—C5—C4121.8 (2)C2—C3—C4122.7 (2)
C6—C5—C4118.80 (19)C2—C3—H3118.6
C1—C6—C5119.9 (2)C4—C3—H3118.6
C1—C6—H6120.1C10—C11—C12118.4 (2)
C5—C6—H6120.1C10—C11—H11120.8
C3—C4—C5118.49 (19)C12—C11—H11120.8
C3—C4—C7118.3 (2)C9—C10—C11122.6 (2)
C5—C4—C7123.25 (18)C9—C10—N3119.0 (3)
C1—C2—C3117.28 (19)C11—C10—N3118.4 (2)
C1—C2—H2121.4C8—C9—C10118.6 (2)
C3—C2—H2121.4C8—C9—H9120.7
C9—C8—C7121.0 (2)C10—C9—H9120.7
C9—C8—H8119.5
N2—C5—C6—C1179.0 (2)O2—N1—C1—C6170.96 (19)
C4—C5—C6—C11.3 (3)O1—N1—C1—C69.7 (3)
N2—C5—C4—C3177.7 (2)C8—C7—C12—C110.2 (3)
C6—C5—C4—C32.6 (3)C4—C7—C12—C11175.9 (2)
N2—C5—C4—C72.1 (3)C1—C2—C3—C40.0 (3)
C6—C5—C4—C7177.60 (19)C5—C4—C3—C22.0 (3)
C9—C8—C7—C120.3 (3)C7—C4—C3—C2178.2 (2)
C9—C8—C7—C4175.8 (2)C7—C12—C11—C100.0 (3)
C3—C4—C7—C850.6 (3)C12—C11—C10—C90.1 (3)
C5—C4—C7—C8129.1 (2)C12—C11—C10—N3179.4 (2)
C3—C4—C7—C12125.4 (2)O3—N3—C10—C9175.5 (2)
C5—C4—C7—C1254.9 (3)O4—N3—C10—C93.9 (3)
C3—C2—C1—C61.4 (3)O3—N3—C10—C113.8 (3)
C3—C2—C1—N1179.90 (18)O4—N3—C10—C11176.8 (2)
C5—C6—C1—C20.7 (3)C7—C8—C9—C100.2 (3)
C5—C6—C1—N1179.24 (19)C11—C10—C9—C80.0 (3)
O2—N1—C1—C27.6 (3)N3—C10—C9—C8179.3 (2)
O1—N1—C1—C2171.76 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.92 (2)2.36 (2)3.229 (3)157 (2)
N2—H2A···O4ii0.89 (2)2.50 (2)3.345 (3)157 (2)
C6—H6···O1i0.932.543.308 (3)140
C9—H9···O3iii0.932.573.496 (3)174
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey for X-ray the data collection.

Funding information

Funding for this research was provided by: Department of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev.

References

First citationBastiansen, O. & Samdal, S. (1985). J. Mol. Struct. 128, 115–125.  CrossRef CAS Web of Science Google Scholar
First citationBastiansen, O. & Traetteberg, M. (1962). Tetrahedron, 17, 147–154.  CrossRef CAS Web of Science Google Scholar
First citationBoonstra, E. G. (1963). Acta Cryst. 16, 816–823.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBrock, C. P. (1980). Acta Cryst. B36, 968–971.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrock, C. P. & Minton, P. (1989). J. Am. Chem. Soc. 111, 4586–4593.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLehane, R. L., Golen, J. A., Rheingold, A. L. & Manke, D. R. (2014). Acta Cryst. E70, o305.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOl'khovik, V. K., Pap, A. A., Vasilevskii, V. A., Galinovskii, N. A. & Tereshko, S. N. (2008). Russ. J. Org. Chem. 44, 1172–1179.  CAS Google Scholar
First citationSekine, A., Ohashi, Y., Yoshimura, K., Yagi, M. & Higuchi, J. (1994). Acta Cryst. C50, 1101–1104.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShaikh, N. S., Parkin, S., Luthe, G. & Lehmler, H.-J. (2008). Chemosphere, 70, 1694–1698.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSutherland, H. H. & Ali-Adib, Z. (1986). Acta Cryst. C42, 432–433.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTrotter, J. (1961). Acta Cryst. 14, 1135–1140.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationUmeda, Y., Aiso, S., Yamazaki, K., Ohnishi, M., Arito, H., Nagano, K., Yamamoto, S. & Matsushima, T. (2005). J. Vet. Med. Sci. 67, 417–424.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds