research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1Z,4Z)-2,4-di­methyl-3H-benzo[b][1,4]diazepine

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, E-28040 Madrid, Spain, bDepartamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain, cCAI Difraccion de Rayos X, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain, and dInstituto de Química Medica, Centro Química Orgánica Manuel Lora-Tamayo,(CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain
*Correspondence e-mail: torralba@ucm.es

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 February 2017; accepted 30 March 2017; online 4 April 2017)

The title compound, C11H12N2, is not planar due to the folding of the seven-membered ring. In the crystal, mol­ecules are packed opposite each other to minimize the electronic repulsion but the long inter­molecular distances indicate that no directional contacts are found.

1. Chemical context

(1Z,4Z)-2,4-Dimethyl-3H-benzo[b][1,4]diazepine, C11H12N2 (Me, Me) (1), also called a 1,5-benzodiazepine, is a mol­ecule situated at the crossroad of many avenues of chemistry. This compound is associated with the names of Douglas Lloyd and Donald R. Marshall of the University of St Andrews in Scotland (Gibson et al., 2002[Gibson, J. F., Mackie, R. K. & Marshall, D. R. (2002). Arkivoc, iii, 1-18.]). These authors reported the synthesis of 1, determined that its tautomeric structure is 1 and not 1′, and also determined that the protonation of 1 yields the cation 1H+ (Lloyd et al., 2002[Lloyd, D., McDougall, R. H. & Marshall, D. R. (2002). J. Chem. Soc. 3785-3792.]). For mol­ecules such as 1H+ they introduced the term `quasi-aromatic' (Lloyd & Marshall, 1971[Lloyd, D. & Marshall, D. R. (1971). The Jerusalem Symposia on Quantum Chemistry and Biochemistry. Vol. III, Aromaticity, Pseudo-Aromaticity, Anti-Aromaticity. Jerusalem: The Israel Academy of Sciences and Humanities.]), a term that has not survived the authors (Claramunt et al., 2013[Claramunt, R. M., Alkorta, I. & Elguero, J. (2013). Comput. Theor. Chem. 1019, 108-115.]). The inversion barrier of the seven-membered ring of 1 was measured to be 48.9 kJ mol−1 (Mannschreck et al., 1967[Mannschreck, A., Rissmann, G., Vögtle, F. & Wild, D. (1967). Chem. Ber. 100, 335-346.]); our calculated value is 43.4 kJ mol−1 (Clara­munt et al., 2013[Claramunt, R. M., Alkorta, I. & Elguero, J. (2013). Comput. Theor. Chem. 1019, 108-115.]).

[Scheme 1]

Benzo[b][1,4]diazepines continue to be the subject of many studies, but with other substituents (Bonacorso et al., 1996[Bonacorso, H. G., Bittencourt, S. T., Wastowski, A. D., Wentz, A. P., Zanatta, N., Martins, A. P. M. (1996). Tetrahedron Lett. 37, 9155-9156.]; El-Azab, 2013[El-Azab, I. H. (2013). J. Heterocycl. Chem. 50, E178-E188.]; Aastha et al., 2013[Aastha, P., Navneet, K., Anshu, A., Pratima, S. & Dharma, K. (2013). Res. J. Chem. Sci. 3, 90-103.]; Solan et al., 2014[Solan, A., Nişanci, B., Belcher, M., Young, J., Schäfer, C., Wheeler, K. A., Török, B. & Dembinski, R. (2014). Green Chem. 16, 1120-1124.]; Young et al., 2016[Young, J., Schäfer, C., Solan, A., Baldrica, A., Belcher, M., Nişanci, B., Wheeler, K. A., Trivedi, E. R., Török, B. & Dembinski, R. (2016). RSC Adv. 6, 107081-107093.]). Of the different procedures existing in the literature to prepare compound 1, we used the reaction of acetyl­acetone with o-phenyl­enedi­amine using silica-supported sulfuric acid as catalyst under solvent-free conditions (Chen et al., 2009[Chen, X., She, J., Shang, Z.-C., Wu, J. & Zhang, P. (2009). Synth. Commun. 39, 947-957.]). In spite of what the authors described in the paper, the reaction was not complete at room temperature and it was necessary to heat up to 273 K to attain a qu­anti­tative yield of the product, which was purified by column chromatography on silica gel and crystallized from ethyl acetate/hexane solution presenting a melting point of 408 K. We report herein on its characterization by 1H, 13C and 15N NMR in solution and solid state spectroscopy and, since its X-ray mol­ecular structure is unknown, we decided to complete the panorama of compound 1 determining it. Note that the structures of the monomethyl compound (Me, H) and the parent compound (H, H) are unknown, as well as those of their salts.

2. Structural commentary

The title compound 1 crystallizes in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit (Fig. 1[link]). As expected, the derivative is not planar due to the folding of the seven-membered ring. According to the electronic distribution for the two imine groups N1—C2 and N5—C4 [bond distances = 1.283 (3) and 1.281 (3) Å, respectively], atoms C2, C3 and C4 together with the two methyl groups of the diazepine ring deviate from the phenyl ring plane: atom C3 shows the largest displacement at 1.495 (1) Å while C2 and C4 are situated symmetrically at about 0.58 Å from it. The dihedral angle between the phenyl ring and C2/C3/C4 fragment of the diazepine ring is 87.8 (2)°, giving rise to a boat conformation for the diazepine ring.

[Figure 1]
Figure 1
ORTEP plot (20% probability displacement ellipsoids) of 1.

It is noteworthy that this is the only example found in the CSD database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) of a neutral diazepine derivative. For this reason, this structure is compared with the reported cationic diazepines C11H13N2+·X [X = PF6 (Blake et al., 1991[Blake, A. J., Schröder, M. & Sorbie, R. J. (1991). Z. Kristallogr. 194, 148-151.]), Cl (Speakman et al., 1976[Speakman, J. C. & Wilson, F. B. (1976). Acta Cryst. B32, 622-624.]; Svensson & Timby, 1981[Svensson, C. & Timby, L. (1981). Cryst. Struct. Commun. 10, 429.]) and ZnI42− (Orioli & Lip, 1974[Orioli, P. L. & Lip, H. C. (1974). Cryst. Struct. Commun. 3, 477.])] showing relevant structural differences. In the latter compounds, there is electronic delocalization in the N1/C2/C3/C4/N5 moiety that results in an almost planar geometry of this part of the seven-membered ring. However, in the neutral species, the C3 atom keeps both hydrogen atoms in an sp3 conformation, leading to localization of the double bonds between the nitro­gen atoms and their adjacent carbon atoms, which induces a great deviation of this moiety from planarity (Fig. 2[link]).

[Figure 2]
Figure 2
Comparative views of the seven-membered rings in 1 (left) and 1H+ (right) in the salt C11H13N2+·PF6 (Blake et al., 1991[Blake, A. J., Schröder, M. & Sorbie, R. J. (1991). Z. Kristallogr. 194, 148-151.]).

3. Supra­molecular features

In the crystal, the mol­ecules are packed opposite each other to minimize electronic repulsion but the long inter­molecular distances indicate that no relevant contacts are found (Fig. 3[link]). This feature differs from the salts previously mentioned, where the presence of the hydrogen atoms on the nitro­gen atoms allows the formation of N—H⋯X hydrogen bonds, leading to different supra­molecular networks. The absence of these atoms in 1, along with the boat conformation described above, prevents the formation of any supra­molecular structure.

[Figure 3]
Figure 3
View of the crystal packing of 1.

4. Synthesis and crystallization

All chemicals cited in the synthetic procedures are commercial compounds. Melting points were determined by DSC and thermograms (sample size 0.002–0.004 g) were recorded with a scan rate of 5.0 K min−1. Column chromatography was performed on silica gel 70–230 mesh. The NMR solution spectra were recorded on a 9.4 Tesla spectrometer (400.13 MHz for 1H, 100.62 MHz for 13C and 40.54 MHz for 15N) at 300 K with a 5 mm inverse detection H—X probe equipped with a z-gradient coil. Chemical shifts (δ in p.p.m.) are given from inter­nal solvents: CDCl3 7.26 for 1H and 77.0 for 13C. Nitro­methane was used for 15N as external reference. CPMAS NMR spectra were obtained on a 9.4 Tesla spectrometer at 300 K (100.73 MHz for 13C and 40.60 MHz for 15N) using a 4 mm DVT probehead at spinning rates of 12 and 6 kHz, respectively. 13C spectra were originally referenced to a glycine sample and then the chemical shifts were recalculated to the Me4Si (for the glycine carbonyl atom δ = 176.1 p.p.m.) and 15N spectra to 15NH4Cl and then converted to the nitro­methane scale using the relationship: δ 15N (nitro­methane) = δ 15N (ammonium chloride) − 338.1 p.p.m.. Samples were spun at the magic angle at rates of 25 kHz and the experiments were carried out at 300 K.

Synthesis of (1Z,4Z)-2,4-dimethyl-3H-benzo[b][1,4]diazepine (1): To a mixture of 2,4-penta­nedione (100.12 mg, 1 mmol) and o-phenyl­enedi­amine (108.14 mg, 1 mmol), H2SO4·SiO2 (20 mg) was added. The mixture was heated with magnetic stirring at 373 K for 1 h. After completion of the reaction, the resulting black oil was purified using silica gel column chromatography (ethyl acetate/petroleum ether, 60:40) and crystallized from ethyl acetate/hexane solution to give colourless prisms (90%). Rf (ethyl acetate/petroleum ether 80:20): 0.25. M.p (DSC) 408 K (Nishio et al., 1985[Nishio, T., Tokunaga, T. & Omote, Y. (1985). J. Heterocycl. Chem. 22, 405-407.], 403–405 K) 1H NMR (400.13 MHz, CDCl3) δ 7.36 (dd, 3J = 6.0, 4J = 3.5, 2H, H7, H8), 7.21 (dd, 3J = 6.0, 4J = 3.5 Hz, 2H, H6, H9), 2.82 (br, 2H, H3), 2.35 (s, 6H, CH3). 13C NMR (100.62 MHz, CDCl3) δ 157.6 (q, 2J = 6.4 Hz, C2), 140.2 (dd, 3J = 3 J = 7.0 Hz, C5a, C9a), 127.5 (dddd 1J = 160.4, 3J = 7.4, 2J = 2J = 3.5 Hz, C7, C8), 124.8 (dd, 1J = 161.8, 2J = 8.7 Hz, C6, C9), 43.2 (tsep,1J = 134.5, 3 J = 2.8 Hz, C3), 27.6 (qt, 1J = 128.0, 3J = 2.5 Hz, CH3). 15N NMR (40.54 MHz, CDCl3) δ −74.1. 13C SSNMR (100.76 MHz, CPMAS) δ 162.9 and 161.5 (C2, C6), 142.2 (C5a, C9a), 128.0 (C7, C8), 125.5 and 124.6 (C6/C9), 43.1 (C3), 27.6 (CH3). 15N SSNMR (40.60 MHz, CPMAS) δ −69.7.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Hydrogen atoms were included in their calculated positions (C—H = 0.93–0.97Å) and refined riding on the respective carbon atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Table 1
Experimental details

Crystal data
Chemical formula C11H12N2
Mr 172.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.8226 (16), 6.6305 (9), 13.3557 (19)
β (°) 114.531 (3)
V3) 952.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.18 × 0.13 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 7529, 1876, 878
Rint 0.072
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.146, 0.99
No. of reflections 1876
No. of parameters 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.15
Computer programs: SMART and SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(1Z,4Z)-2,4-dimethyl-3H-benzo[b][1,4]diazepine top
Crystal data top
C11H12N2F(000) = 368
Mr = 172.23Dx = 1.201 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.8226 (16) ÅCell parameters from 974 reflections
b = 6.6305 (9) Åθ = 3.1–20.1°
c = 13.3557 (19) ŵ = 0.07 mm1
β = 114.531 (3)°T = 296 K
V = 952.4 (2) Å3Prismatic, colorless
Z = 40.18 × 0.13 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
878 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
phi and ω scansh = 1314
7529 measured reflectionsk = 88
1876 independent reflectionsl = 1612
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
1876 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3543 (2)0.4619 (3)0.32401 (16)0.0491 (6)
C20.3699 (2)0.6414 (4)0.2963 (2)0.0490 (7)
C30.2695 (3)0.7496 (4)0.2027 (2)0.0551 (8)
H3A0.19110.74210.20950.066*
H3B0.29110.89040.20110.066*
C40.2606 (2)0.6429 (4)0.1002 (2)0.0511 (7)
C5A0.1784 (2)0.3600 (4)0.1489 (2)0.0415 (6)
N50.21672 (19)0.4640 (3)0.07648 (17)0.0498 (6)
C60.0737 (2)0.2360 (4)0.0995 (2)0.0542 (7)
H60.03300.23130.02310.065*
C70.0299 (3)0.1214 (4)0.1614 (3)0.0631 (8)
H70.04150.04390.12740.076*
C80.0930 (3)0.1223 (4)0.2750 (3)0.0602 (8)
H80.06350.04620.31760.072*
C90.1986 (3)0.2348 (4)0.3245 (2)0.0502 (7)
H90.24280.22840.40050.060*
C9A0.2416 (2)0.3593 (3)0.2635 (2)0.0402 (6)
C100.4921 (3)0.7461 (5)0.3555 (3)0.0776 (10)
H10A0.54750.65990.41250.116*
H10B0.47950.86900.38750.116*
H10C0.52770.77650.30430.116*
C110.3111 (3)0.7471 (5)0.0277 (2)0.0799 (10)
H11A0.30080.66160.03350.120*
H11B0.39790.77520.06920.120*
H11C0.26710.87130.00110.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0538 (15)0.0523 (13)0.0416 (13)0.0049 (12)0.0203 (11)0.0059 (11)
C20.0515 (18)0.0539 (17)0.0451 (16)0.0062 (16)0.0236 (14)0.0099 (15)
C30.0600 (19)0.0378 (14)0.073 (2)0.0002 (14)0.0327 (16)0.0001 (15)
C40.0464 (17)0.0558 (17)0.0468 (17)0.0072 (15)0.0151 (13)0.0147 (15)
C5A0.0424 (16)0.0413 (14)0.0422 (16)0.0054 (13)0.0191 (13)0.0004 (13)
N50.0508 (14)0.0570 (14)0.0399 (13)0.0007 (12)0.0173 (11)0.0043 (12)
C60.0423 (18)0.0525 (16)0.0603 (19)0.0003 (14)0.0138 (15)0.0073 (15)
C70.0497 (19)0.0468 (17)0.090 (3)0.0045 (14)0.0267 (19)0.0044 (17)
C80.069 (2)0.0457 (17)0.080 (2)0.0021 (16)0.0448 (19)0.0037 (16)
C90.062 (2)0.0426 (15)0.0522 (17)0.0007 (14)0.0304 (15)0.0014 (13)
C9A0.0424 (15)0.0377 (13)0.0438 (16)0.0018 (12)0.0211 (13)0.0043 (13)
C100.064 (2)0.080 (2)0.081 (2)0.0249 (17)0.0227 (18)0.0128 (18)
C110.089 (2)0.087 (2)0.069 (2)0.0131 (19)0.0372 (19)0.0183 (18)
Geometric parameters (Å, º) top
N1—C21.283 (3)C6—H60.9300
N1—C9A1.412 (3)C7—C81.385 (4)
C2—C101.499 (4)C7—H70.9300
C2—C31.502 (3)C8—C91.367 (4)
C3—C41.505 (3)C8—H80.9300
C3—H3A0.9700C9—C9A1.396 (3)
C3—H3B0.9700C9—H90.9300
C4—N51.281 (3)C10—H10A0.9600
C4—C111.500 (4)C10—H10B0.9600
C5A—C9A1.396 (3)C10—H10C0.9600
C5A—N51.407 (3)C11—H11A0.9600
C5A—C61.402 (3)C11—H11B0.9600
C6—C71.373 (4)C11—H11C0.9600
C2—N1—C9A119.7 (2)C6—C7—H7120.3
N1—C2—C10120.0 (3)C9—C8—C7120.1 (3)
N1—C2—C3121.7 (2)C9—C8—H8120.0
C10—C2—C3118.3 (3)C7—C8—H8120.0
C4—C3—C2105.4 (2)C8—C9—C9A121.4 (3)
C4—C3—H3A110.7C8—C9—H9119.3
C2—C3—H3A110.7C9A—C9—H9119.3
C4—C3—H3B110.7C5A—C9A—C9118.9 (2)
C2—C3—H3B110.7C5A—C9A—N1125.0 (2)
H3A—C3—H3B108.8C9—C9A—N1115.8 (2)
N5—C4—C3121.9 (2)C2—C10—H10A109.5
N5—C4—C11119.7 (3)C2—C10—H10B109.5
C3—C4—C11118.3 (3)H10A—C10—H10B109.5
C9A—C5A—N5125.2 (2)C2—C10—H10C109.5
C9A—C5A—C6118.7 (2)H10A—C10—H10C109.5
N5—C5A—C6115.9 (2)H10B—C10—H10C109.5
C4—N5—C5A119.8 (2)C4—C11—H11A109.5
C7—C6—C5A121.4 (3)C4—C11—H11B109.5
C7—C6—H6119.3H11A—C11—H11B109.5
C5A—C6—H6119.3C4—C11—H11C109.5
C8—C7—C6119.4 (3)H11A—C11—H11C109.5
C8—C7—H7120.3H11B—C11—H11C109.5
C9A—N1—C2—C10176.0 (2)C5A—C6—C7—C82.4 (4)
C9A—N1—C2—C31.9 (3)C6—C7—C8—C90.7 (4)
N1—C2—C3—C470.2 (3)C7—C8—C9—C9A3.6 (4)
C10—C2—C3—C4107.8 (3)N5—C5A—C9A—C9174.3 (2)
C2—C3—C4—N570.2 (3)C6—C5A—C9A—C90.3 (3)
C2—C3—C4—C11106.6 (3)N5—C5A—C9A—N10.5 (4)
C3—C4—N5—C5A1.8 (4)C6—C5A—C9A—N1174.1 (2)
C11—C4—N5—C5A175.0 (2)C8—C9—C9A—C5A3.3 (4)
C9A—C5A—N5—C441.4 (4)C8—C9—C9A—N1177.7 (2)
C6—C5A—N5—C4143.8 (2)C2—N1—C9A—C5A42.0 (3)
C9A—C5A—C6—C72.6 (4)C2—N1—C9A—C9144.0 (2)
N5—C5A—C6—C7177.7 (2)
 

Acknowledgements

CIN is indebted to UNED for a predoctoral contract (FPI `Grupos de Investigación' UNED).

Funding information

Funding for this research was provided by: Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación (award No. CTQ2014-56933-R); Ministerio de Economía y Competitividad, Consejo Superior de Investigaciones Científicas (award No. CTQ2015-63997-C2-2-P); Comunidad Autónoma de Madrid (award No. S2009/PPQ-1533); Universidad Nacional de Educación a Distancia (award No. GI_SUPRABIO_01).

References

First citationAastha, P., Navneet, K., Anshu, A., Pratima, S. & Dharma, K. (2013). Res. J. Chem. Sci. 3, 90–103.  Google Scholar
First citationBlake, A. J., Schröder, M. & Sorbie, R. J. (1991). Z. Kristallogr. 194, 148–151.  CrossRef CAS Web of Science Google Scholar
First citationBonacorso, H. G., Bittencourt, S. T., Wastowski, A. D., Wentz, A. P., Zanatta, N., Martins, A. P. M. (1996). Tetrahedron Lett. 37, 9155–9156.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., She, J., Shang, Z.-C., Wu, J. & Zhang, P. (2009). Synth. Commun. 39, 947–957.  Web of Science CrossRef CAS Google Scholar
First citationClaramunt, R. M., Alkorta, I. & Elguero, J. (2013). Comput. Theor. Chem. 1019, 108–115.  Web of Science CrossRef CAS Google Scholar
First citationEl-Azab, I. H. (2013). J. Heterocycl. Chem. 50, E178–E188.  CAS Google Scholar
First citationGibson, J. F., Mackie, R. K. & Marshall, D. R. (2002). Arkivoc, iii, 1–18.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLloyd, D. & Marshall, D. R. (1971). The Jerusalem Symposia on Quantum Chemistry and Biochemistry. Vol. III, Aromaticity, Pseudo-Aromaticity, Anti-Aromaticity. Jerusalem: The Israel Academy of Sciences and Humanities.  Google Scholar
First citationLloyd, D., McDougall, R. H. & Marshall, D. R. (2002). J. Chem. Soc. 3785–3792.  Google Scholar
First citationMannschreck, A., Rissmann, G., Vögtle, F. & Wild, D. (1967). Chem. Ber. 100, 335–346.  CrossRef CAS Web of Science Google Scholar
First citationNishio, T., Tokunaga, T. & Omote, Y. (1985). J. Heterocycl. Chem. 22, 405–407.  CrossRef CAS Google Scholar
First citationOrioli, P. L. & Lip, H. C. (1974). Cryst. Struct. Commun. 3, 477.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolan, A., Nişanci, B., Belcher, M., Young, J., Schäfer, C., Wheeler, K. A., Török, B. & Dembinski, R. (2014). Green Chem. 16, 1120–1124.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpeakman, J. C. & Wilson, F. B. (1976). Acta Cryst. B32, 622–624.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSvensson, C. & Timby, L. (1981). Cryst. Struct. Commun. 10, 429.  Google Scholar
First citationYoung, J., Schäfer, C., Solan, A., Baldrica, A., Belcher, M., Nişanci, B., Wheeler, K. A., Trivedi, E. R., Török, B. & Dembinski, R. (2016). RSC Adv. 6, 107081–107093.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds