research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of 2,2′-(5-tert-butyl-1,3-phenyl­ene)bis­­(1-pentyl-1H-benzimidazol-3-ium) tetra­chlorido­mercurate(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by M. Zeller, Purdue University, USA (Received 3 March 2017; accepted 17 March 2017; online 24 March 2017)

In the title salt, (C34H44N4)[HgCl4], the [C34H44N4]2+ cations and [HgCl4]2− anions are linked by N—H⋯Cl hydrogen bonds. One of the two n-pentyl side chains was refined as disordered over two sets of sites, with occupancies of 0.733 (18) and 0.267 (18). The geometry around the HgII atom in the [HgCl4]2− anion is distorted tetra­hedral, with bond angles ranging from 98.16 (3) to 120.68 (3)°. In the [HgCl4]2− anion, there are two short Hg—Cl bonds [2.4120 (9) and 2.4171 (11) Å], one inter­mediate Hg—Cl bond [2.4716 (12) Å] and one long Hg—Cl bond [2.6579 (13) Å] for the Cl atom involved in a trifurcated hydrogen bond as an acceptor, including two N—H⋯Cl⋯H—N interactions as well as one C—H⋯Cl inter­action. There are several C—H⋯Cl inter­actions, with C⋯Cl distances ranging from 3.492 (3) to 3.796 (3) Å. These link the cations and anions into a zigzag chain along the c-axis direction. In addition, there are Cl⋯Cl halogen bonds, as well as ππ inter­actions, with centroid-to-centroid distances of 3.4765 (18) Å, which link one of the two benzimidazole moieties into dimeric units.

1. Chemical context

During the past few years, metallated complexes of the ligand 1,3-bis­(1H-benzo[d]imidazol-2-yl)benzene have been well explored. This ligand is an ideal candidate for metalation due to the presence of two N atoms and one C atom, which bind tightly with metal atoms (Carina et al., 1997[Carina, R. F., Williams, A. F. & Bernardinelli, G. (1997). J. Organomet. Chem. 548, 45-48.]; Obara et al., 2006[Obara, S., Itabashi, M., Okuda, F., Tamaki, S., Tanabe, Y., Ishii, Y., Nozaki, K. & Haga, M. (2006). Inorg. Chem. 45, 8907-8921.]; Karlsson et al., 2011[Karlsson, E. A., Lee, B., Åkermark, T., Johnston, E. V., Kärkäs, M. D., Sun, J., Hansson, Ö., Bäckvall, J. & Åkermark, B. (2011). Angew. Chem. Int. Ed. 50, 11715-11718.]; Yang et al., 2012[Yang, W. W., Zhong, Y. W., Yoshikawa, S., Shao, J. Y., Masaoka, S., Sakai, K., Yao, J. & Haga, M. (2012). Inorg. Chem. 51, 890-899.]; Tam et al., 2011[Tam, A. Y. Y., Tsang, D. P. K., Chan, M. Y., Zhu, N. & Yam, V. W. W. (2011). Chem. Commun. 47, 3383-3385.]; Gonzalez, 2014[Gonzalez, A. D. (2014). Organometallics, 33, 868-875.]). As examples of the potential importance of this ligand, a highly phospho­rescent iridium complex with bis­(benzimidazol-2-yl)benzene ligand has been reported (Obara et al., 2006[Obara, S., Itabashi, M., Okuda, F., Tamaki, S., Tanabe, Y., Ishii, Y., Nozaki, K. & Haga, M. (2006). Inorg. Chem. 45, 8907-8921.]) and helical and non helical copper(I) complexes with bis­(benzimidazol-2-yl)benzene have been described (Rüttimann et al., 1992[Rüttimann, S., Piguet, C., Bernardinelli, G., Bocquet, B. & Williams, A. F. (1992). J. Am. Chem. Soc. 114, 4230-4237.]). A trimeric complex has been obtained through the self assembly of cyclo­metalated trinuclear palladium(II) complexes (Rüttimann et al., 1993[Rüttmann, S., Williams, A. F. & Bernardinelli, G. (1993). Angew. Chem. Int. Ed. Engl. 32, 392-394.]). Dinuclear zinc complexes containing a (benzimidazol-2-yl)benzene based ligand have shown anti­cancer activity (Xie et al., 2014[Xie, Q., Liu, S., Li, X., Wu, Q., Luo, Z., Fu, X., Cao, W., Lan, G., Li, D., Zheng, W. & Chen, T. (2014). Dalton Trans. 43, 6973-6976.]).

A literature survey of mercury halide complexes with benzimidazole derivatives has shown that they come in two main types: polymeric, bridging either through the halide (Zhang et al., 2015[Zhang, Z., Feng, Y.-F., Wei, Q.-Y., Hu, K., Chen, Z.-L. & Liang, F.-P. (2015). CrystEngComm, 17, 6724-6735.]; Li et al., 2007[Li, X.-P., Zhang, J.-Y., Liu, Y., Pan, M., Zheng, S.-R., Kang, B.-S. & Su, C.-Y. (2007). Inorg. Chim. Acta, 360, 2990-2996.]; Shen et al., 2005[Shen, Y.-H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m1880-m1882.];) or through alternative N atoms from the benzimidazole moieties (Xiao et al., 2009[Xiao, B., Li, W., Hou, H. & Fan, Y. (2009). J. Coord. Chem. 62, 1630-1637.], 2011[Xiao, B., Yang, L.-J., Xiao, H.-Y. & Fang, S.-M. (2011). J. Coord. Chem. 64, 4408-4420.]; Huang et al., 2006[Huang, M., Liu, P., Chen, Y., Wang, J. & Liu, Z. (2006). J. Mol. Struct. 788, 211-217.]; Li et al., 2007[Li, X.-P., Zhang, J.-Y., Liu, Y., Pan, M., Zheng, S.-R., Kang, B.-S. & Su, C.-Y. (2007). Inorg. Chim. Acta, 360, 2990-2996.], 2012a[Li, Y., Liu, Q.-K., Ma, J.-P. & Dong, Y.-B. (2012a). Acta Cryst. C68, m152-m155.],b[Li, J., Li, X., Lü, H., Zhu, Y., Sun, H., Guo, Y., Yue, Z., Zhao, J., Tang, M., Hou, H., Fan, Y. & Chang, J. (2012b). Inorg. Chim. Acta, 384, 163-169.]; Dey et al., 2013[Dey, A., Mandal, S. K. & Biradha, K. (2013). CrystEngComm, 15, 9769-9778.]; Du et al., 2011[Du, J.-L., Wei, Z.-Z. & Hu, T.-L. (2011). Solid State Sci. 13, 1256-1260.]; Chen et al., 2013[Chen, Y., Chen, C., Chen, H., Cao, T., Yue, Z., Liu, X. & Niu, Y. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1307-1310.]; Su et al., 2003[Su, C.-Y., Goforth, A. M., Smith, M. D. & zur Loye, H.-C. (2003). Inorg. Chem. 42, 5685-5692.]; Xu et al., 2011[Xu, C., Wang, X., Ding, D., Hou, H. & Fan, Y. (2011). Inorg. Chem. Commun. 14, 1410-1413.]); or as discrete mol­ecules (i.e. non-polymeric). Reports of structurally related complex have been published recently (Rani et al., 2017a[Rani, V., Singh, H. B. & Butcher, R. J. (2017a). Acta Cryst. E73, 341-344.],b[Rani, V., Singh, H. B. & Butcher, R. J. (2017b). Acta Cryst. E73, 423-428.]).

An attempt was made to synthesize the compound 2,2′-(5-(tert-but­yl)-2-(di­chloro­stiban­yl)-1,3-phenyl­ene)bis­(1-pentyl-1H-benzimidazole) (2) from (4-(tert-but­yl)-2,6-bis­(1-pentyl-1H-benzimidazol-2-yl)phen­yl)mercury(II) chloride; [C34H41N4HgCl] (1) using SbCl3 in dry 1,4-dioxane via transmetallation. Related reactions (Rani et al., 2017a[Rani, V., Singh, H. B. & Butcher, R. J. (2017a). Acta Cryst. E73, 341-344.],b[Rani, V., Singh, H. B. & Butcher, R. J. (2017b). Acta Cryst. E73, 423-428.]) had yielded complexes containing an Hg atom bound to the ligand through Hg—N bonds. However, it was observed that the crystallization of compound 2 in MeOH at room temperature led to the formation of a bis-benzimidazolium cation; [C34H44N4]2+[HgCl4]2−, 3. The elaborate procedure for the synthesis of complex 1 will be published elsewhere.

[Scheme 1]

2. Structural commentary

The title compound, 3, is a salt which contains [C34H44N4]2+ cations and [HgCl4]2− anions linked by N—H⋯Cl hydrogen bonds. The reaction scheme leading to this product is shown in Fig. 1[link]. The geometry around the mercury(II) atom in the [HgCl4]2− anion is distorted tetra­hedral with bond angles ranging from 98.16 (3) to 120.68 (3)°. In the [HgCl4]2− anion, there are two short Hg—Cl bonds [Hg—Cl4, 2.4120 (9) Å; Hg—Cl3, 2.4171 (11) Å], one inter­mediate Hg—Cl bond [Hg—Cl2, 2.4716 (12) Å] and one long Hg—Cl bond [Hg—Cl1, 2.6579 (13) Å] for the Cl atom involved in a trifurcated bond as an acceptor including two N—H⋯Cl⋯H—N interactions as well as one C—H⋯Cl inter­action (see Table 1[link]), as shown in Fig. 2[link]. Unlike a similar structure published recently containing a closely related ligand (Rani et al., 2017a[Rani, V., Singh, H. B. & Butcher, R. J. (2017a). Acta Cryst. E73, 341-344.]), where the Hg atom is bonded to an N atom from the benzimidazole moiety, in this instance a salt has been obtained due to the different conditions of the reaction. The structure has been published of a salt containing the tetra­chlorido­mercurate(II) anion (Herbst et al., 2013[Herbst, A., Bronner, C., Dechambenoit, P. & Wenger, O. S. (2013). Organometallics, 32, 1807-1814.]) and a closely related ligand with n-hexyl rather than n-pentyl side chains, which was the result of an attempted transmetallate reaction between Hg and Au.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.88 2.30 3.171 (2) 171
N4—H4B⋯Cl1 0.88 2.35 3.224 (2) 170
C3—H3A⋯Cl3 0.95 2.90 3.803 (3) 160
C6—H6A⋯Cl2i 0.95 2.56 3.492 (3) 169
C18—H18A⋯Cl1 0.95 2.85 3.331 (4) 113
C25—H25A⋯Cl4ii 0.95 2.96 3.664 (3) 132
C28—H28A⋯Cl4iii 0.95 2.91 3.796 (3) 156
C30—H30A⋯Cl4iii 0.99 2.77 3.627 (3) 145
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+2; (iii) -x+1, -y, -z+2.
[Figure 1]
Figure 1
Reaction scheme showing the expected and actual products of the reaction.
[Figure 2]
Figure 2
Diagram showing the atom labeling scheme, the trifurcated bond involving an N—H⋯Cl⋯H—N hydrogen bond, the C—H⋯Cl inter­actions and the disorder in one n-pentyl side chain. Atomic displacement parameters are at the 30% probability level.

In the ligand, the dihedral angles between the benzimidazole moieties and central phenyl ring are 40.60 (9) and 38.08 (10)°, while the angle between them is 36.04 (6)°. One of the pentyl substituents was refined as disordered over two sets of sites, with occupancies of 0.733 (18)/0.267 (18). The two pentyl side chains have adopted different conformations (for the disordered side-chain only values for the major conformation will be included) and this is illustrated by their torsion angles. For C8A–C12A, the angles involved, C1—N2—C8A—C9A, N2—C8A—C9A—C10A, C8A—C9A—C10A—C11A, and C9A—C10A—C11A—C12A and are 102.1 (16), −175.0 (15), 179.7 (15), and −178.1 (9)°, respectively, while for C30–C34 they are C23—N3—C30—C31, N3—C30—C31—C32, C30—C31—C32—C33, and C31—C32—C33—C34 [−105.7 (3), 175.7 (2), 173.0 (2) and −65.8 (3)°, respectively]. Thus the first side chain is in an all-trans conformation while the second side chain has adopted a conformation where it curls up at the end.

3. Supra­molecular features

In addition to the inter-ionic hydrogen bonds mentioned above, there are several C—H⋯Cl inter­actions with C⋯Cl distances ranging from 3.492 (3) to 3.796 (3) Å (see Table1). These link the cations and anions into a zigzag chain in the c-axis direction, as shown in Fig. 3[link]. There are are Cl⋯Cl halogen bonds [Cl4⋯Cl42 − x, −y, 2 − z) = 3.434 (2) Å], as shown in Fig. 4[link]. In addition, one of the two benzimidazole moieties forms dimeric units through ππ inter­actions (symmetry code 1 − x, −y, 2 − z) with centroid-to-centroid distances of 3.477 (2) Å.

[Figure 3]
Figure 3
Diagram showing the C—H⋯Cl inter­actions, which link the cations and anions into a zigzag chain in the c-axis direction. The minor component of the pentyl disorder has been omitted for clarity. Atomic displacement parameters are at the 30% probability level.
[Figure 4]
Figure 4
Diagram showing the Cl⋯Cl halogen bond.

4. Database survey

A survey of the Cambridge Structural database (CSD Version 5.37) for salts containing both the benzimidazole moiety as well as the tetra­chlorido­mercurate(II) anion gave eight hits, including a closely related ligand with n-hexyl rather than n-pentyl side chains (Herbst et al., 2013[Herbst, A., Bronner, C., Dechambenoit, P. & Wenger, O. S. (2013). Organometallics, 32, 1807-1814.]).

5. Synthesis and crystallization

The reaction scheme is shown in Fig. 1[link]. To a solution of 1 (0.2 g, 0.269 mmol) in dry 1,4-dioxane was added SbCl3 (0.061 g, 0.269 mmol) at room temperature. The reaction mixture was refluxed for 6 h under an inert atmosphere of N2 and filtered through Whatman filter paper. When the solvent was evaporated, a white-colored precipitate was obtained and purified by washing with hexane. The compound was dried under vacuum. Colourless block-shaped single crystals were obtained from MeOH at room temperature, yield 64% (0.120 g).

1H NMR (400 MHz, DMSO): δ 8.13 (s, 2H), 7.91 (d, J = 7.2 Hz, 2H), 7.82 (d, J = 7.2 Hz, 2H), 7.49–7.45 (m, 4H), 4.43 (m, 4H), 1.74 (m, 4H), 1.43 (s, 9H), 1.14 (m, 8H), 0.72 (m, 6H). 13C NMR (100 MHz, DMSO): 153.1, 151.4, 137.9, 134.7, 129.4, 128.5, 128.2, 124.7, 124.5, 117.8, 112.6, 45.1, 35.5, 31.3, 29.1, 28.5, 21.9, 14.1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One of the two n-pentyl side chains was refined as disordered over two sets of sites, with occupancies of 0.733 (18) and 0.267 (18) and both conformers were constrained to have similar metrical parameters using the SAME command in SHELXL2016. H atoms were positioned geometrically and refined as riding: N—H = 0.88 Å with Uiso(H) = 1.2Ueq(N); C—H = 0.95–0.98 Å with 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula (C34H44N4)[HgCl4]
Mr 851.12
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.806 (5), 11.264 (5), 17.274 (5)
α, β, γ (°) 96.727 (5), 95.859 (5), 108.575 (5)
V3) 1776.4 (13)
Z 2
Radiation type Cu Kα
μ (mm−1) 10.76
Crystal size (mm) 0.20 × 0.11 × 0.09
 
Data collection
Diffractometer Bruker Quest CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.497, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 6193, 6193, 6138
Rint 0.038
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.048, 1.10
No. of reflections 6193
No. of parameters 410
No. of restraints 67
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.36, −0.76
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2,2'-(5-tert-Butyl-1,3-phenylene)bis(1-pentyl-1H-benzimidazol-3-ium) tetrachloridomercurate(II) top
Crystal data top
(C34H44N4)[HgCl4]Z = 2
Mr = 851.12F(000) = 848
Triclinic, P1Dx = 1.591 Mg m3
a = 9.806 (5) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.264 (5) ÅCell parameters from 9629 reflections
c = 17.274 (5) Åθ = 2.6–61.2°
α = 96.727 (5)°µ = 10.76 mm1
β = 95.859 (5)°T = 100 K
γ = 108.575 (5)°Block, colourless
V = 1776.4 (13) Å30.20 × 0.11 × 0.09 mm
Data collection top
Bruker Quest CCD
diffractometer
6138 reflections with I > 2σ(I)
ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 66.6°, θmin = 2.6°
Tmin = 0.497, Tmax = 0.753h = 1111
6193 measured reflectionsk = 1313
6193 independent reflectionsl = 2020
Refinement top
Refinement on F267 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0123P)2 + 4.1059P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
6193 reflectionsΔρmax = 1.36 e Å3
410 parametersΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg0.92160 (2)0.04332 (2)0.77777 (2)0.01320 (4)
Cl10.90325 (6)0.27221 (6)0.81804 (3)0.01173 (12)
Cl20.67643 (7)0.05962 (7)0.70059 (4)0.02181 (15)
Cl31.13497 (7)0.09387 (7)0.71258 (4)0.02149 (14)
Cl40.92562 (7)0.03357 (7)0.90227 (4)0.02064 (14)
N10.7288 (2)0.2251 (2)0.64598 (12)0.0103 (4)
H1A0.7864780.2408620.6911950.012*
N20.5412 (2)0.2067 (2)0.55973 (12)0.0093 (4)
N30.4506 (2)0.2061 (2)0.96891 (12)0.0083 (4)
N40.6596 (2)0.2112 (2)0.93340 (12)0.0093 (4)
H4B0.7319090.2224200.9056610.011*
C10.5974 (3)0.2376 (2)0.63675 (15)0.0093 (5)
C20.7605 (3)0.1834 (2)0.57342 (15)0.0107 (5)
C30.8791 (3)0.1515 (3)0.55187 (16)0.0145 (5)
H3A0.9599060.1577910.5894170.017*
C40.8719 (3)0.1104 (3)0.47260 (17)0.0175 (6)
H4A0.9500660.0872550.4551580.021*
C50.7527 (3)0.1016 (3)0.41676 (17)0.0182 (6)
H5A0.7535520.0740770.3627380.022*
C60.6347 (3)0.1318 (3)0.43830 (16)0.0160 (6)
H6A0.5537160.1250440.4007170.019*
C70.6410 (3)0.1728 (2)0.51834 (16)0.0112 (5)
C80.388 (7)0.196 (6)0.529 (4)0.011 (2)0.267 (18)
H8A0.3243420.1841640.5683930.013*0.267 (18)
H8B0.3472220.1235740.4879320.013*0.267 (18)
C90.383 (3)0.295 (4)0.477 (3)0.0131 (15)0.267 (18)
H9A0.4417170.2902810.4344050.016*0.267 (18)
H9B0.4254750.3809070.5091060.016*0.267 (18)
C100.226 (3)0.274 (2)0.4416 (15)0.0146 (14)0.267 (18)
H10A0.1853280.1902620.4075820.018*0.267 (18)
H10B0.1661820.2743970.4844500.018*0.267 (18)
C110.218 (2)0.377 (2)0.3929 (14)0.0331 (16)0.267 (18)
H11A0.2616830.4616090.4264200.040*0.267 (18)
H11B0.2746900.3751840.3488750.040*0.267 (18)
C120.061 (2)0.359 (2)0.3600 (16)0.045 (2)0.267 (18)
H12A0.0593900.4176680.3226800.067*0.267 (18)
H12B0.0086100.3751050.4032600.067*0.267 (18)
H12C0.0133090.2713380.3328290.067*0.267 (18)
C8A0.396 (2)0.198 (2)0.5222 (15)0.011 (2)0.733 (18)
H8AA0.3362190.1971400.5627710.013*0.733 (18)
H8AB0.3552590.1192300.4865910.013*0.733 (18)
C9A0.3993 (11)0.3134 (11)0.4833 (9)0.0131 (15)0.733 (18)
H9AA0.4577760.3173830.4396550.016*0.733 (18)
H9AB0.4458200.3915320.5223330.016*0.733 (18)
C10A0.2453 (8)0.3062 (7)0.4513 (5)0.0146 (14)0.733 (18)
H10C0.1994180.2277190.4124830.018*0.733 (18)
H10D0.1871300.3010020.4951790.018*0.733 (18)
C11A0.2417 (7)0.4193 (8)0.4123 (5)0.0331 (16)0.733 (18)
H11C0.2906250.4980020.4506000.040*0.733 (18)
H11D0.2971920.4228400.3673410.040*0.733 (18)
C12A0.0887 (7)0.4149 (10)0.3828 (6)0.045 (2)0.733 (18)
H12D0.0935260.4875330.3556600.067*0.733 (18)
H12E0.0354290.4182940.4275050.067*0.733 (18)
H12F0.0384280.3359870.3460360.067*0.733 (18)
C130.5319 (3)0.2776 (2)0.70281 (15)0.0096 (5)
C140.4612 (3)0.3667 (2)0.69900 (15)0.0106 (5)
H14A0.4485660.3976540.6508800.013*
C150.4086 (3)0.4111 (2)0.76422 (15)0.0099 (5)
C160.4336 (3)0.3674 (2)0.83453 (15)0.0100 (5)
H16A0.4026560.3993070.8804570.012*
C170.5035 (3)0.2771 (2)0.83886 (15)0.0090 (5)
C180.5510 (3)0.2304 (2)0.77264 (15)0.0092 (5)
H18A0.5957340.1672080.7748950.011*
C190.3288 (3)0.5074 (2)0.75636 (16)0.0139 (5)
C200.4329 (4)0.6272 (3)0.73242 (19)0.0228 (7)
H20A0.3829060.6891300.7267520.034*
H20B0.4635920.6045170.6821410.034*
H20C0.5184970.6642200.7731230.034*
C210.1958 (3)0.4478 (3)0.69226 (18)0.0243 (7)
H21A0.1316930.3698650.7067880.036*
H21B0.2277610.4275820.6419340.036*
H21C0.1429040.5076980.6870840.036*
C220.2771 (3)0.5445 (3)0.83319 (17)0.0162 (6)
H22A0.2088360.4689300.8479780.024*
H22B0.2285010.6069000.8258870.024*
H22C0.3609490.5812750.8749970.024*
C230.5353 (3)0.2327 (2)0.91271 (15)0.0088 (5)
C240.6564 (3)0.1682 (2)1.00576 (15)0.0091 (5)
C250.7573 (3)0.1319 (2)1.05176 (15)0.0112 (5)
H25A0.8479170.1337461.0360940.013*
C260.7169 (3)0.0929 (2)1.12160 (16)0.0127 (5)
H26A0.7824330.0683951.1552860.015*
C270.5816 (3)0.0886 (2)1.14430 (15)0.0126 (5)
H27A0.5584080.0609581.1927070.015*
C280.4818 (3)0.1234 (2)1.09797 (15)0.0104 (5)
H28A0.3900520.1195141.1128630.013*
C290.5231 (3)0.1643 (2)1.02846 (15)0.0086 (5)
C300.3016 (3)0.2106 (2)0.96844 (15)0.0097 (5)
H30A0.2394540.1322900.9847650.012*
H30B0.2607950.2136770.9141650.012*
C310.2987 (3)0.3254 (2)1.02351 (15)0.0116 (5)
H31A0.3660030.4037631.0098250.014*
H31B0.3317200.3192401.0785410.014*
C320.1447 (3)0.3319 (3)1.01653 (17)0.0153 (6)
H32A0.1173160.3476500.9629010.018*
H32B0.0765450.2485861.0230040.018*
C330.1271 (3)0.4344 (3)1.07662 (18)0.0209 (6)
H33A0.1986590.5170881.0718420.025*
H33B0.0287510.4397201.0637440.025*
C340.1476 (4)0.4122 (3)1.16171 (19)0.0294 (7)
H34A0.1232420.4757481.1960560.044*
H34B0.2490580.4192581.1776430.044*
H34C0.0836260.3271631.1661610.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg0.01221 (6)0.01533 (7)0.01315 (6)0.00693 (5)0.00075 (4)0.00220 (4)
Cl10.0100 (3)0.0128 (3)0.0126 (3)0.0058 (2)0.0012 (2)0.0006 (2)
Cl20.0157 (3)0.0210 (3)0.0217 (3)0.0007 (3)0.0083 (3)0.0010 (3)
Cl30.0168 (3)0.0241 (4)0.0258 (4)0.0097 (3)0.0075 (3)0.0008 (3)
Cl40.0176 (3)0.0293 (4)0.0191 (3)0.0108 (3)0.0016 (3)0.0121 (3)
N10.0104 (10)0.0146 (11)0.0073 (10)0.0067 (9)0.0015 (8)0.0027 (8)
N20.0096 (10)0.0109 (11)0.0087 (10)0.0056 (9)0.0003 (8)0.0019 (8)
N30.0082 (10)0.0088 (10)0.0088 (10)0.0046 (8)0.0010 (8)0.0016 (8)
N40.0084 (10)0.0107 (11)0.0102 (11)0.0046 (9)0.0018 (8)0.0024 (8)
C10.0114 (12)0.0061 (12)0.0102 (12)0.0030 (10)0.0008 (10)0.0033 (9)
C20.0105 (12)0.0097 (12)0.0120 (13)0.0042 (10)0.0005 (10)0.0016 (10)
C30.0109 (13)0.0167 (14)0.0173 (14)0.0064 (11)0.0010 (11)0.0040 (11)
C40.0144 (13)0.0195 (15)0.0212 (15)0.0082 (12)0.0064 (11)0.0026 (12)
C50.0231 (15)0.0205 (15)0.0123 (14)0.0094 (12)0.0044 (11)0.0002 (11)
C60.0189 (14)0.0208 (15)0.0102 (13)0.0105 (12)0.0012 (11)0.0020 (11)
C70.0124 (13)0.0101 (12)0.0124 (13)0.0052 (10)0.0017 (10)0.0022 (10)
C80.007 (3)0.0168 (16)0.008 (5)0.0046 (19)0.001 (3)0.002 (2)
C90.009 (2)0.016 (4)0.014 (3)0.003 (2)0.002 (2)0.005 (3)
C100.008 (2)0.017 (4)0.017 (3)0.003 (3)0.0042 (17)0.003 (3)
C110.015 (2)0.037 (4)0.050 (4)0.009 (3)0.003 (2)0.026 (3)
C120.021 (3)0.046 (5)0.070 (5)0.010 (3)0.007 (3)0.036 (4)
C8A0.007 (3)0.0168 (16)0.008 (5)0.0046 (19)0.001 (3)0.002 (2)
C9A0.009 (2)0.016 (4)0.014 (3)0.003 (2)0.002 (2)0.005 (3)
C10A0.008 (2)0.017 (4)0.017 (3)0.003 (3)0.0042 (17)0.003 (3)
C11A0.015 (2)0.037 (4)0.050 (4)0.009 (3)0.003 (2)0.026 (3)
C12A0.021 (3)0.046 (5)0.070 (5)0.010 (3)0.007 (3)0.036 (4)
C130.0081 (12)0.0084 (12)0.0105 (12)0.0014 (10)0.0007 (10)0.0004 (10)
C140.0112 (12)0.0098 (12)0.0113 (13)0.0039 (10)0.0007 (10)0.0043 (10)
C150.0094 (12)0.0067 (12)0.0135 (13)0.0028 (10)0.0006 (10)0.0024 (10)
C160.0102 (12)0.0077 (12)0.0111 (13)0.0022 (10)0.0010 (10)0.0003 (10)
C170.0075 (12)0.0072 (12)0.0101 (12)0.0004 (10)0.0019 (9)0.0018 (10)
C180.0068 (12)0.0076 (12)0.0128 (13)0.0025 (10)0.0012 (10)0.0023 (10)
C190.0182 (14)0.0101 (13)0.0174 (14)0.0095 (11)0.0030 (11)0.0042 (10)
C200.0355 (18)0.0146 (14)0.0269 (16)0.0148 (13)0.0148 (14)0.0104 (12)
C210.0270 (16)0.0317 (17)0.0223 (16)0.0234 (14)0.0040 (13)0.0036 (13)
C220.0211 (14)0.0128 (13)0.0211 (15)0.0118 (12)0.0075 (12)0.0060 (11)
C230.0097 (12)0.0047 (12)0.0106 (12)0.0017 (10)0.0005 (10)0.0001 (9)
C240.0122 (12)0.0054 (12)0.0090 (12)0.0037 (10)0.0013 (10)0.0007 (9)
C250.0107 (12)0.0100 (13)0.0136 (13)0.0060 (10)0.0012 (10)0.0004 (10)
C260.0156 (13)0.0093 (13)0.0132 (13)0.0063 (11)0.0044 (10)0.0009 (10)
C270.0185 (14)0.0093 (12)0.0099 (13)0.0047 (11)0.0010 (10)0.0021 (10)
C280.0132 (13)0.0079 (12)0.0099 (12)0.0042 (10)0.0011 (10)0.0006 (10)
C290.0100 (12)0.0057 (12)0.0091 (12)0.0033 (10)0.0030 (9)0.0011 (9)
C300.0049 (12)0.0120 (13)0.0128 (13)0.0037 (10)0.0008 (9)0.0031 (10)
C310.0096 (12)0.0130 (13)0.0124 (13)0.0050 (10)0.0003 (10)0.0014 (10)
C320.0121 (13)0.0146 (14)0.0204 (14)0.0070 (11)0.0007 (11)0.0027 (11)
C330.0188 (15)0.0177 (15)0.0300 (17)0.0121 (12)0.0044 (12)0.0011 (12)
C340.0379 (19)0.0280 (17)0.0275 (17)0.0191 (15)0.0084 (14)0.0012 (14)
Geometric parameters (Å, º) top
Hg—Cl42.4120 (9)C11A—H11C0.9900
Hg—Cl32.4171 (11)C11A—H11D0.9900
Hg—Cl22.4716 (12)C12A—H12D0.9800
Hg—Cl12.6579 (13)C12A—H12E0.9800
Cl4—Cl4i3.4343 (16)C12A—H12F0.9800
N1—C11.336 (3)C13—C141.393 (4)
N1—C21.386 (3)C13—C181.393 (4)
N1—H1A0.8800C14—C151.392 (4)
N2—C11.347 (3)C14—H14A0.9500
N2—C71.390 (3)C15—C161.391 (4)
N2—C8A1.468 (17)C15—C191.536 (3)
N2—C81.51 (5)C16—C171.400 (4)
N3—C231.340 (3)C16—H16A0.9500
N3—C291.401 (3)C17—C181.388 (4)
N3—C301.477 (3)C17—C231.464 (4)
N4—C231.339 (3)C18—H18A0.9500
N4—C241.392 (3)C19—C221.528 (4)
N4—H4B0.8800C19—C211.533 (4)
C1—C131.460 (4)C19—C201.540 (4)
C2—C31.394 (4)C20—H20A0.9800
C2—C71.396 (4)C20—H20B0.9800
C3—C41.380 (4)C20—H20C0.9800
C3—H3A0.9500C21—H21A0.9800
C4—C51.407 (4)C21—H21B0.9800
C4—H4A0.9500C21—H21C0.9800
C5—C61.379 (4)C22—H22A0.9800
C5—H5A0.9500C22—H22B0.9800
C6—C71.394 (4)C22—H22C0.9800
C6—H6A0.9500C24—C291.392 (4)
C8—C91.524 (16)C24—C251.396 (4)
C8—H8A0.9599C25—C261.384 (4)
C8—H8B0.9600C25—H25A0.9500
C9—C101.532 (15)C26—C271.409 (4)
C9—H9A0.9900C26—H26A0.9500
C9—H9B0.9900C27—C281.382 (4)
C10—C111.529 (15)C27—H27A0.9500
C10—H10A0.9900C28—C291.389 (4)
C10—H10B0.9900C28—H28A0.9500
C11—C121.526 (15)C30—C311.523 (4)
C11—H11A0.9900C30—H30A0.9900
C11—H11B0.9900C30—H30B0.9900
C12—H12A0.9800C31—C321.528 (4)
C12—H12B0.9800C31—H31A0.9900
C12—H12C0.9800C31—H31B0.9900
C8A—C9A1.525 (8)C32—C331.524 (4)
C8A—H8AA0.9599C32—H32A0.9900
C8A—H8AB0.9600C32—H32B0.9900
C9A—C10A1.527 (6)C33—C341.524 (5)
C9A—H9AA0.9900C33—H33A0.9900
C9A—H9AB0.9900C33—H33B0.9900
C10A—C11A1.518 (6)C34—H34A0.9800
C10A—H10C0.9900C34—H34B0.9800
C10A—H10D0.9900C34—H34C0.9800
C11A—C12A1.518 (6)
Cl4—Hg—Cl3120.68 (3)H12D—C12A—H12E109.5
Cl4—Hg—Cl2108.75 (3)C11A—C12A—H12F109.5
Cl3—Hg—Cl2120.54 (4)H12D—C12A—H12F109.5
Cl4—Hg—Cl1102.32 (3)H12E—C12A—H12F109.5
Cl3—Hg—Cl1101.25 (3)C14—C13—C18120.3 (2)
Cl2—Hg—Cl198.16 (3)C14—C13—C1121.9 (2)
Hg—Cl4—Cl4i146.10 (4)C18—C13—C1117.7 (2)
C1—N1—C2109.6 (2)C15—C14—C13121.4 (2)
C1—N1—H1A125.2C15—C14—H14A119.3
C2—N1—H1A125.2C13—C14—H14A119.3
C1—N2—C7108.4 (2)C16—C15—C14117.8 (2)
C1—N2—C8A128.6 (11)C16—C15—C19122.9 (2)
C7—N2—C8A122.9 (12)C14—C15—C19119.2 (2)
C1—N2—C8123 (3)C15—C16—C17121.2 (2)
C7—N2—C8128 (3)C15—C16—H16A119.4
C23—N3—C29108.6 (2)C17—C16—H16A119.4
C23—N3—C30127.4 (2)C18—C17—C16120.3 (2)
C29—N3—C30123.9 (2)C18—C17—C23117.5 (2)
C23—N4—C24109.2 (2)C16—C17—C23122.2 (2)
C23—N4—H4B125.4C17—C18—C13118.9 (2)
C24—N4—H4B125.4C17—C18—H18A120.6
N1—C1—N2109.0 (2)C13—C18—H18A120.6
N1—C1—C13122.6 (2)C22—C19—C21108.6 (2)
N2—C1—C13128.3 (2)C22—C19—C15112.1 (2)
N1—C2—C3132.0 (2)C21—C19—C15108.5 (2)
N1—C2—C7106.0 (2)C22—C19—C20109.1 (2)
C3—C2—C7122.0 (2)C21—C19—C20109.8 (2)
C4—C3—C2115.9 (2)C15—C19—C20108.7 (2)
C4—C3—H3A122.1C19—C20—H20A109.5
C2—C3—H3A122.1C19—C20—H20B109.5
C3—C4—C5122.2 (3)H20A—C20—H20B109.5
C3—C4—H4A118.9C19—C20—H20C109.5
C5—C4—H4A118.9H20A—C20—H20C109.5
C6—C5—C4121.8 (3)H20B—C20—H20C109.5
C6—C5—H5A119.1C19—C21—H21A109.5
C4—C5—H5A119.1C19—C21—H21B109.5
C5—C6—C7116.2 (3)H21A—C21—H21B109.5
C5—C6—H6A121.9C19—C21—H21C109.5
C7—C6—H6A121.9H21A—C21—H21C109.5
N2—C7—C6131.1 (2)H21B—C21—H21C109.5
N2—C7—C2107.1 (2)C19—C22—H22A109.5
C6—C7—C2121.8 (2)C19—C22—H22B109.5
N2—C8—C9112 (4)H22A—C22—H22B109.5
N2—C8—H8A113.5C19—C22—H22C109.5
C9—C8—H8A116.9H22A—C22—H22C109.5
N2—C8—H8B109.3H22B—C22—H22C109.5
C9—C8—H8B96.3N4—C23—N3109.2 (2)
H8A—C8—H8B107.2N4—C23—C17122.9 (2)
C8—C9—C10110 (2)N3—C23—C17127.9 (2)
C8—C9—H9A109.6N4—C24—C29106.4 (2)
C10—C9—H9A109.6N4—C24—C25131.6 (2)
C8—C9—H9B109.6C29—C24—C25122.0 (2)
C10—C9—H9B109.6C26—C25—C24115.8 (2)
H9A—C9—H9B108.1C26—C25—H25A122.1
C11—C10—C9111.3 (18)C24—C25—H25A122.1
C11—C10—H10A109.4C25—C26—C27122.0 (2)
C9—C10—H10A109.4C25—C26—H26A119.0
C11—C10—H10B109.4C27—C26—H26A119.0
C9—C10—H10B109.4C28—C27—C26121.7 (2)
H10A—C10—H10B108.0C28—C27—H27A119.1
C12—C11—C10111.1 (15)C26—C27—H27A119.1
C12—C11—H11A109.4C27—C28—C29116.3 (2)
C10—C11—H11A109.4C27—C28—H28A121.8
C12—C11—H11B109.4C29—C28—H28A121.8
C10—C11—H11B109.4C28—C29—C24122.1 (2)
H11A—C11—H11B108.0C28—C29—N3131.4 (2)
C11—C12—H12A109.5C24—C29—N3106.6 (2)
C11—C12—H12B109.5N3—C30—C31111.9 (2)
H12A—C12—H12B109.5N3—C30—H30A109.2
C11—C12—H12C109.5C31—C30—H30A109.2
H12A—C12—H12C109.5N3—C30—H30B109.2
H12B—C12—H12C109.5C31—C30—H30B109.2
N2—C8A—C9A112.4 (13)H30A—C30—H30B107.9
N2—C8A—H8AA107.8C30—C31—C32110.1 (2)
C9A—C8A—H8AA106.1C30—C31—H31A109.6
N2—C8A—H8AB108.8C32—C31—H31A109.6
C9A—C8A—H8AB113.3C30—C31—H31B109.6
H8AA—C8A—H8AB108.3C32—C31—H31B109.6
C8A—C9A—C10A110.8 (7)H31A—C31—H31B108.1
C8A—C9A—H9AA109.5C33—C32—C31113.9 (2)
C10A—C9A—H9AA109.5C33—C32—H32A108.8
C8A—C9A—H9AB109.5C31—C32—H32A108.8
C10A—C9A—H9AB109.5C33—C32—H32B108.8
H9AA—C9A—H9AB108.1C31—C32—H32B108.8
C11A—C10A—C9A113.0 (6)H32A—C32—H32B107.7
C11A—C10A—H10C109.0C34—C33—C32114.2 (2)
C9A—C10A—H10C109.0C34—C33—H33A108.7
C11A—C10A—H10D109.0C32—C33—H33A108.7
C9A—C10A—H10D109.0C34—C33—H33B108.7
H10C—C10A—H10D107.8C32—C33—H33B108.7
C12A—C11A—C10A113.2 (5)H33A—C33—H33B107.6
C12A—C11A—H11C108.9C33—C34—H34A109.5
C10A—C11A—H11C108.9C33—C34—H34B109.5
C12A—C11A—H11D108.9H34A—C34—H34B109.5
C10A—C11A—H11D108.9C33—C34—H34C109.5
H11C—C11A—H11D107.7H34A—C34—H34C109.5
C11A—C12A—H12D109.5H34B—C34—H34C109.5
C11A—C12A—H12E109.5
C2—N1—C1—N20.7 (3)C19—C15—C16—C17178.4 (2)
C2—N1—C1—C13178.7 (2)C15—C16—C17—C180.8 (4)
C7—N2—C1—N10.2 (3)C15—C16—C17—C23177.9 (2)
C8A—N2—C1—N1175.5 (10)C16—C17—C18—C132.0 (4)
C8—N2—C1—N1173 (3)C23—C17—C18—C13175.4 (2)
C7—N2—C1—C13179.2 (2)C14—C13—C18—C172.5 (4)
C8A—N2—C1—C133.9 (11)C1—C13—C18—C17173.2 (2)
C8—N2—C1—C137 (3)C16—C15—C19—C221.9 (4)
C1—N1—C2—C3177.2 (3)C14—C15—C19—C22179.3 (2)
C1—N1—C2—C70.9 (3)C16—C15—C19—C21121.9 (3)
N1—C2—C3—C4178.6 (3)C14—C15—C19—C2159.4 (3)
C7—C2—C3—C40.8 (4)C16—C15—C19—C20118.8 (3)
C2—C3—C4—C50.3 (4)C14—C15—C19—C2060.0 (3)
C3—C4—C5—C61.0 (5)C24—N4—C23—N30.3 (3)
C4—C5—C6—C70.7 (4)C24—N4—C23—C17179.1 (2)
C1—N2—C7—C6178.9 (3)C29—N3—C23—N40.5 (3)
C8A—N2—C7—C63.3 (10)C30—N3—C23—N4176.8 (2)
C8—N2—C7—C67 (3)C29—N3—C23—C17178.8 (2)
C1—N2—C7—C20.4 (3)C30—N3—C23—C172.5 (4)
C8A—N2—C7—C2175.3 (9)C18—C17—C23—N437.0 (3)
C8—N2—C7—C2172 (2)C16—C17—C23—N4140.3 (3)
C5—C6—C7—N2178.0 (3)C18—C17—C23—N3142.3 (3)
C5—C6—C7—C20.4 (4)C16—C17—C23—N340.4 (4)
N1—C2—C7—N20.8 (3)C23—N4—C24—C290.1 (3)
C3—C2—C7—N2177.6 (2)C23—N4—C24—C25179.3 (3)
N1—C2—C7—C6179.5 (2)N4—C24—C25—C26179.7 (3)
C3—C2—C7—C61.2 (4)C29—C24—C25—C260.6 (4)
C1—N2—C8—C9115 (5)C24—C25—C26—C270.9 (4)
C7—N2—C8—C974 (6)C25—C26—C27—C280.2 (4)
N2—C8—C9—C10175 (4)C26—C27—C28—C290.8 (4)
C8—C9—C10—C11177 (4)C27—C28—C29—C241.1 (4)
C9—C10—C11—C12178 (3)C27—C28—C29—N3179.8 (2)
C1—N2—C8A—C9A102.1 (16)N4—C24—C29—C28178.9 (2)
C7—N2—C8A—C9A83 (2)C25—C24—C29—C280.4 (4)
N2—C8A—C9A—C10A175.0 (15)N4—C24—C29—N30.4 (3)
C8A—C9A—C10A—C11A179.7 (15)C25—C24—C29—N3179.7 (2)
C9A—C10A—C11A—C12A178.1 (9)C23—N3—C29—C28178.6 (3)
N1—C1—C13—C14136.1 (3)C30—N3—C29—C282.2 (4)
N2—C1—C13—C1444.6 (4)C23—N3—C29—C240.6 (3)
N1—C1—C13—C1839.6 (4)C30—N3—C29—C24177.0 (2)
N2—C1—C13—C18139.8 (3)C23—N3—C30—C31105.7 (3)
C18—C13—C14—C150.3 (4)C29—N3—C30—C3178.5 (3)
C1—C13—C14—C15175.2 (2)N3—C30—C31—C32175.7 (2)
C13—C14—C15—C162.3 (4)C30—C31—C32—C33173.0 (2)
C13—C14—C15—C19178.8 (2)C31—C32—C33—C3465.8 (3)
C14—C15—C16—C172.9 (4)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.882.303.171 (2)171
N4—H4B···Cl10.882.353.224 (2)170
C3—H3A···Cl30.952.903.803 (3)160
C6—H6A···Cl2ii0.952.563.492 (3)169
C18—H18A···Cl10.952.853.331 (4)113
C25—H25A···Cl4i0.952.963.664 (3)132
C28—H28A···Cl4iii0.952.913.796 (3)156
C30—H30A···Cl4iii0.992.773.627 (3)145
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1; (iii) x+1, y, z+2.
 

Acknowledgements

RJB is grateful for NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research, and the Howard University Nanoscience Facility access to liquid nitro­gen. The authors wish to acknowledge the assistance of Dr Matthias Zeller in the collection of diffraction data and NSF Grant DMR 1337296 for funds to purchase the X-ray diffractometer. HBS is grateful to the DST, New Delhi, for a J. C. Bose National Fellowship. VR gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi for an SRF.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarina, R. F., Williams, A. F. & Bernardinelli, G. (1997). J. Organomet. Chem. 548, 45–48.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Y., Chen, C., Chen, H., Cao, T., Yue, Z., Liu, X. & Niu, Y. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1307–1310.  Web of Science CSD CrossRef CAS Google Scholar
First citationDey, A., Mandal, S. K. & Biradha, K. (2013). CrystEngComm, 15, 9769–9778.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, J.-L., Wei, Z.-Z. & Hu, T.-L. (2011). Solid State Sci. 13, 1256–1260.  Web of Science CSD CrossRef CAS Google Scholar
First citationGonzalez, A. D. (2014). Organometallics, 33, 868–875.  Google Scholar
First citationHerbst, A., Bronner, C., Dechambenoit, P. & Wenger, O. S. (2013). Organometallics, 32, 1807–1814.  CSD CrossRef CAS Google Scholar
First citationHuang, M., Liu, P., Chen, Y., Wang, J. & Liu, Z. (2006). J. Mol. Struct. 788, 211–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarlsson, E. A., Lee, B., Åkermark, T., Johnston, E. V., Kärkäs, M. D., Sun, J., Hansson, Ö., Bäckvall, J. & Åkermark, B. (2011). Angew. Chem. Int. Ed. 50, 11715–11718.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J., Li, X., Lü, H., Zhu, Y., Sun, H., Guo, Y., Yue, Z., Zhao, J., Tang, M., Hou, H., Fan, Y. & Chang, J. (2012b). Inorg. Chim. Acta, 384, 163–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Liu, Q.-K., Ma, J.-P. & Dong, Y.-B. (2012a). Acta Cryst. C68, m152–m155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-P., Zhang, J.-Y., Liu, Y., Pan, M., Zheng, S.-R., Kang, B.-S. & Su, C.-Y. (2007). Inorg. Chim. Acta, 360, 2990–2996.  Web of Science CSD CrossRef CAS Google Scholar
First citationObara, S., Itabashi, M., Okuda, F., Tamaki, S., Tanabe, Y., Ishii, Y., Nozaki, K. & Haga, M. (2006). Inorg. Chem. 45, 8907–8921.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRani, V., Singh, H. B. & Butcher, R. J. (2017a). Acta Cryst. E73, 341–344.  CSD CrossRef IUCr Journals Google Scholar
First citationRani, V., Singh, H. B. & Butcher, R. J. (2017b). Acta Cryst. E73, 423–428.  CSD CrossRef IUCr Journals Google Scholar
First citationRüttimann, S., Piguet, C., Bernardinelli, G., Bocquet, B. & Williams, A. F. (1992). J. Am. Chem. Soc. 114, 4230–4237.  Google Scholar
First citationRüttmann, S., Williams, A. F. & Bernardinelli, G. (1993). Angew. Chem. Int. Ed. Engl. 32, 392–394.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, Y.-H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m1880–m1882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSu, C.-Y., Goforth, A. M., Smith, M. D. & zur Loye, H.-C. (2003). Inorg. Chem. 42, 5685–5692.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTam, A. Y. Y., Tsang, D. P. K., Chan, M. Y., Zhu, N. & Yam, V. W. W. (2011). Chem. Commun. 47, 3383–3385.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, B., Li, W., Hou, H. & Fan, Y. (2009). J. Coord. Chem. 62, 1630–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, B., Yang, L.-J., Xiao, H.-Y. & Fang, S.-M. (2011). J. Coord. Chem. 64, 4408–4420.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, Q., Liu, S., Li, X., Wu, Q., Luo, Z., Fu, X., Cao, W., Lan, G., Li, D., Zheng, W. & Chen, T. (2014). Dalton Trans. 43, 6973–6976.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXu, C., Wang, X., Ding, D., Hou, H. & Fan, Y. (2011). Inorg. Chem. Commun. 14, 1410–1413.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, W. W., Zhong, Y. W., Yoshikawa, S., Shao, J. Y., Masaoka, S., Sakai, K., Yao, J. & Haga, M. (2012). Inorg. Chem. 51, 890–899.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Z., Feng, Y.-F., Wei, Q.-Y., Hu, K., Chen, Z.-L. & Liang, F.-P. (2015). CrystEngComm, 17, 6724–6735.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds