

Received 22 May 2017 Accepted 29 May 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; six-coordinate iron(III) complex; bridging oxido ligand; tetradentate ligand; chiral ligand.

CCDC reference: 1552964

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigcirc ACCESS

Crystal structure of ({(1*R*,2*R*)-*N*,*N*'-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine}chloridoiron(III))-µ-oxido-[trichloridoferrate(III)] chloroform monosolvate

Hannah Swift,^a Molly W. Carrig,^a Kayode D. Oshin,^a* Anastasiya I. Vinokur,^b John A. Desper^c and Christopher J. Levy^c

^aDepartment of Chemistry, Creighton University, Omaha, NE 68102, USA, ^bDepartment of Chemistry, University of Wisconsin, Madison, WI 53558, USA, and ^cDepartment of Chemistry, Kansas State University, Manhattan, KS 66506, USA. *Correspondence e-mail: kayodeoshin@creighton.edu

The first Fe^{III} atom in the solvated title compound, $[Fe_2Cl_4O(C_{26}H_{28}N_4)]$ ·CHCl₃, adopts a distorted six-coordinate octahedral geometry. It is coordinated by one chloride ligand, four N atoms from the (1R,2R)-N,N'-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine ligand, and a bridging oxido ligand attached to the second Fe^{III} atom, which is also bonded to three chloride ions. A very weak intramolecular N-H···Cl hydrogen bond occurs. In the crystal, the coordination complexes stack in columns, and a grouping of six such columns create channels, which are populated by disordered chloroform solvent molecules. Although the Fe-Cl bond lengths for the two metal atoms are comparable to the mean Fe-Cl bond lengths as derived from the Cambridge Structural Database, the Fe-O bond lengths are notably shorter. The solvent chloroform molecule exhibits 'flip' disorder of the C-H moiety in a 0.544 (3):0.456 (3) ratio. The only directional interaction noted is a weak C-H···Cl hydrogen bond.

1. Chemical context

Developing small-molecule complexes incorporating iron is an area of growing interest since the discovery of non-heme iron enzymes such as methane monooxygenase and Rieske dioxygenases to be efficient catalysts in the selective oxidation of hydrocarbons under mild reaction conditions (Company et al., 2007). Studies show that highly active non-heme iron catalysts that facilitate efficient stereo-specific alkane hydroxylation using H₂O₂ as oxidant can be synthesized by employing tetradentate N₄-donor ligands such as N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine (BPMEN) or tris(2-pyridylmethyl)amine (TPMA) (Costas et al., 2000). These catalysts have provided key insights into possible mechanisms used by enzymes to oxidize alkanes in nature (Meunier et al., 2004). In addition to the application of fourcoordinate iron complexes as catalysts in hydroxylation reactions, studies also show that these complexes can be utilized in epoxidation reactions of terminal and electrondeficient alkenes (Dubois et al., 2003). Iron oxido-bridging complexes are reported to play an important role in oxygen transport (hemerythrin), phosphate ester hydrolysis (purple acid phosphates), or DNA synthesis (ribonucleotide reductase) (Dutta et al., 1996). These oxido complexes exhibit redox and magnetic properties making them excellent candidates for future investigations into the mechanisms behind important

biological and chemical processes (Feig & Lippard, 1994). Given the significance and application of iron complexes made from tetradentate ligands, herein we report on the synthesis and crystal structure of the solvated title compound $[Fe_2(C_{26}H_{28}N_4)(Cl)(\mu-O)Fe(Cl)_3]$ ·CHCl₃ (1), incorporating (1R,2R)-N,N'-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine (Fig. 1).

2. Structural commentary

There is one coordination complex and one molecule of chloroform solvent in the asymmetric unit. The coordination complex features two Fe(III) metal cations. One of the metal cations, Fe1, assumes a distorted octahedral coordination (Table 1). The tetradentate ligand, (1R,2R)-N,N'-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine, interacts with the Fe^{III} cation in the equatorial plane through the four amine groups. A chloride ion and a bridging oxido ligand, which connects the two metal cations, complete the axial coordination. The distortions from the ideal octahedral geometry occur both in the equatorial and the axial positions. The equatorial angles vary widely from 74.96 $(9)^{\circ}$, as in the case of the N1-Fe1-N2 angle, to 133.98 (9)° for the untethered N1-Fe1-N4 angle. The axial ligands exhibit a bent conformation with a Cl1-Fe1-O1 angle of 166.06 $(7)^{\circ}$. In contrast, the second Fe metal cation, Fe2, exhibits a near ideal tetrahedral coordination geometry composed of one O atom and three Cl atoms. As expected based on the difference in the saturation of the coordination sphere, the Fe-Cl and the Fe-O distances for Fe1 are longer than that for Fe2. The single Fe-Cl distance for Fe1 is 2.3560 (8) Å, whereas the average Fe2–Cl distance of 2.232 (9) Å is more than 0.1 Å shorter, a statistically significant variation. Similarly, the Fe-O distances for Fe1 and Fe2 are also statistically significantly different at 1.808 (2) Å and 1.756 (2) Å, respectively. The bond lengths in the title compound are comparable to the mean Fe-Cl distances from the CSD for Fe complexes in an octahedral coordination [2.33 (7) Å] and a tetrahedral coordination [2.23 (3) Å]. In contrast, the Fe–O distances for both the octahedral and tetrahedral configurations in the title compound are shorter than the mean distances from CSD [2.01 (9) and 1.87 (13) Å, respectively]. A very weak intra-

Table 1	
Selected bond lengths	(Å).

Fe1-O1	1.808 (2)	Fe1-Cl1	2.3560 (8)
Fe1-N1	2.243 (2)	Fe2-O1	1.756 (2)
Fe1-N2	2.172 (3)	Fe2-Cl2	2.2194 (9)
Fe1-N3	2.159 (2)	Fe2-Cl3	2.2331 (10)
Fe1-N4	2.223 (2)	Fe2-Cl4	2.2432 (9)

Table 2			
Indeason	hand	acomoter	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$			
$N3-H3\cdots Cl4$ $C27A-H27A\cdots Cl2^{i}$	0.80 (4) 1.00	2.60 (4) 2.41	3.378 (3) 3.30 (2)	167 (3) 149			

Symmetry code: (i) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$.

molecular N3-H3···Cl4 hydrogen bond (Table 2) occurs. Finally, we observe that complex (1) is present only as the M (left-handed) conformer.

3. Supramolecular features

The molecules in the crystal structure are related by twofold screw axes running along the *a*-, *b*-, and *c*-axis directions. As there are no additional symmetry elements present, the resulting space group, $P2_12_12_1$, is chiral. The absolute structure was unequivocally established, as evidenced by a Hooft *y* parameter of 0.003 (6), using anomalous dispersion. Apart from a weak C-H···Cl bond from the chloroform molecule to one of the chloride ions bonded to Fe2 (Table 2), the molecules of the coordination complexes display minimal interatomic interactions. They assemble into columns that run parallel to the *a* axis. A circular arrangement of six columns of coordination complex molecules creates a channel. The

Figure 1

The molecular structure of complex (1), shown with 50% probability displacement ellipsoids. All H atoms and the minor-disorder components of the solvent molecule have been omitted for clarity.

research communications

Figure 2

Packing diagram for complex (1), showing the columns of the coordination complex and the channels of disordered chloroform solvent molecules stacked along the a axis.

channel is filled with solvent chloroform molecules that exhibit extensive positional disorder. For two of the columns that frame the chloroform channels, the oxido-trichloride groups of the coordination complexes point into the channels, while the other four columns face the void with the (1R,2R)-N,N'-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine ligand. The packing is illustrated in Fig. 2.

4. Database survey

In our survey of the Cambridge Structural Database (Groom *et al.*, 2016), we found five reported structures incorporating the (1R,2R)-N,N'-bis[(quinolin-2-yl)methyl]cyclohexane-1,2diamine ligand motif. Of the five, only one structure showed coordination to iron (Dengler *et al.*, 2011). In that structure, the distorted octahedral coordination of the Fe^{III} metal atom is completed by two chloride ligands in the axial positions. The two Fe–Cl distances are comparable (2.495 and 2.509 Å) and the Cl1–Fe–N angles show a narrow distribution from 92–94°, except for Cl1–Fe–N1, which is 84°.

5. Synthesis and crystallization

Synthesis of (1*R***,2***R***)-***N*,*N***'-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine (R-QMC):** In a 50 mL round-bottom flask

(1R,2R)-1,2-cyclohexanediamine (0.20 g, 1.8 mmol) and 2quinolinecarboxaldehyde (0.55 g, 3.6 mmol) were refluxed in ethanol (10 mL) for 3 h. A yellow precipitate formed that was isolated by filtration, washed twice with ethanol, and dried in vacuo producing the unreduced form of the ligand (QMC), (0.63 g, 89% yield). ¹H NMR (CDCl₃, 400 MHz): δ 1.24 (br, 2 H, CH), 1.56 (br, 2 H, CH), 1.97 (br, 2 H, CH), 3.62 (br, 2 H, CH), 7.48 (t, 1 H, J = 8.06 Hz, CH), 7.65 (t, 1 H, J = 8.06 Hz, CH), 7.74 (*d*, 1 H, J = 8.06 Hz, CH), 8.03 (*d*, 1 H, J = 8.56 Hz, CH), 8.06 (s, 1 H, CH), and 8.52 (s, 1 H, CH). The reduced form of the ligand (R-QMC, Fig. 3) was synthesized by reacting ligand QMC (0.50 g, 1.3 mmol) with sodium borohydride (0.06 g, 1.5 mmol) in methanol at room temperature for 12 h to produce R-QMC (0.42 g, 82% yield). ¹H NMR (CDCl₃, 400 MHz): δ 1.24 (br, 2 H, CH), 1.56 (br, 2 H, CH), 1.97 (br, 2 H, CH), 3.62 (br, 2 H, CH), 4.22 (dd, 2 H, J = 8.06 Hz, CH), 7.55 (t, 1 H, J = 8.06 Hz, CH), 7.61–7.73 (m, CH), 7.81 (d, 1 H, J = 8.56 Hz, CH), 8.06 (d, 1 H J = 8.06 Hz, CH), 8.08 (d, 1 H J = 8.06 Hz, CH).

Synthesis of ({(1*R***,2***R***)-***N***,***N***'-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine}chloridoiron(III))-µ-oxido-[trichloridoferrate(III)] chloroform monosolvate R-QMC (0.25 g, 0.63 mmol) was dissolved in 50/50 mixture of dichloromethane and ethanol (20 mL) in a 50 mL round-bottom flask. Iron(II) chloride (0.08 g, 0.63 mmol) was added to the flask to give a** brown-colored solution. The reaction was allowed to mix for 6 h under gentle heat producing a brown-colored precipitate. The precipitate was filtered and washed twice with cold solvent then dried under vacuum for 30 minutes producing a brown powder (0.19 g, 58%). Brown prisms of (1) suitable for X-ray analysis were obtained by slow solvent diffusion of diethyl ether into a concentrated complex solution made in chloroform.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All hydrogen atoms, except for the amine hydrogen atom bonded to N3, were added at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. The amine hydrogen bonded to N3 was allowed to refine freely. In addition to the $\{[(1R,2R)-N,N'-bis](quinolin-2-yl)methyl]$ cyclohexane-1,2-diamine]chloridoiron(III)}-µ-oxido-[trichloridoferrate(III)], there is one molecule of chloroform solvent in the asymmetric unit. The solvent molecule exhibits extensive positional disorder over three positions. Initially, the disorder was modeled with chloroform molecule in an idealized geometry, where the 1,2 and the 1,3 bond lengths were constrained. As the refinement converged, the geometry constraints were lifted. The chlorine atoms Cl6 and Cl7 were modeled over two positions, with the major component contributing 54.4 (3)%. The carbon atom C27 required modeling over three positions with the major component contribution of 54.4 (3)% and the two minor components contributing 24.1 (4)% and 21.5 (4)%. The C-Cl distances for all of the disorder components were restrained to be similar. In addition, Cl6A-Cl7A and Cl7A-Cl5 were restrained to be

Experimental details.	
Crystal data	
Chemical formula	[Fe ₂ Cl ₄ O(C ₂₆ H ₂₈ N ₄)]·CHCl ₃
M _r	785.39
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.3489 (6), 14.3664 (8), 21.4619 (13)
$V(Å^3)$	3190.9 (3)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.53
Crystal size (mm)	$0.26 \times 0.22 \times 0.14$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.658, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	79886, 10537, 8808
R _{int}	0.065
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.736
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.082, 1.05
No. of reflections	10537
No. of parameters	413
No. of restraints	37
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.67, -0.52
Absolute structure parameter	0.000 (14)
1	× /

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

similar. The absolute structure was unequivocally determined by anomalous dispersion.

Table 3

Acknowledgements

The authors thank Kansas State University for instrument support.

Funding information

Funding for this research was provided by: Creighton University; Hamilton Company; Cambridge Isotope Laboratories, Inc.; National Science Foundation, Division of Chemistry (award No. CHE-0349258).

References

Bruker (2016). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Company, A., Gómez, L., Güell, M., Ribas, X., Luis, J., Que, L. & Costas, M. (2007). J. Am. Chem. Soc. 129, 15766–15767.
- Costas, M., Chen, K. & Que, L. (2000). Coord. Chem. Rev. 200–202, 517–544.
- Dengler, J. E., Lehenmeier, M. W., Klaus, S., Anderson, C. E., Herdtweck, E. & Rieger, B. (2011). *Eur. J. Inorg. Chem.* pp. 336– 343.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dubois, G., Murphy, A. & Stack, D. P. (2003). Org. Lett. 5, 2469–2472.
- Dutta, S. K., Werner, R., Flörke, U., Mohanta, S., Nanda, K. K., Haase, W. & Nag, K. (1996). *Inorg. Chem.* **35**, 2292–2300.
- Feig, A. L. & Lippard, S. T. (1994). Chem. Rev. 94, 759-805.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Meunier, B., de Visser, S. P. & Shaik, S. (2004). Chem. Rev. 104, 3947–3980.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2017). E73, 936-940 [https://doi.org/10.1107/S2056989017007952]

Crystal structure of $({(1R,2R)-N,N'-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine}chloridoiron(III))-\mu-oxido-[trichloridoferrate(III)] chloroform monosolvate$

Hannah Swift, Molly W. Carrig, Kayode D. Oshin, Anastasiya I. Vinokur, John A. Desper and Christopher J. Levy

Computing details

Data collection: *APEX2* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

 $({(1R,2R)-N^1,N^2-Bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine}chloridoiron(III))-\mu-oxido-[trichloridoferrate(III)] chloroform monosolvate$

Crystal data

[Fe ₂ Cl ₄ O(C ₂₆ H ₂₈ N ₄)]·CHCl ₃
$M_r = 785.39$
Orthorhombic, $P2_12_12_1$
a = 10.3489 (6) Å
b = 14.3664 (8) Å
c = 21.4619(13) Å
V = 3190.9 (3) Å ³
Z=4
F(000) = 1592

```
Data collection
```

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.658$, $T_{\max} = 0.746$ 79886 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.082$ S = 1.0510537 reflections $D_x = 1.635 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9981 reflections $\theta = 2.7-30.8^{\circ}$ $\mu = 1.53 \text{ mm}^{-1}$ T = 120 KPrism, brown $0.26 \times 0.22 \times 0.14 \text{ mm}$

10537 independent reflections 8808 reflections with $I > 2\sigma(I)$ $R_{int} = 0.065$ $\theta_{max} = 31.6^\circ$, $\theta_{min} = 2.4^\circ$ $h = -14 \rightarrow 15$ $k = -20 \rightarrow 20$ $l = -30 \rightarrow 31$

413 parameters37 restraintsPrimary atom site location: dualHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0361P)^2 + 0.5065P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.67 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.000 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe1	0.24940 (4)	0.34973 (3)	0.86909 (2)	0.02294 (9)	
Fe2	0.37047 (4)	0.32209 (3)	0.72075 (2)	0.02735 (10)	
C11	0.15040 (7)	0.38505 (5)	0.96507 (4)	0.03021 (16)	
C12	0.24573 (9)	0.28798 (6)	0.63979 (4)	0.04158 (19)	
C13	0.54491 (9)	0.23071 (7)	0.72381 (7)	0.0617 (3)	
Cl4	0.43247 (8)	0.47130 (5)	0.71335 (4)	0.03348 (16)	
01	0.28867 (19)	0.30834 (14)	0.79183 (10)	0.0295 (5)	
N1	0.2138 (2)	0.19951 (16)	0.89191 (12)	0.0257 (5)	
N2	0.4247 (2)	0.30306 (17)	0.91515 (12)	0.0276 (5)	
H2	0.4088	0.3066	0.9611	0.033*	
N3	0.3688 (2)	0.47300 (16)	0.86772 (13)	0.0244 (5)	
H3	0.397 (3)	0.472 (2)	0.8331 (18)	0.029*	
N4	0.1286 (2)	0.46258 (17)	0.82871 (12)	0.0259 (5)	
C1	0.0979 (3)	0.1519 (2)	0.88928 (14)	0.0279 (6)	
C2	-0.0189 (3)	0.2008 (2)	0.88477 (17)	0.0357 (7)	
H2A	-0.0188	0.2669	0.8860	0.043*	
C3	-0.1336 (3)	0.1535 (3)	0.8786 (2)	0.0474 (9)	
H3A	-0.2119	0.1875	0.8746	0.057*	
C4	-0.1369 (4)	0.0557 (3)	0.8781 (2)	0.0492 (10)	
H4	-0.2167	0.0239	0.8733	0.059*	
C5	-0.0246 (4)	0.0067 (2)	0.88457 (17)	0.0415 (9)	
Н5	-0.0269	-0.0594	0.8849	0.050*	
C6	0.0945 (3)	0.0530 (2)	0.89077 (15)	0.0319 (7)	
C7	0.2130 (4)	0.0055 (2)	0.89797 (15)	0.0339 (7)	
H7	0.2143	-0.0606	0.8990	0.041*	
C8	0.3249 (3)	0.0539 (2)	0.90334 (15)	0.0318 (7)	
H8	0.4042	0.0221	0.9101	0.038*	
C9	0.3225 (3)	0.1519 (2)	0.89887 (14)	0.0273 (6)	
C10	0.4472 (3)	0.2049 (2)	0.89977 (17)	0.0320 (7)	
H10A	0.5061	0.1770	0.9310	0.038*	
H10B	0.4892	0.2004	0.8584	0.038*	
C11	0.5348 (3)	0.3655 (2)	0.90109 (15)	0.0266 (6)	
H11	0.5616	0.3551	0.8569	0.032*	
C12	0.6531 (3)	0.3515 (2)	0.94307 (15)	0.0314 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H12A	0.6286	0.3619	0.9871	0.038*	
H12B	0.6848	0.2867	0.9390	0.038*	
C13	0.7603 (3)	0.4192 (2)	0.92475 (16)	0.0367 (7)	
H13A	0.7889	0.4058	0.8817	0.044*	
H13B	0.8353	0.4106	0.9528	0.044*	
C14	0.7134 (3)	0.5200 (3)	0.92877 (16)	0.0369 (8)	
H14A	0.6956	0.5360	0.9728	0.044*	
H14B	0.7822	0.5622	0.9135	0.044*	
C15	0.5912 (3)	0.5347 (2)	0.89019 (16)	0.0316 (7)	
H15A	0.5587	0.5988	0.8970	0.038*	
H15B	0.6123	0.5281	0.8454	0.038*	
C16	0.4860 (3)	0.4654 (2)	0.90736 (14)	0.0260 (6)	
H16	0.4605	0.4762	0.9517	0.031*	
C17	0.2910 (3)	0.5562 (2)	0.87921 (16)	0.0296 (6)	
H17A	0.3375	0.6120	0.8641	0.036*	
H17B	0.2756	0.5634	0.9245	0.036*	
C18	0.1644 (3)	0.5469 (2)	0.84567 (15)	0.0288 (6)	
C19	0.0884 (3)	0.6267 (2)	0.83377 (17)	0.0374 (8)	
H19	0.1182	0.6866	0.8458	0.045*	
C20	-0.0278 (4)	0.6169 (2)	0.80486 (17)	0.0390 (8)	
H20	-0.0808	0.6699	0.7977	0.047*	
C21	-0.0696 (3)	0.5276 (2)	0.78549 (15)	0.0327 (7)	
C22	-0.1905 (3)	0.5116 (3)	0.75714 (16)	0.0400 (9)	
H22	-0.2471	0.5624	0.7494	0.048*	
C23	-0.2267 (3)	0.4237 (3)	0.74077 (16)	0.0420 (9)	
H23	-0.3098	0.4132	0.7233	0.050*	
C24	-0.1422 (3)	0.3490 (3)	0.74965 (16)	0.0398 (8)	
H24	-0.1675	0.2883	0.7370	0.048*	
C25	-0.0227 (3)	0.3622 (2)	0.77650 (16)	0.0327 (7)	
Н	0.0349	0.3112	0.7811	0.039*	
C26	0.0136 (3)	0.4510(2)	0.79695 (14)	0.0276 (6)	
C15	0.04556 (12)	0.59674 (7)	1.00240 (6)	0.0613 (3)	
C16	0.0633 (4)	0.79088 (18)	0.97904 (15)	0.0776 (11)	0.544 (3)
Cl6A	-0.0063 (4)	0.7908 (4)	0.9720 (2)	0.0927 (17)	0.456 (3)
C17	-0.1718 (2)	0.71764 (14)	1.04018 (13)	0.0676 (7)	0.544 (3)
Cl7A	-0.0951 (2)	0.70539 (15)	1.08266 (12)	0.0531 (7)	0.456 (3)
C27	-0.0048 (11)	0.7090 (7)	1.0301 (6)	0.046 (4)	0.544 (3)
H27	0.0360	0.7186	1.0718	0.055*	0.544 (3)
C27A	0.030 (2)	0.7114 (11)	1.0304 (9)	0.027 (5)	0.241 (4)
H27A	0.1111	0.7305	1.0522	0.032*	0.241 (4)
C27B	-0.0529 (16)	0.6944 (8)	1.0038 (7)	0.042 (5)	0.215 (4)
H27B	-0.1340	0.6761	0.9816	0.050*	0.215 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.02119 (17)	0.02163 (17)	0.0260 (2)	0.00049 (15)	0.00144 (18)	0.00237 (15)
Fe2	0.0243 (2)	0.0275 (2)	0.0302 (2)	0.00048 (16)	0.00332 (18)	-0.00318 (17)

Cl1	0.0337 (4)	0.0278 (3)	0.0291 (4)	0.0003 (3)	0.0073 (3)	0.0025 (3)
Cl2	0.0377 (4)	0.0501 (5)	0.0369 (4)	-0.0118 (4)	-0.0030 (4)	-0.0031 (3)
C13	0.0351 (4)	0.0454 (5)	0.1045 (9)	0.0137 (4)	0.0018 (5)	-0.0252 (6)
Cl4	0.0340 (4)	0.0311 (3)	0.0354 (4)	-0.0051 (3)	0.0032 (3)	0.0020 (3)
01	0.0321 (11)	0.0242 (10)	0.0323 (12)	0.0011 (8)	0.0013 (9)	0.0037 (8)
N1	0.0286 (12)	0.0220 (11)	0.0265 (13)	0.0005 (9)	0.0003 (10)	0.0022 (9)
N2	0.0271 (12)	0.0298 (13)	0.0260 (13)	-0.0001 (10)	-0.0009 (10)	0.0025 (10)
N3	0.0245 (12)	0.0255 (11)	0.0231 (12)	-0.0012 (9)	0.0020 (11)	0.0015 (10)
N4	0.0223 (12)	0.0284 (12)	0.0271 (13)	0.0042 (10)	0.0030 (10)	0.0029 (10)
C1	0.0326 (15)	0.0273 (14)	0.0237 (14)	-0.0049 (11)	0.0017 (12)	0.0018 (11)
C2	0.0304 (16)	0.0346 (16)	0.042 (2)	-0.0018 (12)	0.0051 (14)	-0.0025 (14)
C3	0.0321 (17)	0.048 (2)	0.062 (3)	-0.0058 (15)	0.0095 (17)	-0.0116 (19)
C4	0.0396 (19)	0.048 (2)	0.060 (3)	-0.0161 (16)	0.0080 (19)	-0.0117 (18)
C5	0.056 (2)	0.0312 (16)	0.038 (2)	-0.0146 (15)	0.0046 (17)	-0.0048 (14)
C6	0.0449 (19)	0.0266 (14)	0.0242 (15)	-0.0042 (12)	0.0031 (14)	-0.0008 (12)
C7	0.054 (2)	0.0233 (14)	0.0246 (15)	0.0014 (13)	0.0005 (14)	0.0018 (12)
C8	0.0449 (19)	0.0279 (14)	0.0225 (15)	0.0067 (12)	-0.0027 (13)	0.0009 (12)
C9	0.0332 (15)	0.0276 (13)	0.0210 (14)	0.0043 (12)	-0.0020 (12)	0.0028 (11)
C10	0.0294 (15)	0.0298 (15)	0.0368 (18)	0.0054 (12)	-0.0052 (14)	0.0021 (13)
C11	0.0205 (13)	0.0353 (15)	0.0240 (15)	-0.0015 (11)	-0.0002 (11)	-0.0001 (12)
C12	0.0264 (14)	0.0416 (16)	0.0261 (15)	0.0003 (13)	0.0003 (12)	-0.0006 (13)
C13	0.0272 (15)	0.054 (2)	0.0284 (16)	-0.0016 (15)	-0.0033 (14)	0.0001 (14)
C14	0.0324 (16)	0.053 (2)	0.0256 (16)	-0.0133 (14)	-0.0024 (13)	-0.0007 (14)
C15	0.0283 (15)	0.0386 (16)	0.0277 (16)	-0.0086 (12)	0.0020 (13)	-0.0011 (13)
C16	0.0247 (14)	0.0310 (14)	0.0223 (15)	-0.0041 (11)	0.0006 (11)	0.0011 (11)
C17	0.0318 (15)	0.0230 (13)	0.0339 (18)	-0.0018 (11)	0.0038 (13)	0.0010 (12)
C18	0.0319 (15)	0.0270 (14)	0.0275 (16)	0.0040 (11)	0.0070 (13)	0.0058 (11)
C19	0.047 (2)	0.0276 (16)	0.0380 (19)	0.0091 (13)	0.0060 (16)	0.0046 (13)
C20	0.044 (2)	0.0367 (17)	0.0366 (19)	0.0175 (15)	0.0084 (15)	0.0111 (14)
C21	0.0302 (15)	0.0430 (17)	0.0250 (16)	0.0113 (13)	0.0077 (13)	0.0096 (14)
C22	0.0293 (16)	0.065 (2)	0.0262 (17)	0.0171 (16)	0.0047 (13)	0.0148 (16)
C23	0.0234 (17)	0.074 (3)	0.0284 (17)	0.0031 (15)	-0.0004 (13)	0.0066 (17)
C24	0.0303 (16)	0.057 (2)	0.0321 (18)	-0.0008 (16)	0.0002 (14)	-0.0039 (15)
C25	0.0257 (14)	0.0415 (17)	0.0308 (17)	0.0046 (12)	0.0004 (13)	-0.0028 (14)
C26	0.0237 (14)	0.0374 (15)	0.0216 (15)	0.0060 (11)	0.0036 (11)	0.0046 (12)
C15	0.0708 (7)	0.0439 (5)	0.0691 (7)	-0.0069 (5)	0.0295 (6)	0.0027 (5)
C16	0.143 (3)	0.0404 (12)	0.0489 (14)	-0.0417 (17)	0.011 (2)	0.0081 (10)
Cl6A	0.096 (3)	0.122 (3)	0.060 (2)	0.051 (3)	0.010 (2)	0.042 (2)
C17	0.0658 (13)	0.0416 (10)	0.0953 (19)	0.0037 (9)	-0.0259 (13)	-0.0139 (10)
Cl7A	0.0577 (14)	0.0441 (11)	0.0573 (15)	-0.0032 (9)	0.0153 (11)	-0.0198 (10)
C27	0.059 (9)	0.043 (5)	0.036 (6)	-0.033 (5)	-0.012 (5)	0.001 (4)
C27A	0.023 (9)	0.038 (10)	0.019 (9)	-0.011 (6)	-0.010 (6)	0.000 (7)
C27B	0.025 (8)	0.027 (8)	0.073 (15)	-0.010 (6)	-0.002 (8)	-0.012 (8)

Geometric parameters (Å, °)

Fe1—O1	1.808 (2)	C12—H12B	0.9900
Fe1—N1	2.243 (2)	C12—C13	1.527 (5)

supporting information

Fe1—N2	2.172 (3)	C13—H13A	0.9900
Fe1—N3	2.159 (2)	C13—H13B	0.9900
Fe1—N4	2.223 (2)	C13—C14	1.530 (5)
Fe1—C11	2.3560 (8)	C14—H14A	0.9900
Fe2—O1	1.756 (2)	C14—H14B	0.9900
Fe2—C12	2.2194 (9)	C14—C15	1.526 (4)
Fe2—C13	2.2331 (10)	C15—H15A	0.9900
Fe2—C14	2.2432 (9)	С15—Н15В	0.9900
N1—C1	1.382 (4)	C15—C16	1.521 (4)
N1—C9	1.324 (4)	C16—H16	1.0000
N2—H2	1 0000	C17—H17A	0.9900
N2-C10	1 467 (4)	C17—H17B	0.9900
N2-C11	1 481 (4)	C17-C18	1 501 (4)
N3—H3	0.80(4)	C18 - C19	1.301(1) 1 414(4)
N3—C16	1.486(4)	C19_H19	0.9500
N3C17	1.462 (4)	C19-C20	1 361 (5)
N4 C18	1.402(4) 1.318(4)	C_{20} H20	0.9500
N4 C26	1.310(4)	C_{20} C_{21}	1.417(5)
$C_1 = C_2$	1.301(4)	$C_{20} = C_{21}$	1.417(5)
C1 - C2	1.401(4) 1.422(4)	C21—C22	1.411(3)
$C_1 = C_0$	0.0500	$C_{21} = C_{20}$	0.0500
$C_2 = C_3$	1.374(5)	$C_{22} = 1122$	1 363 (6)
$C_2 = C_3$	0.0500	C22—C23	1.303 (0)
C_{3}	0.9500	C23—C24	1 208 (5)
$C_3 = C_4$	1.403 (3)	$C_{23} = C_{24}$	1.398 (3)
C4 - C5	0.9300	C_{24} C_{24} C_{25}	0.9300
C4—C3	1.500 (0)	C24—C23	1.378 (3)
C5—H5	0.9500	C25—H	0.9500
C_{3}	1.407(3)	$C_{23} = C_{20}$	1.401(3)
	1.412 (5)	C15 - C27	1.796 (11)
C/-H/	0.9500	CIS = C27A	1.701(17)
	1.355 (5)	CIS = C27B	1.733 (13)
C8—H8	0.9500	C16-C27	1.755 (10)
	1.413 (4)	CI6A - C2/A	1./35(1/)
	1.498 (4)	C16A - C2/B	1.618 (12)
CIO—HIOA	0.9900	CI/-C2/	1.746 (11)
CI0—HI0B	0.9900	CI/A - C2/A	1.716 (17)
CII—HII	1.0000	CI/A—C2/B	1.755 (15)
	1.534 (4)	С27—Н27	1.0000
	1.527 (4)	C2/A—H2/A	1.0000
C12—H12A	0.9900	С27В—Н27В	1.0000
O1—Fe1—Cl1	166.06 (7)	C13—C12—C11	110.2 (3)
O1—Fe1—N1	85.45 (9)	C13—C12—H12A	109.6
O1—Fe1—N2	97.36 (10)	C13—C12—H12B	109.6
O1—Fe1—N3	97.40 (10)	C12—C13—H13A	109.4
O1—Fe1—N4	90.50 (9)	C12—C13—H13B	109.4
N1—Fe1—C11	86.84 (7)	C12—C13—C14	111.0 (3)
N2—Fe1—Cl1	91.81 (7)	H13A—C13—H13B	108.0

N2—Fe1—N1	74.96 (9)	C14—C13—H13A	109.4
N2—Fe1—N4	150.72 (10)	C14—C13—H13B	109.4
N3—Fe1—Cl1	94.82 (7)	C13—C14—H14A	109.4
N3—Fe1—N1	152.34 (9)	C13—C14—H14B	109.4
N3—Fe1—N2	77.39 (9)	H14A—C14—H14B	108.0
N3—Fe1—N4	73.64 (9)	C15—C14—C13	111.3 (3)
N4—Fe1—Cl1	86.52 (7)	C15—C14—H14A	109.4
N4—Fe1—N1	133.98 (9)	C15—C14—H14B	109.4
C12—Fe2—C13	111.31 (4)	C14—C15—H15A	109.3
Cl2—Fe2—Cl4	108 78 (4)	C14—C15—H15B	109.3
C13—Fe2—C14	109.42(4)	H15A - C15 - H15B	107.9
01_{E^2}	107.42 (4) 112.02 (8)	C_{16} C_{15} C_{14}	107.9 111.8(3)
$O_1 = F_{e2} = C_{12}$	107.35 (8)	$C_{16} = C_{15} = C_{14}$	100.3
01 - Fe2 - C13	107.33(8) 107.97(7)	C16 C15 H15P	109.3
01 - re2 - 014	107.07(7)	N2 C1(C11	109.5
re2—01—re1	130.20(13) 127.54(10)	N3 - C16 - C11	100.8(2)
CI-NI-Fel	127.54 (19)	N3-C16-C15	113.4 (2)
C9—NI—Fel	112.45 (19)	N3—C16—H16	108.5
C9—N1—C1	119.1 (3)	С11—С16—Н16	108.5
Fe1—N2—H2	107.2	C15—C16—C11	111.0 (3)
C10—N2—Fe1	109.10 (19)	C15—C16—H16	108.5
C10—N2—H2	107.2	N3—C17—H17A	109.9
C10—N2—C11	114.5 (2)	N3—C17—H17B	109.9
C11—N2—Fe1	111.27 (18)	N3—C17—C18	109.1 (2)
C11—N2—H2	107.2	H17A—C17—H17B	108.3
Fe1—N3—H3	102 (3)	C18—C17—H17A	109.9
C16—N3—Fe1	113.52 (17)	C18—C17—H17B	109.9
C16—N3—H3	104 (3)	N4—C18—C17	117.4 (3)
C17—N3—Fe1	110.66 (17)	N4—C18—C19	122.7 (3)
C17—N3—H3	112 (3)	C19—C18—C17	120.0 (3)
C17—N3—C16	114.4 (2)	C18—C19—H19	120.3
C18—N4—Fe1	113.9 (2)	C20—C19—C18	119.3 (3)
C18—N4—C26	119.3 (3)	С20—С19—Н19	120.3
C_{26} N4—Fe1	126.1.(2)	C19 - C20 - H20	120.1
N1-C1-C2	120.1(2) 120.3(3)	C19 - C20 - C21	119.8(3)
N1 - C1 - C6	120.5(3) 1210(3)	$C_{21} = C_{20} = H_{20}$	120.1
$C_2 - C_1 - C_6$	121.0(3) 1187(3)	C_{20} C_{20} C_{21} C_{26}	120.1 117.8(3)
$C_1 = C_1 = C_0$	110.7 (5)	$C_{20} = C_{21} = C_{20}$	117.0(3)
$C_1 = C_2 = C_1$	119.0	$C_{22} = C_{21} = C_{20}$	123.0(3)
$C_3 = C_2 = C_1$	120.3 (3)	$C_{22} = C_{21} = C_{20}$	119.2 (3)
$C_2 = C_2 = H_2 A$	119.0	$C_{21} = C_{22} = C_{21}$	119.0
$C_2 = C_3 = C_4$	119.5	$C_{23} = C_{22} = C_{21}$	120.4 (5)
$C_2 = C_3 = C_4$	121.0 (4)	C23—C22—H22	119.8
C4—C3—H3A	119.5	C22—C23—H23	119.9
C3—C4—H4	120.2	C22—C23—C24	120.3 (3)
C5—C4—C3	119.6 (3)	C24—C23—H23	119.9
С5—С4—Н4	120.2	C23—C24—H24	119.6
C4—C5—H5	119.6	C25—C24—C23	120.9 (4)
C4—C5—C6	120.8 (3)	C25—C24—H24	119.6
С6—С5—Н5	119.6	С24—С25—Н	120.1

C5—C6—C1	119.5 (3)	C24—C25—C26	119.8 (3)
C5—C6—C7	122.9 (3)	С26—С25—Н	120.1
C7—C6—C1	117.7 (3)	N4—C26—C21	121.0 (3)
С6—С7—Н7	119.9	N4—C26—C25	119.7 (3)
C8—C7—C6	120.2 (3)	C25—C26—C21	119.3 (3)
C8—C7—H7	119.9	C27B— $C15$ — $C27A$	35.2 (10)
C7—C8—H8	120.3	C27B— $C16A$ — $C27A$	36.6(11)
C7 - C8 - C9	1194(3)	C27A - C17A - C27B	35.5(11)
C9-C8-H8	120.3	$C_{15} - C_{27} - H_{27}$	107.3
N1 - C9 - C8	122.5 (3)	C16 - C27 - C15	106.2 (6)
N1 - C9 - C10	122.5(3) 1181(3)	$C_{16} = C_{27} = H_{27}$	107.3
C_{8} C_{9} C_{10}	110.1(3) 110.4(3)	C17 - C27 - C15	107.5 113 1 (7)
$N_2 = C_1 = C_1 = C_1$	110.7(3)	$C_{17} = C_{27} = C_{15}$	115.1(7)
$N_2 = C_{10} = C_{9}$	100.5	$C_{17} = C_{27} = C_{10}$	107.3
N2 C10 H10R	109.5	$C_{1}^{-} = C_{2}^{-} = H_{2}^{-} + H_{2$	107.5
C_{0} C_{10} H_{10A}	109.5	C15 - C27A - C15	109.9 112.0(11)
C_{0} C_{10} H_{10}	109.5	$C_{10}A - C_{2}7A - C_{13}$	112.9 (11)
	109.5	C10A - C27A - H27A	109.9
$\mathbf{N}_{\mathbf{A}} = \mathbf{C}_{10} = \mathbf{H}_{10} \mathbf{B}$	108.1	C17A - C27A - C15	104.2(9)
$N_2 = C_{11} = C_{12}$	108.4	C17A - C27A - C10A	110.0 (11)
N2 - C11 - C12	114.5(2) 107.2(2)	CI/A - C2/A - H2/A	109.9
N2 = C11 = C10	107.5 (2)	C15 - C27B - C17A	105.7 (8)
	108.4	CIS = C2/B = H2/B	105.9
	108.4	CIGA = C27B = CI3	120.7 (8)
C10 - C11 - C12	109.6 (3)	CIGA - C2/B - CI/A	115.8 (8)
C11—C12—H12A	109.6	C16A - C2/B - H2/B	105.9
CII—CI2—HI2B	109.6	CI/A - C2/B - H2/B	105.9
H12A—C12—H12B	108.1		
E-1 N1 C1 C2	14.7(4)	C_0 NI C_1 C_2	1771(2)
FeI = NI = CI = CZ	-14.7(4)	C_{2} NI C_{1} C_{2}	1/7.1(3)
FeI = NI = CO = CB	105.0(2)	$C_{0} = N_{1} = C_{1} = C_{0}$	-3.2(4)
FeI = NI = C9 = C8	-109.5(2)	C10 - N2 - C11 - C12	-69.3(4)
FeI = NI = C9 = C10	8.4 (3)	C10 - N2 - C10 - C10	168.8(3)
FeI = N2 = CI0 = C9	-39.2(3)	C11 - N2 - C10 - C9	-164.6(3)
FeI = N2 = CII = CI2	100.5(2)	C12 - C12 - C13 - C14	57.7 (4)
FeI = N2 = CI(-CII)	44.0 (3)	C12 - C11 - C16 - N3	-1//./(2)
FeI = N3 = CI6 = CII	37.6 (3)	C12-C11-C16-C15	58.2 (3)
FeI = N3 = C16 = C13	160.1(2)	C12-C13-C14-C15	-54.6 (4)
FeI = N3 = CI / = CI8	-39.6(3)	C13 - C14 - C15 - C16	53.5 (4)
FeI = N4 = C18 = C17	10.4 (3)	C14 - C15 - C16 - N3	-1/5.9(3)
Fel—N4—C18—C19	-169.2(2)		-55.7 (4)
Fel—N4—C26—C21	165.7 (2)	C16 - N3 - C17 - C18	-169.4 (2)
re1 - N4 - C26 - C25	-13.3(4)	C10-C11-C12-C13	-59.2 (3)
CII - FeI - OI - Fe2	149.00 (17)	C1/-N3-C16-C11	165.9 (2)
Cl2—Fe2—O1—Fel	-136.6(2)	C1 / - N3 - C16 - C15	-/1.5 (3)
Cl3—Fe2—O1—Fe1	100.9 (2)	C17 - C18 - C19 - C20	-178.2(3)
Cl4—Fe2—O1—Fe1	-16.9 (3)	C18—N4—C26—C21	-3.6 (4)
N1—Fe1—O1—Fe2	-154.4 (3)	C18—N4—C26—C25	177.4 (3)
N1-C1-C2-C3	176.3 (3)	C18—C19—C20—C21	-1.8(5)

N1—C1—C6—C5	-176.5 (3)	C19—C20—C21—C22	177.8 (3)
N1—C1—C6—C7	2.9 (5)	C19—C20—C21—C26	-0.4 (5)
N1-C9-C10-N2	20.6 (4)	C20—C21—C22—C23	-178.5 (3)
N2—Fe1—O1—Fe2	-80.2 (3)	C20-C21-C26-N4	3.2 (4)
N2-C11-C12-C13	-179.8 (3)	C20—C21—C26—C25	-177.8 (3)
N2-C11-C16-N3	-52.8 (3)	C21—C22—C23—C24	-2.6 (5)
N2-C11-C16-C15	-176.9 (2)	C22-C21-C26-N4	-175.2 (3)
N3—Fe1—O1—Fe2	-2.1 (3)	C22—C21—C26—C25	3.8 (4)
N3—C17—C18—N4	19.0 (4)	C22—C23—C24—C25	1.8 (5)
N3—C17—C18—C19	-161.3 (3)	C23—C24—C25—C26	1.9 (5)
N4—Fe1—O1—Fe2	71.5 (3)	C24—C25—C26—N4	174.4 (3)
N4—C18—C19—C20	1.4 (5)	C24—C25—C26—C21	-4.6 (5)
C1—N1—C9—C8	0.4 (5)	C26—N4—C18—C17	-179.1 (3)
C1—N1—C9—C10	178.3 (3)	C26—N4—C18—C19	1.3 (4)
C1—C2—C3—C4	1.5 (6)	C26—C21—C22—C23	-0.2 (5)
C1—C6—C7—C8	0.2 (5)	C27A—C15—C27B—C16A	64.6 (14)
C2-C1-C6-C5	3.2 (5)	C27A—Cl5—C27B—Cl7A	-64.3 (12)
C2-C1-C6-C7	-177.4 (3)	C27A—Cl6A—C27B—Cl5	-62.5 (14)
C2—C3—C4—C5	0.8 (6)	C27A—Cl6A—C27B—Cl7A	61.7 (12)
C3—C4—C5—C6	-1.0 (6)	C27A—Cl7A—C27B—Cl5	66.9 (12)
C4—C5—C6—C1	-1.0 (5)	C27A—Cl7A—C27B—Cl6A	-66.1 (12)
C4—C5—C6—C7	179.6 (4)	C27B—Cl5—C27A—Cl6A	-51.8 (12)
C5—C6—C7—C8	179.6 (3)	C27B—C15—C27A—C17A	67.5 (14)
C6—C1—C2—C3	-3.4 (5)	C27B—Cl6A—C27A—Cl5	54.6 (12)
C6—C7—C8—C9	-2.8 (5)	C27B—Cl6A—C27A—Cl7A	-61.3 (14)
C7—C8—C9—N1	2.6 (5)	C27B—Cl7A—C27A—Cl5	-65.1 (12)
C7—C8—C9—C10	-175.2 (3)	C27B—Cl7A—C27A—Cl6A	56.1 (12)
C8—C9—C10—N2	-161.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
N3—H3····Cl4	0.80 (4)	2.60 (4)	3.378 (3)	167 (3)
C27 <i>A</i> —H27 <i>A</i> ···Cl2 ⁱ	1.00	2.41	3.30 (2)	149

Symmetry code: (i) -x+1/2, -y+1, z+1/2.