research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three N-(3-acetyl­phen­yl)quinoline-2-carboxamides

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación en Macromoléculas, Departamento de Química, Universidad, Nacional de Colombia-Sede Bogotá, Carrera 45 # 26-85, A.A. 5997, Bogotá, Colombia, and bInstitute of Organic Chemistry, University of Regensburg, 93040-Regensburg, Germany
*Correspondence e-mail: cochoapu@unal.edu.co

Edited by A. J. Lough, University of Toronto, Canada (Received 28 February 2017; accepted 25 April 2017; online 5 May 2017)

In the title compounds, N-(5-acetyl-2-methyl­phen­yl)quinoline-2-carboxamide [C19H16N2O2, (I)], N-(5-acetyl-2-bromo­phen­yl)quinoline-2-carboxamide [C18H13BrN2O2, (II)] and N-(5-acetyl-2-ethynylphen­yl)quinoline-2-carboxamide [C20H14N2O2, (III)], the quinoline ring system is essentially planar and forms a dihedral angles of 3.68 (5) (I), 5.59 (7) (II) and 1.87 (6)° (III) with the acetyl-substituted ring. The mol­ecular structures of (I) and (III) each feature an intra­molecular N—H⋯N hydrogen bond, forming an S(5) ring, while in (II) an intra­molecular bifurcated N—H⋯(N,Br) hydrogen bond forms two S(5) rings. In the crystals, weak C—H⋯O hydrogen bonds link mol­ecules of (I) into C(7) chains long [010], mol­ecules of (II) into chains of R22(8) rings along [110] and mol­ecules of (III) into C(8) chains along [010]. In (I), there are no significant ππ stacking inter­actions under 4 Å, but in both (II) and (III), ππ inter­actions link the weak hydrogen-bonded chains into layers parallel to (001) [centroid–centroid disttances of 3.748 (1) Å in (II) and 3.577 (1), 3.784 (1) and 3.780 (1) Å in (III)].

1. Chemical context

Amino­aceto­phenones, quinolines and carboxamides have been reported to possess many inter­esting pharmacological activities and they are characteristic components of a large number of biologically active compounds. The wide spectrum of biological effects of these kind of compounds includes anti­microbial (Nawar & Hosny, 2000[Nawar, N. & Hosny, N. (2000). Transition Met. Chem. 25, 1-8.]), anti­convulsant (Pandeya et al., 1998[Pandeya, S., Mishra, V., Singh, P. & Rupainwar, D. (1998). Pharmacol. Res. 37, 17-22.]), cytotoxic (Zhao et al., 2005[Zhao, Y.-L., Chen, Y.-L., Chang, F.-S. & Tzeng, C.-C. (2005). Eur. J. Med. Chem. 40, 792-797.]), anti-malarial (Egan et al., 1994[Egan, T., Ross, D. & Adams, P. (1994). FEBS J. 352, 54-57.]), anti­proliferative (Chen et al., 2006[Chen, Y. L., Huang, C. J., Huang, C.-J., Tseng, C. H., Chang, F. S., Yang, S. H., Lin, S. R. & Tzeng, C. C. (2006). Bioorg. Med. Chem. 14, 3098-3105.]), anti­tuberculosis/anti­mycobacterial (Gonec et al., 2012[Gonec, T., Bobal, P., Sujan, J., Pesko, M., Guo, J., Kralova, K., Pavlacka, L., Vesely, L., Kreckova, E., Kos, J., Coffey, A., Kollar, P., Imramovsky, A., Placek, L. & Jampilek, J. (2012). Molecules, 17, 613-644.]) activities, radioligands (Matarrese et al., 2001[Matarrese, M., Moresco, R. M., Cappelli, A., Anzini, M., Vomero, S., Simonelli, P., Verza, E., Magni, F., Sudati, F., Soloviev, D., Todde, S., Carpinelli, A., Kienle, M. G. & Fazio, F. (2001). J. Med. Chem. 44, 579-585.], Belloli et al., 2004[Belloli, S., Moresco, R. M., Matarrese, M., Biella, G., Sanvito, F., Simonelli, P., Turolla, E., Olivieri, S., Cappelli, A., Vomero, S., Galli-Kienle, M. & Fazio, F. (2004). Neurochem. Int. 44, 433-440.]), calpain inhibitors (Nam et al., 2008[Nam, D. H., Lee, K. S., Kim, S. H., Kim, S., Jung, S. Y., Chung, S. H., Kim, H. J., Kim, H., Jin, C. & Lee, Y. S. (2008). Bioorg. Med. Chem. Lett. 18, 205-209.]), TPSO ligand (Blair et al., 2013[Blair, A., Stevenson, L., Dewar, D., Pimlott, S. L. & Sutherland, A. (2013). Med. Chem. Commun. 4, 1461-1466.]) and pharmaceutical medicaments (Weidmann et al., 2008[Weidmann, K., Baringhaus, K., Tschank, G. & Bickel, M. (2008). US Patent US005719164A.]), among others.

2. Structural commentary

The mol­ecular structure of title compounds (I)[link], (II)[link] and (III)[link] are shown in Figs. 1[link], 2[link] and 3[link], respectively. The quinoline ring system [C1–C9/N1 in (I)[link], C2–C10/N1 in (II)[link] and C12–C20/N2 in (III)] in each compound is essentially planar with maximum deviations of 0.015 (1) Å for C3 in (I)[link], 0.017 (2) Å for C3 in (II)[link] and 0.013 (2) Å for C17 in (III)[link]. The quinoline ring system forms dihedral angles of 3.68 (5)° (I)[link], 5.59 (7)° (II)[link] and 1.87 (6)° (III)[link] with the acetyl-substituted ring [C11–C16 in (I)[link] and (II)[link], C3–C8 in (III)]. In the mol­ecular structures of (I)[link] and (III)[link], an intra­molecular N—H⋯N hydrogen bond forms an S(5) ring while in (II)[link] an intra­molecular bifurcated N—H⋯(N,Br) hydrogen bond forms two S(5) rings (Tables 1[link]–3[link][link]).

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.86 2.15 2.619 (2) 114
C17—H17⋯O1i 0.96 2.49 3.424 (2) 164
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.86 2.19 2.629 (2) 112
C3—H3⋯O1i 0.93 2.55 3.410 (2) 154
C18—H18⋯O2ii 0.96 2.49 3.444 (2) 171
N2—H2⋯Br1 0.86 2.58 3.081 (1) 118
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+3, -y, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2 0.86 2.23 2.666 (2) 111
C10—H10⋯O2i 0.93 2.36 3.103 (2) 136
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of (III)[link], with the-atom numbering scheme and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystals, weak C—H⋯O hydrogen bonds link mol­ecules of (I)[link] into C(7) chains along [010] (Fig. 4[link]), mol­ecules of (II)[link] into chains of R22(8) rings along [110] (Fig. 5[link]) and mol­ecules of (III)[link] into C(8) chains along [010] (Fig. 6[link]). In (I)[link], there are no significant ππ stacking inter­actions under 4 Å but in (II)[link] ππ inter­actions link the weak hydrogen-bonded chains into layers parallel to (001) [centroid–centroid distance Cg1⋯Cg2(1 + x, y, z) = 3.748 (1) Å; Cg1 and Cg2 are the centroids of the C5–C10 and N1/C2–C6 rings, respectively]. In (III)[link], ππ inter­actions link the weak hydrogen-bonded chains into layers parallel to (001) with centroid–centroid distances Cg3⋯Cg4(−1 + x, −1 + y, −1 + z) = 3.577 (1), Cg4⋯Cg5(−x + 1, −y + 1, −z + 1) 3.784 (1) and Cg4⋯Cg5(−x + 2, −y + 1, −z + 1) = 3.780 (1) Å; Cg3, Cg4, and Cg5 are the centroids of the N2/C12–C16, C3–C8 and C15–C20 rings, respectively].

[Figure 4]
Figure 4
Part of the crystal structure of (I)[link], with inter­molecular and intra­molecular hydrogen bonds shown as black dotted lines. Only H atoms involved in hydrogen bonds are shown.
[Figure 5]
Figure 5
Part of the crystal structure of (II)[link], with inter­molecular and intra­molecular hydrogen bonds shown as black dotted lines. Only H atoms involved in hydrogen bonds are shown.
[Figure 6]
Figure 6
Part of the crystal structure of (III)[link], with inter­molecular and intra­molecular hydrogen bonds shown as black dotted lines. Only H atoms involved in hydrogen bonds are shown.

4. Database survey

A search of the Cambridge Structural Database (Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Version 1.18, April 2016) for similar compounds with an N-phenyl­quinoline-2-carboxamide skeleton resulted in twelve hits. One entry for the compound without substituents is reported (Jing & Qin, 2007[Jing, L.-H. & Qin, D.-B. (2007). Acta Cryst. E63, o4417.]). Eight are structures substituted in the 4-position of the phenyl group: one meth­oxy group (Qi et al., 2003[Qi, J. Y., Qiu, L. Q., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o102-o103.]) and another a nitro group (Jing & Qin, 2008[Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. New Cryst. Struct. 223, 37-38.]); one chlorine and one fluorine (Khavasi et al., 2014[Khavasi, H., Ghanbarpour, A. & Tehrani, A. (2014). CrystEngComm, 16, 749-752.]), and two reports each for bromine (Bobal et al., 2012[Bobal, P., Sujan, J., Otevrel, J., Imramovsky, A., Padelkova, Z. & Jampilek, J. (2012). Molecules, 17, 1292-1306.]; Khavasi et al., 2014[Khavasi, H., Ghanbarpour, A. & Tehrani, A. (2014). CrystEngComm, 16, 749-752.]) and iodine (Qi et al., 2003[Qi, J. Y., Qiu, L. Q., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o102-o103.]; Khavasi et al., 2014[Khavasi, H., Ghanbarpour, A. & Tehrani, A. (2014). CrystEngComm, 16, 749-752.]). The rest have large organic substituents.

5. Synthesis and crystallization

Compounds (I)–(III) were prepared by refluxing a mixture of quinaldic acid, tri­ethyl­amine, p-toluene­sulfonyl chloride and the corresponding substituted amino­aceto­phenones (1ac) for 24 h in DCM (Fig. 7[link]). Acetic acid 5% was added to quench the reaction, and the organic phase was washed three times with water. After evaporation of DCM, the compounds were purified by silica column chromatography (penta­ne:ethyl acetate 2:1). Single crystals were obtained by slow evaporation of the respective solutions of the compounds in di­chloro­methane into a closed flask with petroleum ether.

[Figure 7]
Figure 7
The reaction scheme for the synthesis of the title compounds

N-(5-acetyl-2-methyl­phen­yl)quinoline-2-carboxamide (I)[link]: Light-yellow solid (0.700 g, yield quant, Rf PE/EA 2:1 0.52). 1H NMR (400 MHz, CDCl3): δ 8.95 (d, 3J = 7.7 Hz, 1H, quinol), 8.40 (s, 2H, ArH quinol), 8.17 (d, 3J = 8.5 Hz, 1H, ArH), 7.93 (d, 3J = 9.0 Hz, 1H, quinol), 7.82 (ddd, 3J = 8.4, 3J = 6.9 Hz, 1H, quinol), 7.73 (dd, 3J = 7.9, 1H, ArH), 7.67 (ddd, 3J = 8.1, 3J = 6.9 Hz, 1H, quinol), 7.35 (d, 3J = 7.9 Hz, 1H, quinol), 2.65 (s, 3H, CH3), 2.55 (s, 3H, COCH3). 13C NMR (100 MHz, CDCl3): δ 197.8 (Cquat), 162.2 (Cquat), 149.5 (Cquat), 146.2 (Cquat), 138.0 (Cquat), 136.2 (Cquat), 133.5 (Cquat), 130.7 (Cquat), 130.4 (+), 129.8 (+), 129.5 (+), 128.3 (+), 127.8 (+), 124.1 (+), 121.5 (+), 118.6 (+), 26.7 (+), 18.0 (+).

N-(5-acetyl-2-bromo­phen­yl)quinoline-2-carboxamide (II)[link]: Yellow solid (0.700 g, yield quant, Rf PE/EA 2:1 0.60). 1H NMR (400 MHz, CDCl3): δ 9.32 (s, 1H), 8.40 (d, 3J = 3.0 Hz, 2H), 8.23 (d, 3J = 8.5 Hz, 1H), 7.94 (d, 3J = 8.8 Hz, 1H), 7.83 (t, 3J = 7.0 Hz, 1H), 7.69 (m, 3H), 2.68 (s, 3H, COCH3). 13C NMR (100 MHz, CDCl3): δ 197.3 (Cquat), 162.6 (Cquat), 149.1 (Cquat), 146.3 (Cquat), 138.2 (Cquat), 137.2 (Cquat), 136.3 (Cquat), 132.8 (+), 130.6 (+), 130.5 (+), 130.6 (+), 128.5 (+), 127.8 (+), 124.1 (+), 121.1 (+), 118.9 (+), 118.5 (+), 26.7 (+).

N-(5-acetyl-2-ethynylphen­yl)quinoline-2-carboxamide (III)[link]: Light-brown solid (0.700 g, yield quant, Rf PE/EA 2:1 0.20). 1H NMR (400 MHz, CDCl3): δ 9.36 (d, 3J = 1.6 Hz, 1H), 8.40 (s, 2H), 8.15 (d, 3J = 8.5 Hz, 1H), 7.94 (d, 3J = 8.2 Hz, 1H), 7.82 (dd, 3J = 11.2, 4.2 Hz, 1H), 7.73 (dd, 3J = 8.1, 3J = 1.7 Hz, 1H), 7.71 (m, 1H), 7.63 (d, J = 8.1 Hz, 1H), 3.87 (s, 1H, CCH), 2.70 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ = 197.6 (Cquat), 162.8 (Cquat), 149.2 (Cquat), 146.3 (Cquat), 140.1 (Cquat), 138.0 (Cquat), 132.5 (+), 130.4 (+), 129.9 (+), 129.5 (+), 128.4 (+), 127.8 (+), 122.6 (+), 119.1 (+), 118.6 (+), 115.7 (+), 87.1 (Cquat), 79.0 (+), 26.8 (+).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen-atom positions were calculated geometrically and refined using the riding model. N–H = 0.86 Å, C—H = 0.96 Å for methyl H atoms and 0.93 Å for all other; Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmeth­yl).

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C19H16N2O2 C18H13BrN2O2 C20H14N2O2
Mr 304.34 369.21 314.33
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 123 123 123
a, b, c (Å) 4.5787 (2), 14.7986 (7), 22.3732 (12) 4.29848 (12), 11.6353 (3), 15.5888 (4) 7.3075 (6), 8.2605 (4), 13.8196 (9)
α, β, γ (°) 90, 92.130 (5), 90 103.788 (2), 95.515 (2), 96.195 (2) 92.734 (5), 100.608 (6), 108.989 (6)
V3) 1514.93 (12) 746.76 (3) 770.11 (10)
Z 4 2 2
Radiation type Cu Kα Cu Kα Mo Kα
μ (mm−1) 0.71 3.85 0.09
Crystal size (mm) 0.33 × 0.12 × 0.07 0.65 × 0.10 × 0.06 0.19 × 0.08 × 0.05
 
Data collection
Diffractometer Agilent TitanS2 GV1000 Agilent TitanS2 GV1000 Agilent SuperNova Single source at offset, Eos
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigasku Oxford Diffraction, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Gaussian [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigasku Oxford Diffraction, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigasku Oxford Diffraction, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.869, 0.958 0.540, 0.900 0.987, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 6056, 2935, 2562 12899, 2966, 2870 20693, 5173, 3687
Rint 0.020 0.033 0.060
(sin θ/λ)max−1) 0.625 0.622 0.753
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.04 0.024, 0.065, 1.05 0.056, 0.151, 1.04
No. of reflections 2935 2966 5173
No. of parameters 210 210 218
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.21 0.48, −0.65 0.42, −0.26
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigasku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all compounds, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) N-(5-Acetyl-2-methylphenyl)quinoline-2-carboxamide top
Crystal data top
C19H16N2O2F(000) = 640
Mr = 304.34Dx = 1.334 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 4.5787 (2) ÅCell parameters from 3477 reflections
b = 14.7986 (7) Åθ = 6.0–74.2°
c = 22.3732 (12) ŵ = 0.71 mm1
β = 92.130 (5)°T = 123 K
V = 1514.93 (12) Å3Block, dark gray
Z = 40.33 × 0.12 × 0.07 mm
Data collection top
Agilent TitanS2 GV1000
diffractometer
2935 independent reflections
Radiation source: gradient vaccum rotating-anode X-ray tube, GV1000 (Cu) X-ray Source2562 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 4.1818 pixels mm-1θmax = 74.4°, θmin = 3.6°
ω scansh = 55
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1817
Tmin = 0.869, Tmax = 0.958l = 2721
6056 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.2546P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2935 reflectionsΔρmax = 0.20 e Å3
210 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59998 (18)0.50983 (6)0.24602 (4)0.0250 (2)
O21.4993 (2)0.62002 (8)0.05885 (5)0.0410 (3)
N20.7067 (2)0.65842 (7)0.26763 (5)0.0217 (2)
H20.66280.70010.29250.026*
N10.3450 (2)0.65936 (7)0.35561 (5)0.0223 (2)
C100.5705 (2)0.57873 (8)0.27553 (5)0.0197 (2)
C90.3690 (2)0.58150 (8)0.32767 (5)0.0200 (2)
C161.0023 (2)0.62534 (8)0.18077 (5)0.0225 (3)
H160.92900.56680.17840.027*
C110.9095 (2)0.68391 (8)0.22502 (5)0.0205 (3)
C121.0191 (2)0.77271 (8)0.22953 (6)0.0223 (3)
C80.2199 (2)0.50181 (8)0.34310 (6)0.0229 (3)
H80.24440.44850.32190.028*
C151.2058 (2)0.65473 (8)0.13999 (6)0.0239 (3)
C60.1639 (2)0.66364 (9)0.40278 (5)0.0242 (3)
C170.9276 (3)0.83545 (8)0.27837 (6)0.0257 (3)
H17A0.72170.84700.27390.039*
H17B1.03290.89130.27580.039*
H17C0.97000.80800.31660.039*
C131.2190 (3)0.80052 (8)0.18796 (6)0.0252 (3)
H131.29170.85920.18990.030*
C141.3123 (3)0.74284 (9)0.14374 (6)0.0268 (3)
H141.44640.76300.11650.032*
C70.0383 (3)0.50538 (9)0.39030 (6)0.0260 (3)
H70.06190.45390.40180.031*
C50.0036 (2)0.58715 (9)0.42139 (6)0.0256 (3)
C181.3186 (3)0.59328 (9)0.09298 (6)0.0284 (3)
C10.1359 (3)0.74684 (10)0.43341 (6)0.0309 (3)
H10.24290.79690.42180.037*
C40.1839 (3)0.59647 (11)0.47008 (6)0.0337 (3)
H40.28970.54690.48300.040*
C30.2098 (3)0.67783 (12)0.49810 (6)0.0395 (4)
H30.33560.68350.52960.047*
C20.0478 (3)0.75369 (11)0.47989 (7)0.0371 (3)
H2A0.06650.80850.49970.045*
C191.2077 (4)0.49817 (10)0.08911 (8)0.0446 (4)
H19A1.29920.46730.05700.067*
H19B0.99980.49880.08180.067*
H19C1.25300.46740.12610.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (4)0.0214 (4)0.0291 (5)0.0003 (3)0.0072 (3)0.0016 (3)
O20.0414 (5)0.0441 (6)0.0388 (6)0.0028 (4)0.0208 (4)0.0001 (5)
N20.0217 (5)0.0199 (5)0.0239 (5)0.0002 (4)0.0055 (4)0.0005 (4)
N10.0195 (5)0.0248 (5)0.0226 (5)0.0028 (4)0.0008 (4)0.0000 (4)
C100.0152 (5)0.0210 (5)0.0228 (6)0.0018 (4)0.0002 (4)0.0018 (4)
C90.0163 (5)0.0233 (5)0.0202 (6)0.0018 (4)0.0006 (4)0.0015 (4)
C160.0197 (5)0.0229 (5)0.0250 (6)0.0013 (4)0.0017 (4)0.0028 (5)
C110.0159 (5)0.0229 (5)0.0226 (6)0.0009 (4)0.0008 (4)0.0050 (4)
C120.0188 (5)0.0222 (6)0.0258 (6)0.0021 (4)0.0014 (4)0.0035 (5)
C80.0201 (5)0.0246 (6)0.0240 (6)0.0003 (4)0.0007 (4)0.0011 (5)
C150.0200 (5)0.0277 (6)0.0242 (6)0.0030 (4)0.0028 (4)0.0047 (5)
C60.0197 (5)0.0316 (6)0.0210 (6)0.0051 (5)0.0010 (4)0.0006 (5)
C170.0275 (6)0.0211 (5)0.0286 (6)0.0011 (5)0.0017 (5)0.0013 (5)
C130.0217 (5)0.0228 (5)0.0312 (7)0.0023 (4)0.0002 (5)0.0072 (5)
C140.0216 (6)0.0308 (6)0.0283 (7)0.0000 (5)0.0050 (5)0.0081 (5)
C70.0201 (5)0.0322 (6)0.0256 (6)0.0028 (5)0.0008 (5)0.0050 (5)
C50.0185 (5)0.0377 (7)0.0205 (6)0.0034 (5)0.0002 (4)0.0038 (5)
C180.0246 (6)0.0340 (7)0.0268 (6)0.0034 (5)0.0057 (5)0.0039 (5)
C10.0310 (6)0.0346 (7)0.0270 (7)0.0079 (5)0.0014 (5)0.0046 (5)
C40.0243 (6)0.0522 (8)0.0249 (7)0.0045 (6)0.0047 (5)0.0061 (6)
C30.0304 (7)0.0648 (10)0.0236 (7)0.0138 (7)0.0054 (5)0.0011 (7)
C20.0360 (7)0.0479 (8)0.0273 (7)0.0147 (6)0.0015 (5)0.0097 (6)
C190.0536 (9)0.0348 (8)0.0472 (9)0.0030 (6)0.0261 (7)0.0092 (7)
Geometric parameters (Å, º) top
O1—C101.2249 (15)C17—H17A0.9600
O2—C181.2129 (17)C17—H17B0.9600
N2—H20.8600C17—H17C0.9600
N2—C101.3490 (15)C13—H130.9300
N2—C111.4068 (15)C13—C141.3861 (19)
N1—C91.3175 (15)C14—H140.9300
N1—C61.3674 (16)C7—H70.9300
C10—C91.5142 (16)C7—C51.4075 (19)
C9—C81.4120 (16)C5—C41.4188 (18)
C16—H160.9300C18—C191.498 (2)
C16—C111.3940 (17)C1—H10.9300
C16—C151.3973 (17)C1—C21.365 (2)
C11—C121.4090 (16)C4—H40.9300
C12—C171.5051 (17)C4—C31.365 (2)
C12—C131.3912 (17)C3—H30.9300
C8—H80.9300C3—C21.414 (2)
C8—C71.3694 (17)C2—H2A0.9300
C15—C141.3937 (18)C19—H19A0.9600
C15—C181.4970 (18)C19—H19B0.9600
C6—C51.4200 (18)C19—H19C0.9600
C6—C11.4172 (18)
C10—N2—H2115.0C12—C13—H13119.2
C10—N2—C11130.05 (10)C14—C13—C12121.53 (11)
C11—N2—H2115.0C14—C13—H13119.2
C9—N1—C6118.07 (10)C15—C14—H14119.9
O1—C10—N2126.59 (11)C13—C14—C15120.17 (11)
O1—C10—C9121.36 (10)C13—C14—H14119.9
N2—C10—C9112.04 (10)C8—C7—H7120.1
N1—C9—C10116.96 (10)C8—C7—C5119.81 (11)
N1—C9—C8124.38 (11)C5—C7—H7120.1
C8—C9—C10118.66 (10)C7—C5—C6118.13 (11)
C11—C16—H16120.1C7—C5—C4123.06 (12)
C11—C16—C15119.89 (11)C4—C5—C6118.81 (12)
C15—C16—H16120.1O2—C18—C15120.37 (13)
N2—C11—C12116.35 (10)O2—C18—C19120.53 (13)
C16—C11—N2122.74 (11)C15—C18—C19119.10 (11)
C16—C11—C12120.91 (11)C6—C1—H1119.9
C11—C12—C17121.28 (11)C2—C1—C6120.15 (14)
C13—C12—C11118.00 (11)C2—C1—H1119.9
C13—C12—C17120.71 (11)C5—C4—H4119.9
C9—C8—H8121.0C3—C4—C5120.25 (14)
C7—C8—C9118.00 (11)C3—C4—H4119.9
C7—C8—H8121.0C4—C3—H3119.6
C16—C15—C18121.71 (11)C4—C3—C2120.85 (13)
C14—C15—C16119.50 (12)C2—C3—H3119.6
C14—C15—C18118.77 (11)C1—C2—C3120.34 (14)
N1—C6—C5121.61 (11)C1—C2—H2A119.8
N1—C6—C1118.80 (12)C3—C2—H2A119.8
C1—C6—C5119.59 (12)C18—C19—H19A109.5
C12—C17—H17A109.5C18—C19—H19B109.5
C12—C17—H17B109.5C18—C19—H19C109.5
C12—C17—H17C109.5H19A—C19—H19B109.5
H17A—C17—H17B109.5H19A—C19—H19C109.5
H17A—C17—H17C109.5H19B—C19—H19C109.5
H17B—C17—H17C109.5
O1—C10—C9—N1178.04 (10)C11—C16—C15—C140.49 (18)
O1—C10—C9—C81.81 (16)C11—C16—C15—C18178.04 (11)
N2—C10—C9—N12.76 (14)C11—C12—C13—C140.89 (17)
N2—C10—C9—C8177.40 (10)C12—C13—C14—C150.12 (19)
N2—C11—C12—C171.36 (16)C8—C7—C5—C60.83 (17)
N2—C11—C12—C13179.66 (10)C8—C7—C5—C4178.99 (11)
N1—C9—C8—C70.09 (18)C15—C16—C11—N2179.62 (10)
N1—C6—C5—C70.80 (17)C15—C16—C11—C120.31 (17)
N1—C6—C5—C4179.03 (11)C6—N1—C9—C10179.88 (9)
N1—C6—C1—C2178.65 (12)C6—N1—C9—C80.04 (17)
C10—N2—C11—C160.95 (19)C6—C5—C4—C30.34 (18)
C10—N2—C11—C12178.39 (11)C6—C1—C2—C30.4 (2)
C10—C9—C8—C7179.93 (10)C17—C12—C13—C14178.09 (11)
C9—N1—C6—C50.41 (16)C14—C15—C18—O20.05 (19)
C9—N1—C6—C1179.89 (11)C14—C15—C18—C19179.31 (13)
C9—C8—C7—C50.49 (17)C7—C5—C4—C3179.48 (12)
C16—C11—C12—C17177.99 (11)C5—C6—C1—C21.07 (19)
C16—C11—C12—C130.99 (17)C5—C4—C3—C21.0 (2)
C16—C15—C14—C130.59 (18)C18—C15—C14—C13177.99 (11)
C16—C15—C18—O2178.60 (12)C1—C6—C5—C7179.50 (11)
C16—C15—C18—C190.76 (19)C1—C6—C5—C40.67 (17)
C11—N2—C10—O10.6 (2)C4—C3—C2—C10.6 (2)
C11—N2—C10—C9179.74 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.152.619 (2)114
C17—H17···O1i0.962.493.424 (2)164
Symmetry code: (i) x+2, y+1/2, z+1/2.
(II) N-(5-Acetyl-2-bromophenyl)quinoline-2-carboxamide top
Crystal data top
C18H13BrN2O2Z = 2
Mr = 369.21F(000) = 372
Triclinic, P1Dx = 1.642 Mg m3
a = 4.29848 (12) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.6353 (3) ÅCell parameters from 10806 reflections
c = 15.5888 (4) Åθ = 3.9–73.8°
α = 103.788 (2)°µ = 3.85 mm1
β = 95.515 (2)°T = 123 K
γ = 96.195 (2)°Plank, clear colourless
V = 746.76 (3) Å30.65 × 0.10 × 0.06 mm
Data collection top
Agilent TitanS2 GV1000
diffractometer
2966 independent reflections
Radiation source: gradient vaccum rotating-anode X-ray tube, GV1000 (Cu) X-ray Source2870 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 4.1818 pixels mm-1θmax = 73.7°, θmin = 2.9°
ω scansh = 55
Absorption correction: gaussian
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1314
Tmin = 0.540, Tmax = 0.900l = 1919
12899 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.039P)2 + 0.3702P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.48 e Å3
2966 reflectionsΔρmin = 0.65 e Å3
210 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0018 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.61589 (4)0.18439 (2)0.04683 (2)0.02135 (9)
O10.5793 (3)0.36128 (11)0.39598 (8)0.0221 (3)
O21.3517 (3)0.04850 (12)0.36241 (9)0.0289 (3)
N20.5689 (3)0.29917 (12)0.24400 (9)0.0152 (3)
H20.49490.31490.19550.018*
N10.2021 (3)0.45877 (12)0.22055 (9)0.0155 (3)
C110.7457 (4)0.20417 (15)0.23433 (11)0.0144 (3)
C10.4988 (4)0.37012 (15)0.32082 (11)0.0161 (3)
C60.0260 (4)0.54368 (15)0.20390 (11)0.0159 (3)
C151.0588 (4)0.07376 (15)0.29489 (11)0.0161 (3)
C120.7872 (4)0.13977 (15)0.14896 (11)0.0161 (3)
C20.3045 (4)0.46475 (15)0.30427 (11)0.0156 (3)
C160.8882 (4)0.16983 (15)0.30694 (11)0.0158 (3)
H160.86830.21210.36440.019*
C130.9537 (4)0.04208 (16)0.13641 (11)0.0185 (3)
H130.97420.00060.07910.022*
C30.2451 (4)0.55339 (16)0.37799 (11)0.0202 (4)
H30.32020.55280.43580.024*
C141.0880 (4)0.00874 (16)0.20912 (11)0.0183 (3)
H141.19780.05690.20100.022*
C181.2121 (4)0.11879 (17)0.46469 (11)0.0219 (4)
H18A0.99830.11740.47780.033*
H18B1.29850.19910.46660.033*
H18C1.33530.09030.50800.033*
C171.2189 (4)0.03975 (16)0.37334 (11)0.0187 (3)
C70.0919 (4)0.53725 (16)0.11481 (11)0.0190 (3)
H70.05090.47520.06920.023*
C80.2654 (4)0.62145 (17)0.09514 (12)0.0231 (4)
H80.33980.61690.03620.028*
C90.3322 (4)0.71549 (17)0.16407 (13)0.0241 (4)
H90.45090.77230.15010.029*
C40.0744 (4)0.63973 (16)0.36164 (12)0.0221 (4)
H40.03440.70000.40870.026*
C100.2242 (4)0.72361 (16)0.25081 (13)0.0220 (4)
H100.27030.78580.29550.026*
C50.0422 (4)0.63791 (15)0.27334 (12)0.0179 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03126 (13)0.02289 (13)0.01153 (11)0.00980 (8)0.00226 (7)0.00496 (8)
O10.0320 (7)0.0228 (7)0.0123 (6)0.0102 (5)0.0028 (5)0.0033 (5)
O20.0414 (8)0.0268 (7)0.0214 (6)0.0190 (6)0.0013 (6)0.0062 (5)
N20.0197 (7)0.0159 (7)0.0116 (6)0.0069 (5)0.0031 (5)0.0042 (5)
N10.0181 (6)0.0141 (7)0.0149 (6)0.0026 (5)0.0049 (5)0.0034 (5)
C110.0159 (7)0.0133 (8)0.0145 (7)0.0019 (6)0.0036 (6)0.0039 (6)
C10.0172 (7)0.0155 (8)0.0155 (8)0.0016 (6)0.0039 (6)0.0032 (6)
C60.0162 (7)0.0138 (8)0.0189 (8)0.0031 (6)0.0063 (6)0.0046 (6)
C150.0171 (7)0.0164 (8)0.0155 (8)0.0019 (6)0.0027 (6)0.0053 (6)
C120.0194 (8)0.0181 (8)0.0113 (7)0.0022 (6)0.0018 (6)0.0049 (6)
C20.0179 (7)0.0138 (8)0.0156 (8)0.0026 (6)0.0056 (6)0.0029 (6)
C160.0185 (7)0.0166 (8)0.0126 (7)0.0028 (6)0.0038 (6)0.0036 (6)
C130.0238 (8)0.0173 (9)0.0138 (8)0.0047 (7)0.0050 (6)0.0007 (6)
C30.0250 (8)0.0211 (9)0.0138 (8)0.0044 (7)0.0041 (6)0.0017 (7)
C140.0212 (8)0.0148 (8)0.0196 (8)0.0054 (6)0.0044 (7)0.0033 (7)
C180.0300 (9)0.0223 (9)0.0156 (8)0.0090 (7)0.0026 (7)0.0070 (7)
C170.0211 (8)0.0196 (9)0.0177 (8)0.0052 (7)0.0040 (6)0.0074 (7)
C70.0234 (8)0.0170 (9)0.0176 (8)0.0059 (7)0.0055 (7)0.0038 (7)
C80.0261 (9)0.0232 (10)0.0229 (9)0.0069 (7)0.0028 (7)0.0098 (7)
C90.0238 (9)0.0181 (9)0.0336 (10)0.0086 (7)0.0051 (7)0.0096 (8)
C40.0270 (9)0.0180 (9)0.0191 (8)0.0062 (7)0.0068 (7)0.0023 (7)
C100.0235 (8)0.0135 (8)0.0291 (9)0.0060 (7)0.0085 (7)0.0015 (7)
C50.0183 (8)0.0139 (8)0.0215 (8)0.0027 (6)0.0071 (6)0.0026 (7)
Geometric parameters (Å, º) top
Br1—C121.8968 (16)C13—H130.9300
O1—C11.221 (2)C13—C141.379 (2)
O2—C171.213 (2)C3—H30.9300
N2—H20.8600C3—C41.363 (3)
N2—C111.395 (2)C14—H140.9300
N2—C11.363 (2)C18—H18A0.9600
N1—C61.365 (2)C18—H18B0.9600
N1—C21.320 (2)C18—H18C0.9600
C11—C121.401 (2)C18—C171.505 (2)
C11—C161.397 (2)C7—H70.9300
C1—C21.506 (2)C7—C81.366 (3)
C6—C71.413 (2)C8—H80.9300
C6—C51.423 (2)C8—C91.415 (3)
C15—C161.388 (2)C9—H90.9300
C15—C141.395 (2)C9—C101.365 (3)
C15—C171.501 (2)C4—H40.9300
C12—C131.392 (2)C4—C51.413 (3)
C2—C31.414 (2)C10—H100.9300
C16—H160.9300C10—C51.419 (3)
C11—N2—H2116.0C15—C14—H14120.1
C1—N2—H2116.0C13—C14—C15119.79 (16)
C1—N2—C11128.05 (14)C13—C14—H14120.1
C2—N1—C6117.86 (14)H18A—C18—H18B109.5
N2—C11—C12119.73 (14)H18A—C18—H18C109.5
N2—C11—C16122.69 (14)H18B—C18—H18C109.5
C16—C11—C12117.58 (15)C17—C18—H18A109.5
O1—C1—N2125.78 (16)C17—C18—H18B109.5
O1—C1—C2121.70 (15)C17—C18—H18C109.5
N2—C1—C2112.53 (14)O2—C17—C15120.30 (16)
N1—C6—C7118.71 (15)O2—C17—C18121.59 (16)
N1—C6—C5122.01 (15)C15—C17—C18118.10 (15)
C7—C6—C5119.28 (16)C6—C7—H7119.7
C16—C15—C14120.08 (15)C8—C7—C6120.57 (16)
C16—C15—C17120.76 (15)C8—C7—H7119.7
C14—C15—C17119.14 (15)C7—C8—H8119.9
C11—C12—Br1120.33 (13)C7—C8—C9120.21 (17)
C13—C12—Br1118.19 (12)C9—C8—H8119.9
C13—C12—C11121.48 (15)C8—C9—H9119.7
N1—C2—C1116.81 (14)C10—C9—C8120.64 (17)
N1—C2—C3124.47 (16)C10—C9—H9119.7
C3—C2—C1118.73 (15)C3—C4—H4119.9
C11—C16—H16119.4C3—C4—C5120.19 (16)
C15—C16—C11121.17 (15)C5—C4—H4119.9
C15—C16—H16119.4C9—C10—H10119.8
C12—C13—H13120.1C9—C10—C5120.48 (16)
C14—C13—C12119.84 (15)C5—C10—H10119.8
C14—C13—H13120.1C4—C5—C6117.53 (16)
C2—C3—H3121.0C4—C5—C10123.66 (16)
C4—C3—C2117.93 (16)C10—C5—C6118.80 (16)
C4—C3—H3121.0
Br1—C12—C13—C14178.46 (13)C2—N1—C6—C7178.60 (15)
O1—C1—C2—N1173.05 (15)C2—N1—C6—C51.4 (2)
O1—C1—C2—C37.2 (2)C2—C3—C4—C51.1 (3)
N2—C11—C12—Br12.1 (2)C16—C11—C12—Br1177.52 (12)
N2—C11—C12—C13177.97 (15)C16—C11—C12—C132.5 (2)
N2—C11—C16—C15179.08 (15)C16—C15—C14—C131.7 (2)
N2—C1—C2—N17.0 (2)C16—C15—C17—O2175.63 (17)
N2—C1—C2—C3172.76 (15)C16—C15—C17—C185.1 (2)
N1—C6—C7—C8179.06 (16)C3—C4—C5—C60.0 (3)
N1—C6—C5—C41.3 (2)C3—C4—C5—C10179.32 (17)
N1—C6—C5—C10179.38 (15)C14—C15—C16—C110.7 (2)
N1—C2—C3—C41.0 (3)C14—C15—C17—O25.5 (2)
C11—N2—C1—O10.7 (3)C14—C15—C17—C18173.78 (16)
C11—N2—C1—C2179.29 (14)C17—C15—C16—C11178.22 (14)
C11—C12—C13—C141.5 (3)C17—C15—C14—C13177.24 (15)
C1—N2—C11—C12178.73 (15)C7—C6—C5—C4178.70 (15)
C1—N2—C11—C161.7 (3)C7—C6—C5—C100.7 (2)
C1—C2—C3—C4178.68 (15)C7—C8—C9—C100.1 (3)
C6—N1—C2—C1179.91 (14)C8—C9—C10—C50.2 (3)
C6—N1—C2—C30.2 (2)C9—C10—C5—C60.1 (3)
C6—C7—C8—C90.7 (3)C9—C10—C5—C4179.22 (17)
C12—C11—C16—C151.4 (2)C5—C6—C7—C81.0 (3)
C12—C13—C14—C150.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.192.629 (2)112
C3—H3···O1i0.932.553.410 (2)154
C18—H18···O2ii0.962.493.444 (2)171
N2—H2···Br10.862.583.081 (1)118
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3, y, z+1.
(III) N-(5-Acetyl-2-ethynylphenyl)quinoline-2-carboxamide top
Crystal data top
C20H14N2O2Z = 2
Mr = 314.33F(000) = 328
Triclinic, P1Dx = 1.356 Mg m3
a = 7.3075 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2605 (4) ÅCell parameters from 5519 reflections
c = 13.8196 (9) Åθ = 3.1–32.0°
α = 92.734 (5)°µ = 0.09 mm1
β = 100.608 (6)°T = 123 K
γ = 108.989 (6)°Block, colourless
V = 770.11 (10) Å30.19 × 0.08 × 0.05 mm
Data collection top
Agilent SuperNova Single source at offset, Eos
diffractometer
5173 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3687 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.060
Detector resolution: 7.9851 pixels mm-1θmax = 32.3°, θmin = 3.0°
ω scansh = 1010
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1212
Tmin = 0.987, Tmax = 0.996l = 2020
20693 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.282P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5173 reflectionsΔρmax = 0.42 e Å3
218 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.81853 (17)0.81639 (13)0.58241 (8)0.0298 (3)
O10.69300 (18)0.80001 (15)1.00770 (8)0.0344 (3)
N10.73126 (17)0.52751 (15)0.59954 (8)0.0204 (2)
H10.71320.42960.56780.025*
N20.76917 (16)0.45956 (15)0.41516 (8)0.0204 (2)
C110.7866 (2)0.66691 (18)0.54929 (10)0.0211 (3)
C160.78375 (19)0.41914 (18)0.32020 (10)0.0205 (3)
C80.6340 (2)0.49494 (18)0.88964 (10)0.0225 (3)
H80.61170.48590.95360.027*
C30.69438 (19)0.65661 (18)0.85563 (9)0.0199 (3)
C90.6242 (2)0.20816 (18)0.66981 (10)0.0235 (3)
C40.72565 (19)0.67055 (17)0.75912 (9)0.0201 (3)
H40.76370.77820.73640.024*
C60.64210 (19)0.36039 (17)0.73190 (9)0.0200 (3)
C50.69995 (19)0.52316 (17)0.69665 (9)0.0190 (3)
C150.8349 (2)0.54711 (19)0.25516 (10)0.0226 (3)
C120.80629 (19)0.62324 (17)0.44536 (9)0.0198 (3)
C20.7259 (2)0.81339 (19)0.92427 (10)0.0238 (3)
C130.8613 (2)0.75994 (18)0.38704 (10)0.0235 (3)
H130.88810.87340.41260.028*
C70.6074 (2)0.34872 (18)0.82831 (10)0.0227 (3)
H70.56610.24130.85110.027*
C170.7457 (2)0.24391 (19)0.28605 (11)0.0264 (3)
H170.71380.15930.32820.032*
C100.6224 (2)0.0885 (2)0.61968 (12)0.0305 (3)
H100.62100.00630.58000.037*
C140.8738 (2)0.72010 (19)0.29172 (10)0.0249 (3)
H140.90790.80690.25110.030*
C200.8445 (2)0.4964 (2)0.15714 (10)0.0283 (3)
H200.87760.57900.11400.034*
C180.7560 (2)0.2000 (2)0.19069 (12)0.0309 (3)
H180.73020.08510.16850.037*
C190.8051 (2)0.3267 (2)0.12586 (11)0.0315 (3)
H190.81080.29450.06140.038*
C10.8052 (3)0.9875 (2)0.89000 (11)0.0326 (4)
H1A0.80801.07480.93920.049*
H1B0.72140.99260.82880.049*
H1C0.93691.00660.88010.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0459 (7)0.0218 (5)0.0232 (5)0.0113 (5)0.0114 (5)0.0015 (4)
O10.0440 (7)0.0339 (6)0.0211 (5)0.0056 (5)0.0126 (5)0.0035 (4)
N10.0256 (6)0.0189 (5)0.0162 (5)0.0063 (4)0.0057 (4)0.0002 (4)
N20.0197 (5)0.0215 (5)0.0187 (5)0.0054 (4)0.0043 (4)0.0001 (4)
C110.0238 (6)0.0227 (6)0.0167 (6)0.0079 (5)0.0042 (5)0.0012 (5)
C160.0180 (6)0.0240 (7)0.0180 (6)0.0060 (5)0.0034 (5)0.0014 (5)
C80.0225 (6)0.0279 (7)0.0173 (6)0.0077 (5)0.0062 (5)0.0034 (5)
C30.0189 (6)0.0236 (6)0.0161 (5)0.0064 (5)0.0032 (5)0.0011 (5)
C90.0234 (7)0.0252 (7)0.0224 (6)0.0072 (5)0.0071 (5)0.0070 (5)
C40.0207 (6)0.0211 (6)0.0173 (6)0.0055 (5)0.0039 (5)0.0012 (5)
C60.0195 (6)0.0214 (6)0.0186 (6)0.0061 (5)0.0041 (5)0.0015 (5)
C50.0182 (6)0.0231 (6)0.0158 (5)0.0067 (5)0.0047 (4)0.0026 (5)
C150.0192 (6)0.0308 (7)0.0164 (6)0.0072 (5)0.0031 (5)0.0014 (5)
C120.0201 (6)0.0217 (6)0.0165 (5)0.0058 (5)0.0036 (5)0.0006 (5)
C20.0241 (7)0.0273 (7)0.0184 (6)0.0083 (6)0.0027 (5)0.0022 (5)
C130.0280 (7)0.0209 (6)0.0196 (6)0.0057 (5)0.0045 (5)0.0016 (5)
C70.0238 (7)0.0225 (6)0.0219 (6)0.0066 (5)0.0071 (5)0.0044 (5)
C170.0250 (7)0.0247 (7)0.0278 (7)0.0068 (6)0.0061 (6)0.0023 (5)
C100.0358 (8)0.0276 (7)0.0272 (7)0.0098 (6)0.0065 (6)0.0020 (6)
C140.0266 (7)0.0266 (7)0.0202 (6)0.0059 (6)0.0066 (5)0.0063 (5)
C200.0256 (7)0.0418 (9)0.0177 (6)0.0119 (6)0.0048 (5)0.0020 (6)
C180.0285 (8)0.0317 (8)0.0302 (8)0.0103 (6)0.0038 (6)0.0090 (6)
C190.0295 (8)0.0453 (9)0.0197 (6)0.0152 (7)0.0037 (6)0.0059 (6)
C10.0483 (10)0.0241 (7)0.0223 (7)0.0107 (7)0.0044 (6)0.0023 (6)
Geometric parameters (Å, º) top
O2—C111.2279 (17)C6—C71.4033 (18)
O1—C21.2231 (17)C15—C141.411 (2)
N1—H10.8600C15—C201.4195 (19)
N1—C111.3595 (18)C12—C131.4130 (19)
N1—C51.4025 (16)C2—C11.501 (2)
N2—C161.3704 (17)C13—H130.9300
N2—C121.3197 (17)C13—C141.3692 (19)
C11—C121.5082 (18)C7—H70.9300
C16—C151.422 (2)C17—H170.9300
C16—C171.421 (2)C17—C181.372 (2)
C8—H80.9300C10—H100.9300
C8—C31.397 (2)C14—H140.9300
C8—C71.3799 (19)C20—H200.9300
C3—C41.3979 (18)C20—C191.367 (2)
C3—C21.4962 (19)C18—H180.9300
C9—C61.4435 (19)C18—C191.411 (2)
C9—C101.175 (2)C19—H190.9300
C4—H40.9300C1—H1A0.9600
C4—C51.3979 (18)C1—H1B0.9600
C6—C51.4115 (18)C1—H1C0.9600
C11—N1—H1115.9O1—C2—C3120.60 (13)
C11—N1—C5128.21 (12)O1—C2—C1120.68 (13)
C5—N1—H1115.9C3—C2—C1118.69 (12)
C12—N2—C16117.64 (12)C12—C13—H13121.0
O2—C11—N1125.11 (12)C14—C13—C12117.90 (13)
O2—C11—C12121.14 (12)C14—C13—H13121.0
N1—C11—C12113.75 (11)C8—C7—C6120.69 (13)
N2—C16—C15121.91 (12)C8—C7—H7119.7
N2—C16—C17118.75 (13)C6—C7—H7119.7
C17—C16—C15119.33 (12)C16—C17—H17120.1
C3—C8—H8120.0C18—C17—C16119.78 (14)
C7—C8—H8120.0C18—C17—H17120.1
C7—C8—C3119.98 (12)C9—C10—H10180.0
C8—C3—C4120.17 (12)C15—C14—H14120.0
C8—C3—C2118.92 (12)C13—C14—C15119.92 (13)
C4—C3—C2120.92 (12)C13—C14—H14120.0
C10—C9—C6175.76 (16)C15—C20—H20119.8
C3—C4—H4119.9C19—C20—C15120.33 (15)
C3—C4—C5120.21 (12)C19—C20—H20119.8
C5—C4—H4119.9C17—C18—H18119.5
C5—C6—C9119.94 (12)C17—C18—C19120.92 (14)
C7—C6—C9120.52 (12)C19—C18—H18119.5
C7—C6—C5119.51 (12)C20—C19—C18120.49 (14)
N1—C5—C6117.23 (12)C20—C19—H19119.8
C4—C5—N1123.36 (12)C18—C19—H19119.8
C4—C5—C6119.41 (12)C2—C1—H1A109.5
C14—C15—C16117.90 (12)C2—C1—H1B109.5
C14—C15—C20122.96 (14)C2—C1—H1C109.5
C20—C15—C16119.14 (13)H1A—C1—H1B109.5
N2—C12—C11117.50 (12)H1A—C1—H1C109.5
N2—C12—C13124.71 (12)H1B—C1—H1C109.5
C13—C12—C11117.78 (12)
O2—C11—C12—N2179.91 (13)C9—C6—C5—C4177.04 (12)
O2—C11—C12—C130.5 (2)C9—C6—C7—C8176.73 (13)
N1—C11—C12—N20.07 (18)C4—C3—C2—O1177.96 (13)
N1—C11—C12—C13179.34 (12)C4—C3—C2—C14.1 (2)
N2—C16—C15—C140.9 (2)C5—N1—C11—O20.2 (2)
N2—C16—C15—C20179.00 (12)C5—N1—C11—C12180.00 (12)
N2—C16—C17—C18178.87 (13)C5—C6—C7—C81.6 (2)
N2—C12—C13—C141.2 (2)C15—C16—C17—C180.9 (2)
C11—N1—C5—C41.0 (2)C15—C20—C19—C180.5 (2)
C11—N1—C5—C6179.84 (13)C12—N2—C16—C150.63 (19)
C11—C12—C13—C14178.19 (12)C12—N2—C16—C17179.63 (12)
C16—N2—C12—C11178.94 (11)C12—C13—C14—C150.8 (2)
C16—N2—C12—C130.4 (2)C2—C3—C4—C5178.53 (12)
C16—C15—C14—C130.1 (2)C7—C8—C3—C40.8 (2)
C16—C15—C20—C190.1 (2)C7—C8—C3—C2178.82 (13)
C16—C17—C18—C190.4 (2)C7—C6—C5—N1179.53 (12)
C8—C3—C4—C51.1 (2)C7—C6—C5—C41.28 (19)
C8—C3—C2—O12.4 (2)C17—C16—C15—C14179.36 (13)
C8—C3—C2—C1175.51 (13)C17—C16—C15—C200.7 (2)
C3—C8—C7—C60.5 (2)C17—C18—C19—C200.3 (2)
C3—C4—C5—N1179.10 (12)C14—C15—C20—C19179.97 (14)
C3—C4—C5—C60.04 (19)C20—C15—C14—C13179.78 (13)
C9—C6—C5—N12.14 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.862.232.666 (2)111
C10—H10···O2i0.932.363.103 (2)136
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We are grateful to the University of Regensburg, Universidad Nacional de Colombia, DAAD and COLCIENCIAS (grant No. 49575) for financial support.

References

First citationBelloli, S., Moresco, R. M., Matarrese, M., Biella, G., Sanvito, F., Simonelli, P., Turolla, E., Olivieri, S., Cappelli, A., Vomero, S., Galli-Kienle, M. & Fazio, F. (2004). Neurochem. Int. 44, 433–440.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlair, A., Stevenson, L., Dewar, D., Pimlott, S. L. & Sutherland, A. (2013). Med. Chem. Commun. 4, 1461–1466.  Web of Science CrossRef CAS Google Scholar
First citationBobal, P., Sujan, J., Otevrel, J., Imramovsky, A., Padelkova, Z. & Jampilek, J. (2012). Molecules, 17, 1292–1306.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, Y. L., Huang, C. J., Huang, C.-J., Tseng, C. H., Chang, F. S., Yang, S. H., Lin, S. R. & Tzeng, C. C. (2006). Bioorg. Med. Chem. 14, 3098–3105.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEgan, T., Ross, D. & Adams, P. (1994). FEBS J. 352, 54–57.  CrossRef CAS Web of Science Google Scholar
First citationGonec, T., Bobal, P., Sujan, J., Pesko, M., Guo, J., Kralova, K., Pavlacka, L., Vesely, L., Kreckova, E., Kos, J., Coffey, A., Kollar, P., Imramovsky, A., Placek, L. & Jampilek, J. (2012). Molecules, 17, 613–644.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, L.-H. & Qin, D.-B. (2007). Acta Cryst. E63, o4417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. New Cryst. Struct. 223, 37–38.  CAS Google Scholar
First citationKhavasi, H., Ghanbarpour, A. & Tehrani, A. (2014). CrystEngComm, 16, 749–752.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatarrese, M., Moresco, R. M., Cappelli, A., Anzini, M., Vomero, S., Simonelli, P., Verza, E., Magni, F., Sudati, F., Soloviev, D., Todde, S., Carpinelli, A., Kienle, M. G. & Fazio, F. (2001). J. Med. Chem. 44, 579–585.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNam, D. H., Lee, K. S., Kim, S. H., Kim, S., Jung, S. Y., Chung, S. H., Kim, H. J., Kim, H., Jin, C. & Lee, Y. S. (2008). Bioorg. Med. Chem. Lett. 18, 205–209.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNawar, N. & Hosny, N. (2000). Transition Met. Chem. 25, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationPandeya, S., Mishra, V., Singh, P. & Rupainwar, D. (1998). Pharmacol. Res. 37, 17–22.  Web of Science CrossRef CAS PubMed Google Scholar
First citationQi, J. Y., Qiu, L. Q., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o102–o103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigasku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeidmann, K., Baringhaus, K., Tschank, G. & Bickel, M. (2008). US Patent US005719164A.  Google Scholar
First citationZhao, Y.-L., Chen, Y.-L., Chang, F.-S. & Tzeng, C.-C. (2005). Eur. J. Med. Chem. 40, 792–797.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds