CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 18 February 2017
Accepted 27 February 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; redetermination; organotin compound; acetylacetonate.

CCDC reference: 1534819

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Redetermination of the crystal structure of dimethylbis[2,4-pentanedionato($\left.1-)-\kappa^{2} O^{2}, O^{4}\right]$ tin(IV)

Hans Reuter* and Martin Reichelt

Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany. *Correspondence e-mail: hreuter@uos.de

The redetermination of the title compound, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]$ or $\mathrm{SnMe}_{2}(\mathrm{acac})_{2}$, from CCD data recorded at 100 K basically confirms the previous study based on integrated film data recorded at room temperature [Miller \& Schlemper (1972). Inorg. Chem. 12, 677-681], but reveals a remarkable shrinkage of the a axis $[7.12(1)>6.7694(4)$ A]. The molecule belongs to point group C_{i} with the $\mathrm{Sn}^{\mathrm{IV}}$ atom on a centre of inversion. The $\mathrm{Sn}^{\mathrm{IV}}$ atom shows a slightly distorted octahedral coordination sphere with the methyl groups in trans positions and a $\mathrm{Sn}-\mathrm{C}$ bond length of 2.115 (2) A which may serve as a standard value for an $\mathrm{Sn}-\mathrm{CH}_{3}$ bond of an octahedrally coordinated $\mathrm{Sn}^{\mathrm{IV}}$ atom. The $\mathrm{Sn}-\mathrm{O}$ bonds involving the two carbonyl groups of the acetylacetonate ligand are of equal length $[2.180$ (1) and 2.183 (1) \AA], as are the $\mathrm{C}=\mathrm{O}[1.273$ (1) and 1.274 (1) \AA] and $\mathrm{C}-\mathrm{C}$ bond lengths [1.393 (2) and 1.400 (2) Å]. The acetylacetonate ligand deviates considerably from planarity, with a dihedral angle of $5.57(9)^{\circ}$ between the least-squares planes of the two acetone moieties. The four O atoms of the two symmetry-related acetylacetonate ligands are arranged in a nearly quadratic rectangle. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions consolidate the crystal packing.

1. Chemical context

The crystal structure of the title compound, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]$ or $\mathrm{SnMe}_{2}(\mathrm{acac})_{2}$, was determined in the early 1970s at room temperature by visual estimation of film data and refined to a final conventional R value of 0.079 (Miller \& Schlemper, 1972). All bond lengths and angles of the original study seem chemically reasonable but accuracy suffers from the limited precision of that kind of data collection. As $\mathrm{SnMe}_{2}(\mathrm{acac})_{2}$ serves as a reference for all diorganotin(IV) diacetylacetonates and bis-1,3-diketonates in general, we decided to redetermine its structure from CCD data recorded at low temperature. Moreover, the title compound is an excellent candidate for the determination of the $\mathrm{Sn}-\mathrm{C}_{\mathrm{Me}}$ bond length as another reference in case the $\mathrm{Sn}^{\mathrm{IV}}$ atom is in a well-defined octahedral coordination. The precise measurement of this $\mathrm{Sn}-\mathrm{C}$ distance therefore should supplement the observations of Britton (2006) who found a significant change in $\mathrm{Sn}-\mathrm{C}$ bond lengths depending on the organic moiety attached to an $\mathrm{Sn}^{\mathrm{IV}}$ atom.

2. Structural commentary

The redetermination of the crystal structure of the title compound confirms the former results obtained by Miller \& Schlemper (1973) with respect to the chosen space group
($P 2_{1} / n$) and the constitution of the asymmetric unit comprising half a formula unit with the Sn atom at a crystallographic centre of inversion [Wyckhoff symbol: b]. As we performed the X-ray measurement at 100 K , the unit-cell volume is somewhat smaller in comparison with the original roomtemperature data which is mainly caused by a considerable change of the a axis from 7.12 (1) to 6.7694 (4) \AA while changes of all other lattice parameters $\left[b_{\text {original }}=13.87(2)\right.$, $\left.c_{\text {original }}=7.69(1) \AA, \beta_{\text {original }}=104.7(2)^{\circ}\right]$ show a normal temperature-dependent shrinkage.

The Sn atom is octahedrally coordinated with the two methyl groups in a trans position (Fig. 1, Table 1). The $\mathrm{Sn}-\mathrm{C}$ bond shows a length of 2.115 (2) \AA and is significantly shorter than the value [2.14 (2) A] obtained by Miller \& Schlemper (1972). Because of the higher coordination number, the value differs to some extent from the value of 2.099 (2) \AA for Sn with a coordination number of four as observed in dimethyldithiocyanato tin(IV) (Britton, 2006). The two bonds between the Sn atom and the two different O atoms of the acetylacetonate ligand are of equal length $[2.180$ (1)/2.183 (1) Å]. In accordance with the almost symmetrical bonding of the acetylacetonate ligand to tin, $\mathrm{C}-\mathrm{O}[1.273$ (2)/1.274 (2) \AA] and C-C $[1.393(2) / 1.400(2) \AA]$ bonds of the 1,3-diketonate skeleton are of equal length. Although these values are typical for a delocalized π system, the atoms in question show a significant deviation from planarity at the central C 2 atom, resulting in a dihedral angle of $5.57(9)^{\circ}$ between the leastsquares planes defined by $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3$ [deviations from planarity: $\quad 0.003(1), \quad-0.007(1), \quad 0.002(1), \quad 0.002(1) \AA$,

Figure 1
The molecular structure of the title compound, showing the atom-labeling scheme of the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Sn} 1-\mathrm{C} 6$	$2.115(2)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.274(2)$
$\mathrm{Sn} 1-\mathrm{C} 6^{\mathrm{i}}$	$2.115(2)$	$\mathrm{O} 2-\mathrm{C} 3$	$1.273(2)$
$\mathrm{Sn} 1-\mathrm{O} 1$	$2.180(1)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.393(2)$
${\mathrm{Sn} 1-\mathrm{O} 1^{\mathrm{i}}}^{\mathrm{S}}$	$2.180(1)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.400(2)$
$\mathrm{Sn} 1-\mathrm{O} 2$	$2.183(1)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.499(2)$
$\mathrm{Sn} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.183(1)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.505(2)$
$\mathrm{C}^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{C} 6$	180.0	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Sn} 1$	$125.61(9)$
$\mathrm{C} 6-\mathrm{Sn} 1-\mathrm{O} 1$	$90.20(5)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$126.2(1)$
$\mathrm{C} 6-\mathrm{Sn} 1-\mathrm{O} 2$	$90.41(5)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$128.4(1)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2$	$85.99(4)$	$\mathrm{C} 3-\mathrm{O} 2-\mathrm{Sn} 1$	$125.68(9)$

Symmetry code: (i) $-x+1,-y+1,-z$.
respectively] and $\mathrm{O} 2 / \mathrm{C} 3 / \mathrm{C} 2 / \mathrm{C} 4$ [deviations from planarity: 0.002 (1), -0.004 (1), 0.002 (1), 0.001 (2) Å, respectively] (Fig. 2). Moreover, all bond angles in the six-membered chelate ring are considerably larger $\left[125.61(9)^{\circ}\right.$ at O 1 , $126.2(1)^{\circ}$ at $\mathrm{C} 1,128.4(1)^{\circ}$ at $\mathrm{C} 2,126.07(13)^{\circ}$ at C 3 , $125.68(9)^{\circ}$ at O2] than expected for $s p^{2}$-hybridized atoms, with exception of the bond angle at Sn 1 that amounts to $85.99(4)^{\circ}$. The four O atoms of the two symmetry-related acetylacetonate ligands around the Sn atom form a planar rectangle with similar edge lengths [O1 $\cdots \mathrm{O} 2=2.975(1) /$ $\mathrm{O} 1 \cdots \mathrm{O} 1=3.191(1) \AA$] , and almost right angles [89.9 (1) ${ }^{\circ}$ at O 1 and $90.1(1)^{\circ}$ at O 2]. This plane is nearly perpendicular to the axis through the two methyl groups [deviation: $0.44(2)^{\circ}$] but constitutes a dihedral angle of $10.2(1)^{\circ}$ with the least-

Figure 2
Twisting of the acetylacetonate ligand at atom C 2 with respect to the least-squares planes (green dashed lines) O1/C1/C2/C5 and O2/C3/C2/C4 in a view parallel to these planes. Non-H atoms are shown as displacement ellipsoids at the 50% probability level.

Figure 3
Orientation of the acetylacetate ligand (least-squares plane through both carbonyl groups) in relation to the plane defined by the four O atoms coordinating to the $\mathrm{Sn}^{\mathrm{IV}}$ atom. The view is parallel to these planes (green lines). Non-H atoms are shown as displacement ellipsoids at the 50% probability level.

Figure 4
Predominant $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}$ contacts (blue dotted lines) of O atoms with the methyl H atoms of the acetylacetonate groups of neighbouring molecules. The central molecule is drawn in space-filling mode, while neighbouring molecules are drawn in the stick-model mode visualizing the delocalized π system of the acetylacetonate ligands.
squares plane through the two carbonyl groups of the acetylacetonate ligand [deviations from planarity: $\mathrm{O} 1=$ $0.006(1), \mathrm{C} 1=-0.007(1), \mathrm{O} 2=-0.006(1) \AA, \mathrm{C} 3=$ 0.007 (1) A] (Fig. 3).

3. Supramolecular features

In the absence of classical H -donor groups, intermolecular interactions are restricted to van der Waals and weak $\mathrm{O} \cdots \mathrm{H}-$ C interactions. The most prominent ones are associated with the methyl hydrogen atoms H 42 and H 51 of the acetylacetonate ligand as they interact simultaneously with both oxygen atoms of neighbouring molecules [C42 ${ }^{\circ} \mathrm{O} 2^{i}=$ $2.906 \AA, \quad \mathrm{C} 42 \cdots \mathrm{O} 1^{\mathrm{ii}}=2.852 \AA, \quad \mathrm{C} 51 \cdots \mathrm{O} 2^{\mathrm{iii}}=2.797 \AA$, $\mathrm{H} 51 \cdots \mathrm{O} 1^{\text {iv }}=2.850 \AA$; symmetry codes: (i) $x, y, 1+z$; (ii) $1-x$, $1-y, 1-z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $\left.\frac{3}{2}-x,-\frac{1}{2}+y, \frac{1}{2}+z\right]$ (Fig. 4). These interactions are completed by a third $\mathrm{O} \cdots \mathrm{H}-$ C contact of similar length $\left[\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{iii}}=2.893 \AA, \mathrm{H} 43 \cdots \mathrm{O} 1^{\mathrm{v}}=\right.$ $2.992 \AA$, symmetry code: (v) $2-x, 1-y, 1-z]$ for each oxygen atom. In summary, the intermolecular contacts result in a columnar arrangement of the molecules parallel to the a axis (Fig. 5).

Figure 5
Columnar arrangement of the molecules along the a axis.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]$
346.97

Monoclinic, $P 2_{1} / n$
100
6.7693 (4), 13.8357 (7), 7.6661 (4)
104.709 (2)
694.46 (7)

2
Mo $K \alpha$
1.84
$0.29 \times 0.23 \times 0.16$

Bruker APEXII CCD

Multi-scan (SADABS; Bruker, 2009)
0.616, 0.760

21644, 1672, 1456
0.024
0.660
$0.013,0.034,1.11$
1672
84
$0.37,-0.27$

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2008).

4. Synthesis and crystallization

The synthesis of the title compound by refluxing a suspension of dimethyltin oxide, $\mathrm{Me}_{2} \mathrm{SnO}$, in acetylacetone, acacH, for several hours followed the procedure and experimental details described by McGrady \& Tobias (1965). Single crystals for X-ray diffraction were grown from toluene solution. A suitable single crystal was selected under a polarization microscope and mounted on a $50 \mu \mathrm{~m}$ MicroMesh MiTeGen Micromount ${ }^{\text {TM }}$ using FOMBLIN Y perfluoropolyether (LVAC 16/6, Aldrich). The crystals are stable in air.

Spectroscopic data: ${ }^{1} \mathrm{H}$ NMR [CDCl ${ }_{3}$, TMS, δ (ppm)], ${ }^{n} J$ $[\mathrm{Hz}]): \delta\left(\mathrm{CH}_{3}-\mathrm{Sn}\right)=0.58,{ }^{2} J\left({ }^{1} \mathrm{H}-{ }^{119 / 117} \mathrm{Sn}\right)=100.6 / 97.1$; $\delta\left(\mathrm{CH}_{3}\right)_{\text {acac }}=1.96 ; \delta(\mathrm{CH})_{\text {acac }}=5.31$ (Lockhart \& Manders, 1986; Otera et al., 1981); ${ }^{13} \mathrm{C}$ NMR [CDCl ${ }_{3}$, TMS, $\left.\delta(\mathrm{ppm})\right],{ }^{n} J$ $[\mathrm{Hz}]): \delta\left(\mathrm{CH}_{3}-\mathrm{Sn}\right)=7.75,{ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{119 / 117} \mathrm{Sn}=973.7 / 930.4\right)$, $\delta\left(\mathrm{CH}_{3}\right)_{\text {acac }}=27.94, \delta(\mathrm{CH})_{\text {acac }}=100.09, \delta(\mathrm{C}=\mathrm{O})_{\text {acac }}=190.75$ (Lockhart \& Manders, 1986, Otera et al., 1981); IR [ATR, v $\left(\mathrm{cm}^{-1}\right)$]: $3010 w, 2920 w, 1562 s, 1512 s, 1436 m, 1361 s, b d, 1256$ $m, 1203 m, 1015 m, 925 m, 803 m, 781 m, 655 m, 572 m, 552 m$ (McGrady \& Tobias, 1965); Raman [$\left.v\left(\mathrm{~cm}^{-1}\right)\right]: 3092 w, 2999 w$, $2920 s, 2708 w, 1574 w, 1427 w, 1366 m, 1263 m, 1206 m, 1194$ $m, 1021 w, 927 m, 668 m, 567 m, 512 s, 415 m, 220 m, 130 m 94$ $m, 68 m$ (McGrady \& Tobias, 1965).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were clearly identified
in difference Fourier syntheses but were refined assuming idealized geometries and allowed to ride on the carbon atoms with $0.98 \AA\left(-\mathrm{CH}_{3}\right)$, and $0.95 \AA(-\mathrm{CH}-)$ and with $U_{\text {iso }}(\mathrm{H})=1.2$ and $1.5 U_{\text {eq }}(\mathrm{C})$, respectively.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by Deutsche Forschungsgemeinschaft (DFG) and Open Access Publishing Fund of Osnabrück University.

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Britton, D. (2006). Acta Cryst. C62, m93-m94.
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Lockhart, T. P. \& Manders, W. F. (1986). Inorg. Chem. 25, 892-895.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
McGrady, M. M. \& Tobias, R. S. (1965). J. Am. Chem. Soc. 87, 19091916.

Miller, G. A. \& Schlemper, E. O. (1973). Inorg. Chem. 12, 677-681.
Otera, J., Hinoishi, T., Kawabe, Y. \& Okawara, R. (1981). Chem. Lett. 10, 273-274.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2017). E73, 472-475 [https://doi.org/10.1107/S2056989017003206]

Redetermination of the crystal structure of dimethylbis[2,4-pentanedionato(1-)$\left.\kappa^{2} O^{2}, O^{4}\right] \operatorname{tin}(\mathrm{IV})$

Hans Reuter and Martin Reichelt

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Dimethylbis[2,4-pentanedionato(1-)- $\kappa^{2} O^{2}, O^{4}$]tin(IV)

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=346.97$
Monoclinic, $P 2{ }_{1} / n$
$a=6.7693$ (4) Å
$b=13.8357$ (7) \AA
$c=7.6661$ (4) \AA
$\beta=104.709(2)^{\circ}$
$V=694.46(7) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.616, T_{\text {max }}=0.760$
21644 measured reflections
$F(000)=348$
$D_{\mathrm{x}}=1.659 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9878 reflections
$\theta=2.9-28.5^{\circ}$
$\mu=1.84 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colourless
$0.29 \times 0.23 \times 0.16 \mathrm{~mm}$

1672 independent reflections
1456 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-18 \rightarrow 18$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.013$
$w R\left(F^{2}\right)=0.034$
$S=1.11$
1672 reflections
84 parameters
0 restraints

Hydrogen site location: inferred from neighbouring sites
H -atom parameters not defined?
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0135 P)^{2}+0.383 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.37$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Sn1	0.5000	0.5000	0.0000	$0.01302(5)$
O1	$0.64915(18)$	$0.48470(8)$	$0.28616(14)$	$0.0219(2)$
C1	$0.7415(2)$	$0.40942(11)$	$0.36115(18)$	$0.0190(3)$
C2	$0.7883(2)$	$0.32773(11)$	$0.2732(2)$	$0.0209(3)$
H2	0.8493	0.2758	0.3489	$0.055(3)^{*}$
C3	$0.7571(2)$	$0.31231(10)$	$0.0877(2)$	$0.0166(3)$
O2	$0.66423(16)$	$0.36896(7)$	$-0.03729(13)$	$0.0183(2)$
C4	$0.8070(3)$	$0.41338(14)$	$0.5638(2)$	$0.0314(4)$
H41	0.8498	0.3489	0.6114	$0.055(3)^{*}$
H42	0.6924	0.4353	0.6102	$0.055(3)^{*}$
H43	0.9214	0.4585	0.6018	$0.055(3)^{*}$
C5	$0.8410(3)$	$0.22215(11)$	$0.0252(2)$	$0.0272(3)$
H51	0.9046	0.1820	0.1298	$0.055(3)^{*}$
H52	0.9435	0.2394	-0.0397	$0.055(3)^{*}$
H53	0.7300	0.1860	-0.0553	$0.055(3)^{*}$
C6	$0.7456(2)$	$0.58584(11)$	$-0.0348(2)$	$0.0236(3)$
H61	0.8232	0.6103	0.0825	$0.053(4)^{*}$
H62	0.6921	0.6403	-0.1145	$0.053(4)^{*}$
H63	0.8353	0.5466	-0.0887	$0.053(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	$0.01680(7)$	$0.01050(7)$	$0.01066(7)$	$0.00215(5)$	$0.00147(5)$	$-0.00056(5)$
O1	$0.0300(6)$	$0.0211(6)$	$0.0130(5)$	$-0.0013(4)$	$0.0026(4)$	$-0.0031(4)$
C1	$0.0147(6)$	$0.0287(8)$	$0.0123(6)$	$-0.0080(6)$	$0.0010(5)$	$0.0042(6)$
C2	$0.0182(7)$	$0.0235(8)$	$0.0200(7)$	$0.0039(6)$	$0.0031(6)$	$0.0110(6)$
C3	$0.0139(6)$	$0.0134(6)$	$0.0236(7)$	$0.0007(5)$	$0.0067(5)$	$0.0038(6)$
O2	$0.0252(5)$	$0.0144(5)$	$0.0148(5)$	$0.0057(4)$	$0.0039(4)$	$0.0001(4)$
C4	$0.0312(8)$	$0.0485(11)$	$0.0116(7)$	$-0.0168(8)$	$0.0001(6)$	$0.0044(7)$
C5	$0.0273(8)$	$0.0173(7)$	$0.0403(10)$	$0.0081(6)$	$0.0143(7)$	$0.0045(7)$
C6	$0.0228(7)$	$0.0191(7)$	$0.0284(8)$	$-0.0012(6)$	$0.0058(6)$	$0.0009(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Sn} 1-\mathrm{C} 6$	$2.115(2)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.499(2)$
$\mathrm{Sn} 1-6^{\mathrm{i}}$	$2.115(2)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.505(2)$
$\mathrm{Sn} 1-\mathrm{O} 1$	$2.180(1)$	$\mathrm{C} 4-\mathrm{H} 41$	0.9800
$\mathrm{Sn} 1-\mathrm{O}^{\mathrm{i}}$	$2.180(1)$	$\mathrm{C} 4-\mathrm{H} 42$	0.9800

$\mathrm{Sn} 1-\mathrm{O} 2$	2.183 (1)	C4-H43	0.9800
$\mathrm{Sn} 1-\mathrm{O} 2^{\text {i }}$	2.183 (1)	C5-H51	0.9800
$\mathrm{O} 1-\mathrm{C} 1$	1.274 (2)	C5-H52	0.9800
O2-C3	1.273 (2)	C5-H53	0.9800
$\mathrm{C} 1-\mathrm{C} 2$	1.393 (2)	C6-H61	0.9800
C2-C3	1.400 (2)	C6-H62	0.9800
C2-H2	0.9500	C6-H63	0.9800
C6 ${ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{C} 6$	180.0	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	126.07 (13)
$\mathrm{C} 6-\mathrm{Sn} 1-\mathrm{O} 1^{\text {i }}$	90.20 (5)	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 5$	115.27 (13)
$\mathrm{C} 6-\mathrm{Sn} 1-\mathrm{O} 1^{\text {i }}$	89.80 (5)	C2-C3-C5	118.66 (13)
C6--Sn1-O1	89.80 (5)	C3-O2-Sn1	125.68 (9)
C6-Sn1-O1	90.20 (5)	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{H} 41$	109.5
O1- ${ }^{\text {i }}$ Sn1-O1	180.0	C1-C4-H42	109.5
C6 ${ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{O} 2$	89.59 (5)	H41-C4-H42	109.5
$\mathrm{C} 6-\mathrm{Sn} 1-\mathrm{O} 2$	90.41 (5)	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{H} 43$	109.5
$\mathrm{O} 1{ }^{\text {i}}-\mathrm{Sn} 1-\mathrm{O} 2$	94.01 (4)	H41-C4-H43	109.5
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2$	85.99 (4)	H42-C4-H43	109.5
$\mathrm{C} 6-\mathrm{Sn} 1-\mathrm{O} 2^{\text {i }}$	90.41 (5)	C3-C5-H51	109.5
$\mathrm{C} 6-\mathrm{Sn} 1-\mathrm{O} 2^{\text {i }}$	89.59 (5)	C3-C5-H52	109.5
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{O} 2^{\text {i }}$	85.99 (4)	H51-C5-H52	109.5
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2^{\text {i }}$	94.01 (4)	C3-C5-H53	109.5
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{O} 2^{\text {i }}$	180.0	H51-C5-H53	109.5
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Sn} 1$	125.61 (9)	H52-C5-H53	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	126.2 (1)	Sn1-C6-H61	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4$	114.7 (2)	Sn1-C6-H62	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	119.1 (1)	H61-C6-H62	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	128.4 (1)	Sn1-C6-H63	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	115.8	H61-C6-H63	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	115.8	H62-C6-H63	109.5

Symmetry code: (i) $-x+1,-y+1,-z$.

