research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[[di­aqua­bis­­(2,4,6-tri­methyl­benzoato-κO)cobalt(II)]-μ-aqua-κ2O:O] dihydrate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bSANAEM, Saray Mahallesi, Atom Caddesi, No. 27, 06980 Saray-Kazan, Ankara, Turkey, cDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and dInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by T. J. Prior, University of Hull, England (Received 31 March 2017; accepted 12 April 2017; online 13 April 2017)

The asymmetric unit of the title one-dimensional polymeric compound, {[Co(C10H11O2)2(H2O)3]·2H2O}n, contains one CoII cation situated on a centre of inversion, one-half of a coordinating water mol­ecule, one 2,4,6-tri­methyl­benzoate (TMB) anion together with one coordinating and one non-coordinating water mol­ecule; the TMB anion acts as a monodentate ligand. In the anion, the carboxyl­ate group is twisted away from the attached benzene ring by 84.9 (2)°. The CoII atom is coordinated by two TMB anions and two water mol­ecules in the basal plane, while another water mol­ecule bridges the CoII atoms in the axial directions, forming polymeric chains running along [001]. The coordination environment for the CoII cation is a slightly distorted octa­hedron. The coordinating and bridging water mol­ecules link to the carboxyl­ate groups via intra- and inter­molecular O—H⋯O hydrogen bonds, enclosing S(6) ring motifs, while the coordinating, bridging and non-coordinating water mol­ecules link to the carboxyl­ate groups and the coordinating water mol­ecules link to the non-coordinating water mol­ecules via O—H⋯O hydrogen bonds, enclosing R22(8) and R33(8) ring motifs. Weak C—H⋯O and C—H⋯π inter­actions may further stabilize the crystal structure.

1. Chemical context

Transition metal complexes with ligands of biochemical inter­est, such as imidazole and some N-protected amino acids, show inter­esting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Some benzoic acid derivatives, such as 4-amino­benzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]; Amiraslanov et al., 1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]; Hauptmann et al., 2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]).

The structure–function–coordination relationships of the aryl­carboxyl­ate ion in ZnII complexes of benzoic acid deriv­atives change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of the synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]).

The solid-state structures of anhydrous zinc(II) carboxyl­ates include one-dimensional (Guseinov et al., 1984[Guseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984). Koord. Khim. 10, 117-122.]; Clegg et al., 1986a[Clegg, W., Little, I. R. & Straughan, B. P. (1986a). Acta Cryst. C42, 919-920.]), two-dimensional (Clegg et al., 1986b[Clegg, W., Little, I. R. & Straughan, B. P. (1986b). Acta Cryst. C42, 1701-1703.], 1987[Clegg, W., Little, I. R. & Straughan, B. P. (1987). Acta Cryst. C43, 456-457.]) and three-dimensional (Capilla & Aranda, 1979[Capilla, A. V. & Aranda, R. A. (1979). Cryst. Struct. Commun. 8, 795-798.]) polymeric motifs of different types, while discrete monomeric complexes with octa­hedral or tetra­hedral coordination geometry are found if water or other donor mol­ecules coordinate to the ZnII cation (van Niekerk et al., 1953[Niekerk, J. N. van, Schoening, F. R. L. & Talbot, J. H. (1953). Acta Cryst. 6, 720-723.]; Usubaliev et al., 1992[Usubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, m203-m207.]).

[Scheme 1]

The structures of some mononuclear polymeric complexes obtained from the reactions of transition metal(II) ions with nicotinamide (NA) and/or some benzoic acid derivatives as ligands have been determined, e.g. {Mn(C11H14NO2)2(H2O)3·2H2O}n [(II); Hökelek et al., 2009[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m747-m748.])], [Mn(C7H4FO2)2(H2O)]n [(III); Necefoğlu et al., 2011[Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m1003-m1004.])], {[Pb(C9H9O2)2(C6H6N2O)]·H2O}n [(IV); Hökelek et al., 2011[Hökelek, T., Tercan, B., Şahin, E., Aktaş, V. & Necefoğlu, H. (2011). Acta Cryst. E67, m1057-m1058.])], {[Pb(C7H5O3)2(C6H6N2O)]H2O}n [(V); Zaman et al., 2012[Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m257-m258.])] and {[Zn(C7H4ClO2)2(H2O)]}n [(VI); Bozkurt et al., 2013[Bozkurt, N., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m381-m382.])], where the transition metal(II) cations are bridged by water mol­ecules in (II), 4-fluoro­benzoate anions in (III), nicotinamide ligands in (IV), 3-hy­droxy­benzoate anions in (V) and 3-chloro­benzoate anions in (VI). The synthesis and structure determination of the title compound, (I)[link], a one-dimensional polymeric cobalt(II) complex with two 2,4,6-tri­methyl­benzoate (TMB) ligands and four coordinating and two non-coordinating water mol­ecules, was undertaken in order to compare the results obtained with those reported previously. Its crystal structure is reported herein.

2. Structural commentary

The asymmetric unit of the title one-dimensional polymeric compound, (I)[link], contains one CoII cation situated on a centre of inversion, one-half of a coordinating water mol­ecule, one 2,4,6-tri­methyl­benzoate (TMB) anion together with the one coordinating and one non-coordinating water mol­ecules; the TMB anion acts as a monodentate ligand (Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit of the title mol­ecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The CoII atom is coordinated by two TMB anions and two water mol­ecules in the basal plane while another water mol­ecule bridges the CoII atoms in the axial directions, resulting in a slightly distorted octa­hedral coordination sphere around each Co2+ cation, and forming polymeric chains (Fig. 2[link]) running along [001] (Figs. 3[link] and 4[link]). The cobalt cation is formally Co2+ within the structure, in line with the presence of bridging water molecules rather than bridging hydroxide groups. This is confirmed by softness-sensitive BVS calculations (Adams, 2001[Adams, St. (2001). Acta Cryst. B57, 278-287.]), which identify the BVS for the Co atom to be 2.05 (5).

[Figure 2]
Figure 2
Partial view of the polymeric chain of the title compound. H atoms of the 2,4,6-tri­methyl­benzoate (TMB) anions have been omitted for clarity.
[Figure 3]
Figure 3
A partial packing diagram of the title one-dimensional polymeric compound in a view approximately along the b axis, where the c axis is horizontal and the a axis is vertical. H atoms have been omitted for clarity.
[Figure 4]
Figure 4
View of the hydrogen bonding and packing of the title one-dimensional polymeric compound along the c axis. H atoms not involved in classical hydrogen bonds have been omitted for clarity.

The two carboxyl­ate O atoms (O1 and O1i) of the two symmetry-related TMB anions and the two symmetry-related water O atoms (O3 and O3i) around the CoII cation form a slightly distorted square-planar arrangement with an average Co1—O bond length of 2.058 (2) Å. The slightly distorted octa­hedral coordination is completed by the symmetry-related bridging O atoms (O4 and O4i) with a Co1—O4 bond length of 2.2060 (11) Å in the axial directions (Fig. 2[link]) [symmetry code: (i) 1 − x, 1 − y, 1 − z]. The Co—O bond lengths are in the range of 2.041 (2)–2.2060 (11) Å. Among the Co—O coordinations the Co1—O3 bond [2.041 (2) Å] is the shortest and the Co1—O4 bond [2.2060 (11) Å] is the longest, probably as a result of the bidentate bridging coordination of O4 with a very wide Co1—O4—Co1ii bond angle of 132.95 (13)° [symmetry code: (ii) 1 − x, y, [{1\over 2}] − z]. The Co1 atom lies 0.2077 (1) Å above the carboxyl­ate (O1/O2/C1) group, which makes a dihedral angle of 84.9 (2)° with the adjacent benzene (C2–C7) ring.

Neighboring CoII atoms are bridged by H2O mol­ecules (Fig. 2[link]) and they are also coordinated by monodentate carboxyl­ate groups. The non-coordinating oxygen atoms of the carboxyl­ate groups inter­act with the bridging water mol­ecules via short hydrogen bonds (Table 1[link] and Fig. 5[link]), increasing the Lewis basicity of the bridging water mol­ecules by attracting the protons of the water mol­ecules to the oxygen atoms of the carboxyl­ate groups. Intra­molecular O—HbrdW⋯Oc and inter­molecular O—HcoordW⋯Oc (brdW = bridging water, coordW = coordinating water and c = carboxyl­ate) hydrogen bonds (Table 1[link]) link the bridging and coordinating water mol­ecules to the carboxyl­ate oxygen atoms, enclosing S(6) ring motifs (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O1i 0.80 (2) 1.90 (2) 2.697 (3) 170 (5)
O3—H32⋯O5 0.82 (3) 1.91 (3) 2.724 (5) 174 (3)
O4—H41⋯O2ii 0.83 (3) 1.82 (3) 2.622 (3) 164 (4)
O5—H52⋯O2iii 0.82 (3) 1.98 (4) 2.726 (4) 151 (6)
C10—H10C⋯O5iv 0.96 2.59 3.466 (7) 152
C6—H6⋯Cg1v 0.93 3.28 4.063 (4) 143
C9—H9ACg1v 0.96 3.40 3.961 (7) 120
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z-{\script{1\over 2}}].
[Figure 5]
Figure 5
Part of the crystal structure. Intra­molecular and inter­molecular O—H⋯O hydrogen bonds, enclosing S(6), R22(8) and R33(8) ring motifs, are shown as dashed lines. H atoms not involved in classical hydrogen bonds have been omitted for clarity.

3. Supra­molecular features

In the crystal, O—HcoordW ⋯ Oc and O—HcoordW⋯OnoncoordW, O—HnoncoordW⋯Oc, O—HbrdW⋯Oc (noncoordW = non-coordinating water) hydrogen bonds (Table 1[link]) link the mol­ecules, enclosing R22(8) and R33(8) ring motifs, respectively (Fig. 5[link]). O—H⋯O hydrogen bonds (Table 1[link]) also link the hydrogen-bonded polymeric chains running along [001] into networks parallel to (011) (Fig. 4[link]). The crystal structure is further stabilized by weak C—H⋯O and C—H⋯π inter­actions (Table 1[link]).

4. Comparison with related structures

In the crystal structure of a similar complex, catena-poly[[[di­aqua­bis­[4-(di­ethyl­amino)­benzoato-κO1]mang­anese(II)]-μ-aqua]­dihydrate], {[Mn(C11H14NO2)2(H2O)3]·2(H2O)}n, (II), (Hökelek et al., 2009[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m747-m748.]), the two independent MnII atoms are located on a centre of symmetry and are coordinated by two 4-(di­ethyl­amino)­benzoate (DEAB) anions and two water mol­ecules in the basal plane, while another water mol­ecule bridges the Mn atoms in the axial directions, forming polymeric chains as in the title compound, (I)[link]. In (II), the Mn—O bond lengths are in the range 2.1071 (14)–2.2725 (13) Å. The Mn—O bond lengths [2.2725 (13) and 2.2594 (13) Å] for the bridging water mol­ecule are the longest with an Mn—O—Mn bond angle of 128.35 (6)°.

In the crystal structure of catena-[bis­(μ2-aqua)­tetra­aqua­tetra­kis­(2,4,6-tri­methyl­benzoato-O)dinickel(II) tetra­hydrate, {[Ni(C10H11O2)2(H2O)3]·2H2O}n, [(VII; Indrani et al., 2009[Indrani, M., Ramasubramanian, R., Fronczek, F. R., Vasanthacharya, N. Y. & Kumaresan, S. (2009). J. Mol. Struct. 931, 35-44.])], the two independent NiII atoms are located on a centre of symmetry and are coordinated by two 2,4,6-tri­methyl­benzoate (TMB) anions and two water mol­ecules in the basal plane, while another water mol­ecule bridges the Ni atoms in the axial directions, forming polymeric chains as in the title compound, (I)[link]. In (VII), the Ni—O bond lengths are in the range 2.0337 (15)–2.1316 (13) Å. The Ni—O bond lengths [2.1316 (13) and 2.1299 (13) Å] for the bridging water mol­ecule are the longest with an Ni—O—Ni bond angle of 134.65 (7)°.

We also solved the crystal structure of catena-poly[[[di­aqua­bis­(2,4,6-tri­methyl­benzoato-κO1)manganese(II)], {[Mn(C10H11O2)2(H2O)3]·2H2O}n, (VIII), which had previously been reported by Chen et al. (2007[Chen, M. S., Hu, J. R., deng, Y. F., Kuang, D. Z., Zhang, C. H., Feng, Y. L. & Peng, Y. L. (2007). Chin. J. Inorg. Chem. 23, 145-148.]). In (VIII), the MnII atom and the bridging water O atom are located on a centre of symmetry and the MnII atom is coordinated by two 2,4,6-tri­methyl­benzoate (TMB) anions and two water mol­ecules in the basal plane, while another water mol­ecule bridges the MnII cations in the axial directions, forming polymeric chains as in the title compound, (I)[link]. The Mn—O bond lengths are in the range 2.1409 (15)–2.2734 (7) Å. The Mn—O bond length [2.2734 (7) Å] for the bridging water mol­ecule is the longest with an Mn—O—Mn bond angle of 128.41 (8)°.

In the title compound, (I)[link], the near equalities of the C1—O1 [1.259 (4) Å] and C1—O2 [1.246 (4) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The O2—C1—O1 bond angle [124.5 (3)°] is increased slightly compared to the free acid [122.2°] due to the coordination of oxygen atom (O1) to the metal atom. The O2—C1—O1 bond angle may be compared with the corresponding values of 121.96 (18) and 122.35 (18)° in (II), 124.0 (2)° in (III), 120.6 (6) and 121.3 (7)° in (IV), 121.7 (2) and 121.9 (3)° in (V), 123.47 (14)° in (VI), 124.29 (18) and 124.33 (18)° in (VII) and 124.02 (16)° in (VIII). The benzoate ions coordinate to the metal atoms in a monodentate fashion in (II), (III), (VI), (VII) and (VIII), and they are bidentate in (IV) and (V).

The Co1⋯Co1ii distance [4.045 (15) Å] across the chain (Fig. 2[link]) and the Co1—O4—Co1ii bond angle [132.95 (13)°] in (I)[link] may be compared with the corresponding values of 4.079 (4) Å and 128.35 (6)° in (II), 4.951 (3) Å in (III), 9.795 (4) Å in (IV), 7.363 (4) Å in (V), 4.3798 (3) Å in (VI), 3.932 Å and 134.65 (7)° in (VII) and 4.049 (15) Å and 128.41 (8)° in (VIII). According to these results, when the transition metal(II) atoms are bridged by the water mol­ecules the M—ObrdWM (M = transition metal and brdW = bridging water) bond angles increase, while the M—ObrdW bond lengths decrease with increasing atomic number, Z, of the transition metal(II) atoms and the MM distances across the polymeric chains are almost the same, independent of the type of anion coordinating to the metal(II) atoms.

5. Synthesis and crystallization

The title compound was prepared by the reaction of CoSO4·7H2O (0.70 g, 2.5 mmol) with sodium 2,4,6-tri­methyl­benzoate (0.93 g, 5 mmol) in H2O (150 ml) at room temperature. The mixture was set aside to crystallize at ambient temperature for eight weeks, giving pink single crystals (yield: 0.96 g, 81%). FT–IR: 3630, 3405, 3209, 2286, 2069, 1612, 1535, 1446, 1400, 1181, 1114, 1031, 893, 857, 827, 758, 690, 615, 570, 490, 478, 401.

6. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2[link]. H atoms of water mol­ecules were located in difference-Fourier maps and refined with distance and angle restraints (SIMU, DELU and ISOR restraints in SHELXL). Bond lengths and angles for water mol­ecules are: O3—H31 = 0.806 (19), O3—H32 = 0.818 (18), O4—H41 = 0.827 (18), O5—H51 = 0.812 (10), O5—H52 = 0.820 (10) Å and H31—O3—H32 = 107 (4) and H51—O5—H52 = 107 (4)° The C-bound H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for aromatic H atoms. The maximum and minimum electron densities were found 0.89 Å and 0.82 Å from Co1. The high residual electron density value of 2.178 e Å−1 may be due to the poor quality of the crystal.

Table 2
Experimental details

Crystal data
Chemical formula [Co(C10H11O2)2(H2O)3]·2H2O
Mr 475.39
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 29.5261 (5), 10.1413 (2), 8.0906 (2)
β (°) 91.894 (4)
V3) 2421.27 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.75
Crystal size (mm) 0.35 × 0.29 × 0.20
 
Data collection
Diffractometer Bruker SMART BREEZE CCD diffractometer
Absorption correction Multi-scan SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]
Tmin, Tmax 0.779, 0.864
No. of measured, independent and observed [I > 2σ(I)] reflections 25445, 2957, 2448
Rint 0.058
(sin θ/λ)max−1) 0.664
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.166, 1.09
No. of reflections 2957
No. of parameters 161
No. of restraints 74
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.18, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2009).

catena-Poly[[[diaquabis(2,4,6-trimethylbenzoato-κO)cobalt(II)]-µ-aqua-κ2O:O] dihydrate] top
Crystal data top
[Co(C10H11O2)2(H2O)3]·2H2OF(000) = 1004
Mr = 475.39Dx = 1.304 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9882 reflections
a = 29.5261 (5) Åθ = 2.8–28.1°
b = 10.1413 (2) ŵ = 0.75 mm1
c = 8.0906 (2) ÅT = 296 K
β = 91.894 (4)°Block, translucent light pink
V = 2421.27 (9) Å30.35 × 0.29 × 0.20 mm
Z = 4
Data collection top
Bruker SMART BREEZE CCD
diffractometer
2957 independent reflections
Radiation source: fine-focus sealed tube2448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 28.2°, θmin = 1.4°
Absorption correction: multi-scan
SADABS; Bruker, 2012
h = 3839
Tmin = 0.779, Tmax = 0.864k = 1213
25445 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0725P)2 + 9.9721P]
where P = (Fo2 + 2Fc2)/3
2957 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 2.18 e Å3
74 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.02399 (18)
O10.55057 (8)0.6264 (2)0.4251 (3)0.0409 (6)
O20.57111 (9)0.7216 (3)0.6626 (3)0.0503 (7)
O30.45248 (10)0.6292 (3)0.4084 (3)0.0492 (7)
H310.4484 (17)0.625 (6)0.310 (2)0.086 (17)*
H320.4289 (10)0.656 (4)0.446 (5)0.057 (13)*
O40.50000.4132 (3)0.25000.0274 (6)
H410.5249 (8)0.378 (4)0.237 (5)0.048 (10)*
O50.37711 (14)0.7250 (4)0.5521 (4)0.0768 (10)
H510.3607 (18)0.785 (4)0.522 (7)0.103 (15)*
H520.385 (2)0.740 (6)0.649 (3)0.100 (15)*
C10.57564 (11)0.7012 (3)0.5121 (4)0.0348 (6)
C20.61375 (11)0.7694 (3)0.4254 (4)0.0366 (7)
C30.65665 (13)0.7129 (4)0.4284 (5)0.0509 (9)
C40.69080 (15)0.7756 (5)0.3429 (6)0.0625 (11)
H40.71960.73860.34390.075*
C50.68271 (16)0.8917 (5)0.2564 (5)0.0647 (12)
C60.64030 (15)0.9461 (4)0.2567 (5)0.0567 (11)
H60.63491.02450.19970.068*
C70.60467 (13)0.8874 (4)0.3403 (4)0.0450 (8)
C80.55866 (16)0.9483 (5)0.3372 (7)0.0689 (12)
H8A0.54090.91330.24580.103*
H8B0.56141.04210.32520.103*
H8C0.54410.92860.43870.103*
C90.7209 (2)0.9563 (8)0.1634 (8)0.109 (2)
H9A0.71520.94670.04650.164*
H9B0.74910.91450.19410.164*
H9C0.72251.04820.19110.164*
C100.66644 (18)0.5874 (5)0.5233 (7)0.0777 (15)
H10A0.66290.60280.63910.117*
H10B0.69700.55970.50490.117*
H10C0.64570.51980.48600.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0380 (3)0.0218 (3)0.0124 (3)0.00099 (18)0.00338 (18)0.00010 (16)
O10.0549 (14)0.0470 (13)0.0210 (9)0.0202 (10)0.0055 (9)0.0019 (9)
O20.0670 (16)0.0616 (16)0.0227 (10)0.0243 (13)0.0073 (10)0.0082 (10)
O30.0633 (16)0.0626 (17)0.0221 (11)0.0257 (13)0.0050 (10)0.0023 (11)
O40.0375 (15)0.0275 (13)0.0175 (12)0.0000.0044 (10)0.000
O50.087 (2)0.094 (3)0.0492 (18)0.032 (2)0.0007 (16)0.0010 (18)
C10.0459 (16)0.0352 (15)0.0234 (13)0.0057 (12)0.0017 (11)0.0016 (11)
C20.0439 (16)0.0405 (16)0.0255 (13)0.0142 (13)0.0024 (11)0.0034 (12)
C30.051 (2)0.056 (2)0.046 (2)0.0079 (17)0.0059 (15)0.0018 (17)
C40.048 (2)0.084 (3)0.056 (2)0.011 (2)0.0104 (17)0.005 (2)
C50.063 (3)0.088 (3)0.043 (2)0.033 (2)0.0041 (18)0.011 (2)
C60.072 (3)0.057 (2)0.0398 (19)0.027 (2)0.0063 (17)0.0137 (17)
C70.055 (2)0.0468 (19)0.0326 (16)0.0138 (15)0.0030 (14)0.0054 (14)
C80.071 (3)0.060 (3)0.075 (3)0.002 (2)0.005 (2)0.024 (2)
C90.081 (4)0.163 (6)0.083 (4)0.057 (4)0.011 (3)0.042 (4)
C100.070 (3)0.068 (3)0.095 (4)0.015 (2)0.015 (3)0.025 (3)
Geometric parameters (Å, º) top
Co1—O12.074 (2)C3—C101.509 (6)
Co1—O1i2.074 (2)C4—C51.387 (7)
Co1—O32.041 (2)C4—H40.9300
Co1—O3i2.041 (2)C5—C91.524 (6)
Co1—O42.2060 (11)C6—C51.368 (7)
Co1—O4i2.2060 (11)C6—H60.9300
O1—C11.259 (4)C7—C61.402 (5)
O2—C11.246 (4)C7—C81.492 (6)
O3—H310.806 (19)C8—H8A0.9600
O3—H320.818 (18)C8—H8B0.9600
O4—Co1ii2.2060 (11)C8—H8C0.9600
O4—H410.827 (18)C9—H9A0.9600
O5—H510.812 (10)C9—H9B0.9600
O5—H520.820 (10)C9—H9C0.9600
C2—C11.513 (4)C10—H10A0.9600
C2—C31.390 (5)C10—H10B0.9600
C2—C71.401 (5)C10—H10C0.9600
C3—C41.395 (5)
O1—Co1—O1i180.00 (9)C4—C3—C10120.5 (4)
O1—Co1—O487.53 (7)C3—C4—H4119.3
O1i—Co1—O492.47 (7)C5—C4—C3121.5 (4)
O1—Co1—O4i92.47 (7)C5—C4—H4119.3
O1i—Co1—O4i87.53 (7)C4—C5—C9119.7 (5)
O3—Co1—O189.44 (11)C6—C5—C4118.9 (4)
O3i—Co1—O190.56 (11)C6—C5—C9121.4 (5)
O3—Co1—O1i90.56 (11)C5—C6—C7122.1 (4)
O3i—Co1—O1i89.44 (11)C5—C6—H6119.0
O3i—Co1—O3180.00 (12)C7—C6—H6119.0
O3—Co1—O486.80 (8)C2—C7—C6117.7 (4)
O3i—Co1—O493.20 (8)C2—C7—C8121.4 (3)
O3—Co1—O4i93.20 (8)C6—C7—C8120.9 (4)
O3i—Co1—O4i86.80 (8)C7—C8—H8A109.5
O4i—Co1—O4180.0C7—C8—H8B109.5
C1—O1—Co1128.67 (19)C7—C8—H8C109.5
Co1—O3—H32131 (3)H8A—C8—H8B109.5
Co1—O3—H31114 (4)H8A—C8—H8C109.5
H32—O3—H31107 (4)H8B—C8—H8C109.5
Co1—O4—Co1ii132.95 (13)C5—C9—H9A109.5
Co1—O4—H41108 (3)C5—C9—H9B109.5
Co1ii—O4—H4192 (3)C5—C9—H9C109.5
H51—O5—H52107 (4)H9A—C9—H9B109.5
O1—C1—C2116.7 (3)H9A—C9—H9C109.5
O2—C1—O1124.5 (3)H9B—C9—H9C109.5
O2—C1—C2118.9 (3)C3—C10—H10A109.5
C3—C2—C1119.7 (3)C3—C10—H10B109.5
C3—C2—C7121.3 (3)C3—C10—H10C109.5
C7—C2—C1119.0 (3)H10A—C10—H10B109.5
C2—C3—C4118.5 (4)H10A—C10—H10C109.5
C2—C3—C10121.1 (4)H10B—C10—H10C109.5
O3—Co1—O1—C1105.4 (3)C1—C2—C3—C102.7 (6)
O3i—Co1—O1—C174.6 (3)C7—C2—C3—C40.7 (6)
O4—Co1—O1—C1167.8 (3)C7—C2—C3—C10178.7 (4)
O4i—Co1—O1—C112.2 (3)C1—C2—C7—C6178.0 (3)
O1—Co1—O4—Co1ii46.09 (7)C1—C2—C7—C81.5 (5)
O1i—Co1—O4—Co1ii133.91 (7)C3—C2—C7—C60.6 (5)
O3—Co1—O4—Co1ii43.49 (9)C3—C2—C7—C8179.9 (4)
O3i—Co1—O4—Co1ii136.51 (9)C2—C3—C4—C50.1 (7)
Co1—O1—C1—O27.3 (5)C10—C3—C4—C5179.3 (5)
Co1—O1—C1—C2172.4 (2)C3—C4—C5—C60.6 (7)
C3—C2—C1—O194.3 (4)C3—C4—C5—C9179.5 (5)
C3—C2—C1—O285.4 (4)C7—C6—C5—C40.7 (7)
C7—C2—C1—O184.4 (4)C7—C6—C5—C9179.4 (5)
C7—C2—C1—O295.9 (4)C2—C7—C6—C50.1 (6)
C1—C2—C3—C4177.9 (3)C8—C7—C6—C5179.4 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O3—H31···O1ii0.80 (2)1.90 (2)2.697 (3)170 (5)
O3—H32···O50.82 (3)1.91 (3)2.724 (5)174 (3)
O4—H41···O2iii0.83 (3)1.82 (3)2.622 (3)164 (4)
O5—H52···O2iv0.82 (3)1.98 (4)2.726 (4)151 (6)
C10—H10C···O5i0.962.593.466 (7)152
C6—H6···Cg1v0.933.284.063 (4)143
C9—H9A···Cg1v0.963.403.961 (7)120
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2; (iii) x, y+1, z1/2; (iv) x+1, y, z+3/2; (v) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

First citationAdams, St. (2001). Acta Cryst. B57, 278–287.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBozkurt, N., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m381–m382.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCapilla, A. V. & Aranda, R. A. (1979). Cryst. Struct. Commun. 8, 795–798.  Google Scholar
First citationCatterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, M. S., Hu, J. R., deng, Y. F., Kuang, D. Z., Zhang, C. H., Feng, Y. L. & Peng, Y. L. (2007). Chin. J. Inorg. Chem. 23, 145–148.  CAS Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1986a). Acta Cryst. C42, 919–920.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1986b). Acta Cryst. C42, 1701–1703.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1987). Acta Cryst. C43, 456–457.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984). Koord. Khim. 10, 117–122.  CAS Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m747–m748.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Tercan, B., Şahin, E., Aktaş, V. & Necefoğlu, H. (2011). Acta Cryst. E67, m1057–m1058.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIndrani, M., Ramasubramanian, R., Fronczek, F. R., Vasanthacharya, N. Y. & Kumaresan, S. (2009). J. Mol. Struct. 931, 35–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m1003–m1004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiekerk, J. N. van, Schoening, F. R. L. & Talbot, J. H. (1953). Acta Cryst. 6, 720–723.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, m203–m207.  Google Scholar
First citationZaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m257–m258.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds