

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 24 May 2017 Accepted 31 May 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

‡ Additional correspondence author, e-mail: thahira@upm.edu.my.

Keywords: crystal structure; zinc; hydrogen bonding; thiosemicarbazone; Hirshfeld surface analysis.

CCDC reference: 1553218

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Bis(N'-{(E)-[(2E)-1,3-diphenylprop-2-en-1-ylidene]amino}-N-ethylcarbamimidothioato- $\kappa^2 N'$,S)zinc(II): crystal structure and Hirshfeld surface analysis

Ming Yueh Tan,^{a,b} Karen A. Crouse,^c Thahira B. S. A. Ravoof,^a[‡] Mukesh M. Jotani^d and Edward R. T. Tiekink^e*

^aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia, ^bDepartment of Physical Sciences, Faculty of Applied Sciences and Computing, Tunku Abdul Rahman, University College, 50932 Setapak, Kuala Lumpur, Malaysia, ^cDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia, Department of Chemistry, St Francis Xavier University, PO Box 5000, Antigonish, NS, Canada, B2G 2W5, ^dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and ^eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. *Correspondence e-mail: edwardt@sunway.edu.my

The title Zn^{II} complex, $[Zn(C_{18}H_{18}N_3S)_2]$, (I), features two independent but chemically equivalent molecules in the asymmetric unit. In each, the thiosemicarbazonate monoanion coordinates the Zn^{II} atom via the thiolate-S and imine-N atoms, with the resulting N2S2 donor set defining a distorted tetrahedral geometry. The five-membered ZnSCN₂ chelate rings adopt distinct conformations in each independent molecule, *i.e.* one ring is almost planar while the other is twisted about the Zn-S bond. In the crystal, the two molecules comprising the asymmetric unit are linked by amine-N-H...N(imine) and amine-N-H···S(thiolate) hydrogen bonds *via* an eight-membered heterosynthon, $\{\cdots$ HNCN \cdots HNCS}. The dimeric aggregates are further consolidated by benzene-C-H···S(thiolate) interactions and are linked into a zigzag supramolecular chain along the *c* axis *via* amine- $N-H \cdots S$ (thiolate) hydrogen bonds. The chains are connected into a three-dimensional architecture via phenyl-C-H. $\cdot \cdot \pi$ (phenyl) and $\pi - \pi$ interactions, the latter occurring between chelate and phenyl rings [inter-centroid separation = 3.6873 (11) Å]. The analysis of the Hirshfeld surfaces calculated for (I) emphasizes the different interactions formed by the independent molecules in the crystal and the impact of the π - π interactions between chelate and phenyl rings.

1. Chemical context

Thiosemicarbazone molecules, derived from thiosemicarbazide, H₂N-NH-C(=S)-NH₂, constitute an important class of mixed hard-soft, nitrogen-sulfur donor ligands which have been extensively investigated in their coordination chemistry towards both transition metals (Lobana et al., 2009) and main group elements (Casas et al., 2000). Complexes of thiosemicarbazones, including Zn^{II} complexes (Da Silva et al., 2013), have been evaluated variously as potential anti-cancer (Afrasiabi et al., 2003), anti-viral (Garoufis et al., 2009) and anti-bacterial (Quiroga & Ranninger, 2004) therapeutics for over 50 years (Dilworth & Hueting, 2012). The interesting properties of their metal complexes, such as structural diversity, accessible redox activities, the ability to fine-tune ligand substitution, access to radical species, catalytic properties, distinct spectroscopic properties, etc. afford them many potential advantages over organic-based drugs (van Rijt &

research communications

Sadler, 2009; Meggers, 2009). Recent studies have focused upon their suitability as single-source precursors for ZnS nanomaterials (Pawar *et al.*, 2017). Thiosemicarbazones can exist as thione–thiol tautomers and can bind to a metal centre in neutral or anionic forms as monodentate, bidentate or bridging ligands (Viñuelas-Zahínos *et al.*, 2011). The presence of additional, suitably positioned donor atoms can increase their coordination ability/denticity, giving rise to different coordination geometries, such as tetrahedral, octahedral and pentagonal-bipyramidal. (Umamatheswari *et al.*, 2011). As part of a programme investigating thiosemicarbazones and their metal complexes (Tan *et al.*, 2015), the crystal and molecular structures of the title compound (I) are described, complemented by an analysis of the Hirshfeld surface.

2. Structural commentary

Two independent molecules comprise the asymmetric unit of (I), and these are illustrated in Fig. 1. The mono-anion derived from the thiosemicarbazone ligand is chelating, coordinating the Zn^{II} atom via the thiolate-S and imine-N atoms. Referring to Table 1, the Zn-S bond lengths in the molecules span a narrow range of just over 0.01 Å, i.e. 2.2688 (5) Å for Zn1-S2, to 2.2827 (6) Å for Zn1-S1, whereas the Zn-N bonds show more variability, spanning a range of over 0.02 Å, i.e. 2.0496 (15) Å for Zn2-N12, to 2.0727 (16) Å for Zn2-N9. The similarity in bond lengths extends to the angles subtended at the Zn^{II} atoms which, for the Zn1-containing molecule range from $87.00(5)^{\circ}$ for S2-Zn1-N6, to $134.00(5)^{\circ}$ for S2-Zn1-N3, *i.e.* a range of 47° ; the acute angle is associated with the chelate angle. A slightly narrower range is noted for the Zn2-containing molecule, *i.e.* $85.99 (5)^{\circ}$ for 83-Zn2-N9, to 131.29 (5)° for S3-Zn2-N12, *i.e.* about 45°. The assignment of four-coordinate geometries can be quantified by the values of τ_4 , which range from 1.00 for an ideal tetrahedron to 0.00 for perfect square-planar geometry (Yang et al., 2007). The values of τ_4 in (I) compute to 0.70 and 0.74 for the Zn1and Zn2-containing molecules, respectively, indicating significant distortions from the ideal tetrahedral angles. The

Table 1			
Selected geometric parameters	(Å.	°))

0	1 ()	/	
Zn1-N6	2.0522 (16)	Zn2-N12	2.0496 (15)
Zn1-N3	2.0528 (16)	Zn2-N9	2.0727 (16)
Zn1-S2	2.2688 (5)	Zn2-S3	2.2707 (6)
Zn1-S1	2.2827 (6)	Zn2-S4	2.2823 (5)
N2-C1	1.323 (2)	N8-C37	1.311 (3)
N3-C4	1.315 (2)	N9-C40	1.307 (3)
N5-C19	1.321 (2)	N11-C55	1.309 (2)
N6-C22	1.311 (2)	N12-C58	1.308 (2)
C5-C6	1.342 (3)	C41-C42	1.339 (3)
C23-C24	1.336 (3)	C59-C60	1.344 (3)
S1-Zn1-S2	118.67 (2)	\$3-Zn2-\$4	124.97 (2)
S1-Zn1-N3	87.25 (5)	S3-Zn2-N9	85.99 (5)
S1-Zn1-N6	126.78 (5)	S3-Zn2-N12	131.29 (5)
S2-Zn1-N3	134.00 (5)	S4-Zn2-N9	124.42 (5)
S2-Zn1-N6	87.00 (5)	S4-Zn2-N12	87.23 (5)
N3-Zn1-N6	107.95 (6)	N9-Zn2-N12	105.85 (6)

conformation about each of the imine C = N bonds is *E*, as are the conformations about the ethylene bonds, Table 1.

The thiosemicarbazone ligands chelate the Zn^{II} atoms to form five-membered $ZnSCN_2$ rings. The chelate rings adopt different conformations in each independent molecule. For the Zn1-containing molecule, the Zn1/S1/C1/N2/N3 ring is almost planar (r.m.s. deviation = 0.005 Å) but the Zn1/S2/C19/

FIGURO 1	

The molecular structures of the two molecules comprising the asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Table 2				
Selected d	lihedral	angles	(°)	for (I).

Dihedral angle	Zn1,S1-ring	Zn1,S2-ring	Zn2,S3-ring	Zn2,S4-ring
Zn,S,C,N_2 /central phenyl	74.54 (8)	71.88 (8)	64.79 (9)	64.53 (8)
$Zn_{,S,C,N_{2}}/terminal phenyl$	28.13 (8)	20.17 (10)	33.66 (11)	7.89 (9)
Central phenyl/terminal phenyl	62.67 (10)	82.41 (11)	84.36 (13)	66.04 (10)

Table 3

A comparison of some physical properties of the independent molecules comprising the asymmetric unit of (I).

Molecule	volume, $V(\text{\AA}^3)$	area, A (Å ²)	$A{:}V$	globularity, G	asphericity, Ω
Zn1-molecule	847.78	646.01	0.762	0.671	0.062
Zn2-molecule	853.45	615.74	0.722	0.707	0.065

N5/N6 ring is twisted about the Zn1-S2 bond. A similar situation pertains to the Zn2-containing molecule where there is a small twist about the Zn2-S3 bond in the Zn2/S3/C37/N8/N9 ring and the Zn2/S4/C55/N11/N12 ring is planar to within an r.m.s. deviation of 0.008 Å. To a first approximation, for each thiosemicarbazone ligand, all atoms but the terminal ethyl and central phenyl rings lie in a plane. This is quantified in the dihedral angle between each five-membered chelate ring and the central and terminal rings of the prop-2-en-1-ylidene substituent, as summarized in Table 2. The different conformations of the peripheral groups are highlighted in the overlay diagram, Fig. 2.

Some physical properties for the two independent molecules in (I), calculated in *Crystal Explorer* (Wolff *et al.*, 2012) and *PLATON* (Spek, 2009), are included in Table 3. These data indicate small but significant differences between the independent molecules, most notably, the Zn1-containing molecule is less spherical than the Zn2-containing molecule.

Figure 2

Structural overlay diagram of the two independent molecules of (I): Zn1containing molecule (red image) and Zn2-containing molecule (blue). The molecules have been overlapped so that the two planar chelate rings are coincident.

3. Supramolecular features

The most prominent feature of the molecular packing is the formation of an eight-membered heterosynthon, $\{\cdots HNCN \cdots HNCS\}$, mediated by amine-N-H···N(imine)

The molecular packing in (I): (a) a view of the supramolecular dimer sustained by amine-N-H···N(imine) and amine-N-H···S(thiolate) hydrogen bonds between the independent molecules, shown as blue and orange dashed lines, respectively, (b) a view of the supramolecular chain whereby the dimers in (a) are connected via amine-N-H···S(thiolate) hydrogen bonds and (c) a view of the unit-cell contents shown in projection down the c axis. The π - π and C-H··· π interactions are shown as purple and pink dashed lines, respectively.

research communications

Figure 4

Hirshfeld surface plots for the (a)-(d) Zn1-containing molecule and (e)-(h) Zn2-containing molecule, plotted over d_{norm} in the ranges (a) -0.210 to +1.800 au, (d) -0.055 to +1.800 au, (e) -0.112 to +1.800 au and (h) -0.210 to +1.800 au and plotted over the electrostatic potential in the ranges (b) and (c) -0.118 to +0.058 au and (f) and (g) -0.046 to +0.088 au. In (b), (c), (f) and (g), the donors and acceptors are represented with blue and red regions, respectively.

and amine-N-H···S(thiolate) hydrogen-bonds which occur between the two molecules comprising the asymmetric unit, Fig. 3*a* and Table 4. Additional benzene-C-H···S(thiolate) interactions stabilize the dimeric aggregate, Table 4. The dimeric aggregates thus formed are connected into a zigzag supramolecular chain along the c axis via additional amine- $N-H\cdots$ S(thiolate) hydrogen-bonds, Fig. 3b. Chains are connected via π - π interactions occurring between Zn2containing molecules, involving chelate rings, comprising the Zn2/S4/C55/N11/N12 atoms and phenyl (C61-C66) rings. Precedents for chelate/arene ring interactions have been established in the literature (Tomić et al., 2006; Tiekink, 2017). In the present case, the inter-centroid separation between rings is 3.6873 (11) Å and the angle between rings is 7.89 (9) $^{\circ}$; symmetry operation: -x, 1 - y, 1 - z. Additional interactions between chains are of the type phenyl-C-H··· π (phenyl) involving residues of the Zn1-containing molecule exclusively, Table 4. The result of the identified intermolecular interactions is the formation of a three-dimensional architecture, Fig. 3c.

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surface calculations of (I), and for each of the Zn1- and Zn2-molecules, were performed according to a

Table 4 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C31-C36 and C13-C18 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1N\cdots S3$	0.87 (2)	2.65 (2)	3.5077 (19)	170 (2)
$N7 - H7N \cdot \cdot \cdot N2$	0.87(2)	2.10(2)	2.941 (2)	164 (2)
$N10-H10N \cdot \cdot \cdot S2^{i}$	0.87(1)	2.59 (2)	3.318 (2)	142 (2)
C11-H11S4	0.95	2.86	3.715 (2)	151
$C8-H8\cdots Cg1^{ii}$	0.95	2.73	3.608 (2)	154
$C32-H32\cdots Cg2^{iii}$	0.95	2.64	3.532 (2)	157

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{3}{2}$, $-z + \frac{1}{2}$; (ii) $x, -y, z - \frac{1}{2}$; (iii) x, -y - 1, $z - \frac{1}{2}$.

recent publication on related dithiocarbamate ligands (Jotani et al., 2016). From the views of the Hirshfeld surfaces mapped over d_{norm} in Fig. 4a and e, the bright-red spots near the amine-H1N, H7N, H10N, imime-N2 and thiolate-S2 and S3 atoms indicate their participation in $N-H \cdots N$ and $N-H \cdots S$ bonds between the two independent molecules. In the views of the Hirshfeld surfaces mapped over electrostatic potential for the Zn1-molecule in Fig. 4b and c, and for the Zn2-molecule in Fig. 4f and g, the hydrogen-bond donors and acceptors are represented by blue and red regions, respectively. Greater insight into intermolecular interactions in the crystal can be obtained by modifying the mapping range for d_{norm} , as shown in Fig. 4d and h, which reveals additional characteristic spots on the surface. A pair of red spots near amine-HN4 and near phenyl-C7 and C8 in Fig. 4d indicate the presence of short inter-atomic $C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$ contacts in the crystal, see Table 5 for data. The tiny, faint-red spots present near the amine-N1 and N7, phenyl-C32, C66 and C77, thiolate-S3, ethene-C5 and H6 atoms reflect the short inter-atomic $C \cdots N$, $C \cdots S$ and $C \cdots H$ contacts, Table 5. The comparatively weak $C - H \cdots S$ interaction influential between the atoms of the independent molecules is represented by faint-red spots near atoms H11 and S3 in Fig. 4a and e, respectively. The immediate environments about the Zn1- and Zn2-molecules within shapeindex-mapped Hirshfeld surfaces highlighting hydrogenbonding and $C-H\cdots\pi$ interactions are illustrated in Fig. 5. The N-H···S and N-H···N hydrogen bonds linking the independent molecules are shown in Fig. 5a and 5b while the $C-H\cdots\pi$ and their reciprocal, *i.e.* $\pi\cdots H-C$, contacts involving phenyl-C8 and C32 atoms as donors and phenyl (C31-C36 and C13–C18) rings as acceptors are shown in Fig. 5c.

Figure 5

Views of Hirshfeld surface mapped over the shape-index property about a reference (a) Zn1-molecule and (b) Zn2-molecule, showing hydrogen bonds as black dashed lines and (c) Zn2-molecule showing $C-H\cdots\pi$ and its reciprocal $\pi\cdots H-C$ interactions as red and black dotted lines, respectively.

research communications

Table 5
Summary of short inter-atomic contacts (Å) in (I).

Contact	distance	symmetry operation
Zn1···H17	3.44	$\frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z$
$Zn2 \cdot \cdot \cdot H12$	3.41	x, y, z
$Zn2 \cdot \cdot \cdot C11$	3.942 (2)	x, y, z
$Zn2 \cdot \cdot \cdot C12$	3.906 (2)	x, y, z
$Zn2 \cdot \cdot \cdot C65$	3.735 (2)	-x, 1-y, 1-z
$Zn2 \cdot \cdot \cdot C66$	3.938 (2)	-x, 1-y, 1-z
$H3A \cdot \cdot \cdot H30$	2.27	$\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$
H53···H53	2.23	$-x, y, \frac{1}{2} - z$
H45···H54	2.37	-x, 2 - y, 1 - z
$C5 \cdot \cdot \cdot N7$	3.214 (2)	<i>x</i> , <i>y</i> , <i>z</i>
$C71 \cdot \cdot \cdot N1$	3.223 (3)	-x, 1-y, 1-z
C66···S3	3.415 (2)	x, 1 - y, 1 - z
C3···H30	2.87	$\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$
$C6 \cdot \cdot \cdot H4N$	2.816 (15)	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$
$C7 \cdot \cdot \cdot H4N$	2.570 (12)	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$
$C8 \cdot \cdot \cdot H4N$	2.652 (15)	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$
C19· · ·H18	2.85	$\frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z$
C32···H6	2.74	$\frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z$
C33· · ·H6	2.87	$\frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z$
C43···H3B	2.85	x, 1 + y, z
C44···H2 <i>B</i>	2.87	x, 1 + y, z
C48···H3B	2.82	x, 1 + y, z
C51···H70	2.80	-x, 2 - y, 1 - z
C60· · ·H45	2.87	-x, 2 - y, 1 - z

The overall two-dimensional fingerprint plots for each of the Zn1- and Zn2-molecules, and for the overall system, *i.e.* (I), are shown in Fig. 6a. In addition, the fingerprint plots delineated into $H \cdots H$, $S \cdots H/H \cdots S$, $N \cdots H/H \cdots N$, $C \cdots H/H \cdots C$, $C \cdots N/N \cdots C$ and $C \cdots C$ contacts (McKinnon *et al.*, 2007) are illustrated in Fig. 6b-g, respectively; their relative contributions are summarized quantitatively in Table 6. Owing

Figure 7

Fingerprint plots for (I) delineated into (a) $S \cdots C/C \cdots 2$, (b) $Zn \cdots H/H \cdots Zn$ and (c) $Zn \cdots C/C \cdots Zn$ contacts.

Table 6

Percentage	contributions	of	inter-atomic	contacts	to	the	Hirshfeld
surfaces for	the Zn1-molec	ule,	Zn2-molecul	e and (I).			

Contact	distance	symmetry operation	
	Zn1-molecule	Zn2-molecule	(I)
$H \cdots H$	55.4	63.6	64.5
$S \cdot \cdot \cdot H/H \cdot \cdot \cdot S$	12.1	11.2	8.5
$N{\cdots}H/H{\cdots}N$	5.3	2.5	3.0
$C{\cdot}{\cdot}{\cdot}H/H{\cdot}{\cdot}{\cdot}C$	24.1	17.3	20.5
$C{\cdots}N/N{\cdots}C$	0.8	2.5	1.2
$C{\cdots}C$	1.5	1.0	1.1
$C \cdot \cdot \cdot S/S \cdot \cdot \cdot C$	0.0	0.6	0.3
$Zn{\cdot}\cdot{\cdot}H/H{\cdot}\cdot{\cdot}Zn$	0.8	0.6	0.5
$Zn{\cdots}C/C{\cdots}Zn$	0.0	0.7	0.4

to their significance upon the molecular packing, the fingerprint plots delineated into $C \cdots S/S \cdots C$, $Zn \cdots C/C \cdots Zn$ and $Zn \cdots H/H \cdots Zn$ contacts for (I) are also illustrated in Fig. 7.

The short inter-atomic H...H contacts for Zn1- and Zn2molecules, Table 5, results in the peak at $d_e + d_i \sim 2.2$ Å, appearing broader for the former and narrower for the latter molecule in Fig. 6b. In the fingerprint plot delineated into $S \cdots H/H \cdots S$ contacts, Fig. 6c, the distinct distribution of the points such as the well separated donor-acceptor regions for the Zn1-molecule and the adjoining regions for the Zn2molecule are entirely consistent with the different patterns of contacts formed by these. A pair of thin spikes at $d_e + d_i$ \sim 2.7 Å in the respective fingerprint plots in the donor and acceptor regions for the Zn1- and Zn2-molecules represents the N-H···S hydrogen bond linking the two independent molecules. This pair of spikes disappears in the plot for the overall system. Another N-H···S hydrogen bond is recognized in the plots as differently shaped donor-acceptor regions of the Zn1- and Zn2-molecules with their tips at $d_e + d_i$ ~2.6 Å. As the contribution from $S \cdots H/H \cdots S$ contacts to the Hirshfeld surfaces of the Zn1- and Zn2-molecules involves $N-H \cdots S$ hydrogen bonds and comparatively weak $C-H \cdots S$ interactions, the percentage contribution from these contacts to the Hirshfeld surface of the overall system is reduced to 8.5% due to disappearance of points corresponding to interlinking $N-H \cdots S$ hydrogen bond. In Fig. 6d, a pair of spikes at $d_e + d_i \sim 2.1$ Å in the acceptor and donor regions of the Zn1and Zn2-molecules, respectively, results from the linking N- $H \cdots N$ hydrogen bond between the independent molecules; the spikes disappear in the plot for the overall system.

The greater contribution, *i.e.* 24.1%, from C···H/H···C contacts to the Hirshfeld surface for the Zn1-molecule *cf.* 17.3% for the Zn2-molecule is due to the greater involvement of atoms of the Zn1-molecule in C-H··· π interactions and short inter-atomic C···H/H···C contacts, Table 5. In the fingerprint plot delineated into C···H/H···C contacts for the Zn1 molecule, Fig. 6*e*, a pair of forceps-like tips at $d_e + d_i \sim 2.6$ Å represent a short inter-atomic C···H contact formed between the phenyl-C7 and amino-H7N atoms, Table 5. The other short inter-atomic C···H contacts involving the Zn1-molecule are merged within the plot. Similarly, a pair of forceps-like tips in the respective plot for Zn2-molecule at

 $d_e + d_i \sim 2.8$ Å reflect the short inter-atomic C···H contact between the phenyl-C51 and -H70 atoms, with the other short contacts merged within the plot. In Fig. 6*f*, the short interatomic C···N contacts between atoms of the Zn1- and Zn2molecules, Table 5, appear as a pair of short spikes with their tips at $d_e + d_i \sim 3.2$ Å. The small contributions from C···C contacts for the Zn1- and Zn2-molecules and for the overall system, Fig. 6*g*, suggests little impact on the molecular packing.

The presence of a short inter-atomic $C \cdots S$ contact between the thiolate-S3 and phenyl-C66 atoms is evident from the typical H-shaped plot in Fig. 7a and makes a contribution of 0.6% to the Hirshfeld surface of the Zn2-molecule. In the fingerprint plot delineated into Zn···H/H···Zn contacts, Fig. 7b, the tips at $d_e + d_i < 3.45$ Å with the shape of a folded sheet with a low density of points indicate the short contacts between these atoms. The presence of π - π stacking between chelate ring Zn2/S4/C55/N11/N12 and phenyl (C61-C66) rings of Zn2-molecules is evident from the presence of short interatomic $Zn \cdots C/C \cdots Zn$ contacts, Table 5. In the fingerprint plot delineated into $Zn \cdot \cdot \cdot C/C \cdot \cdot \cdot Zn$ contacts, Fig. 7c, these contacts are reflected by a pair of points with an S-shaped distribution at around $d_e + d_i \sim 1.9$ to 2.1 Å. This $\pi - \pi$ stacking is also apparent from the small but effective contributions from $Zn \cdots C/C \cdots Zn$ and $C \cdots N/N \cdots C$ contacts to the Hirshfeld surface of the Zn2-molecule, Table 6.

5. Database survey

An analysis of the Cambridge Crystallographic Database (Groom et al., 2016) indicates there are nine literature precedents for the structure of (I), i.e. of general formula $Zn[SC(NHR)=NN=CR'R'']_2$ reflecting the interest in this class of compound. All of the structures resemble the molecular geometry described above for (I). The substituents at the hydrazone-C atom can be equivalent and alkyl, *i.e.* R' = R''= Me for the R = Ph compound (Tan *et al.*, 2009), or aryl, *i.e.* R'= R'' = Ph for the R = 3-FPh compound (Ferraz *et al.*, 2012) or mixed alkyl/aryl, *i.e.* R' = Me and R'' = Ph for the R = Phcompound (Wang et al., 2009); the latter structure has two molecules in the asymmetric unit. The R' and R'' groups can be part of a ring, e.g. cyclohexyl in the structure with R = Me(Vikneswaran et al., 2016). In most examples, the N-bound group is any with the exceptions being the aforementioned structure and the cyclopentyl analogue (Vikneswaran et al., 2016). Clearly, there is immense scope for derivatization of these species which may assist in the optimization of their biological properties.

6. Synthesis and crystallization

Analytical grade reagents were used as procured without further purification. Equimolar quantities of 4-ethyl-3-thiosemicarbazide (1.1919 g, 0.01 mol) and 1,3-diphenylprop-2-en-1-one (2.0826 g, 0.01 mol) were dissolved in heated absolute ethanol (30 ml) separately and the mixtures were mixed with stirring. About five drops of concentrated hydrochloric acid

Experimental details.	
Crystal data	
Chemical formula	$[Zn(C_{36}H_{36}N_6S_2)]$
M _r	682.20
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	38.3604 (9), 13.6382 (3), 26.3548 (6)
β (°)	91.069 (2)
$V(Å^3)$	13785.6 (5)
Ζ	16
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.87
Crystal size (mm)	$0.30 \times 0.30 \times 0.30$
Data collection	
Diffractometer	Agilent Technologies SuperNova Dual diffractometer with Atlas detector
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Agilent, 2012)
T_{\min}, T_{\max}	0.782, 0.830
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	37452, 15816, 12855
R _{int}	0.030
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.084, 1.04
No. of reflections	15816
No. of parameters	827
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	1.24, -0.48
	· · · · ·

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

were added to the mixture to catalyse the reaction. The reaction mixture was kept under heating and stirring for about 10 mins, followed by stirring for 1 h at room temperature. The resulting yellow precipitate was filtered off, washed with chilled absolute ethanol and dried in vacuo. The resulting precipitate, N-ethyl-N-(1,3-diphenyl-2-propen-1-one)thiosemicarbazide (0.3090, 0.01 mol), was used without further purification and was dissolved in heated absolute ethanol (50 ml). Zn(CH₃COO)₂·2H₂O (0.1098 g, 0.50 mmol) was dissolved separately in heated absolute ethanol (30 ml) and then added into an ethanolic N-ethyl-N-(1,3-diphenyl-2propen-1-one)thiosemicarbazide solution. The mixture was heated and stirred for about 10 mins, followed by stirring for 1 h at room temperature. The obtained yellow precipitate was filtered, washed with cold ethanol and dried in vacuo. Single crystals were grown at room temperature from the slow evaporation of a solution of dimethylformamide and acetonitrile (1:1 v/v 20 ml).

7. Refinement

Table 7

Crystal data, data collection and structure refinement details are summarized in Table 7. The carbon-bound H atoms were placed in calculated positions (C–H = 0.95-0.99 Å) and were

included in the refinement in the riding-model approximation, with $U_{iso}(H)$ set to 1.2–1.5 $U_{eq}(C)$. The nitrogen-bound H atoms were located in a difference-Fourier map but were refined with a distance restraint of N-H = 0.88±0.01 Å, and with $U_{iso}(H)$ set to 1.2 $U_{eq}(N)$.

Acknowledgements

We thank the staff of the University of Malaya's X-ray diffraction laboratory for the data collection. The authors are also grateful to Sunway University (INT-RRO-2017-096) for supporting this research.

References

- Afrasiabi, Z., Sinn, E., Padhye, S., Dutta, S., Padhye, S., Newton, C., Anson, C. E. & Powell, A. K. (2003). J. Inorg. Biochem. 94 306–314.
- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Casas, J. S., Garc\?ía-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.
- Da Silva, J. G., PerdigÃo, C. C. H., Speziali, N. L. & Beraldo, H. (2013). J. Coord. Chem. 66, 385-401.
- Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3-15.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ferraz, K. S. O., Silva, N. F., Da Silva, J. G., Speziali, N. L., Mendes, I. C. & Beraldo, H. (2012). J. Mol. Struct. 1008, 102–107.
- Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557– 559.
- Garoufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2009). *Coord. Chem. Rev.* **253**, 1384–1397.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085–1092.
- Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Meggers, E. (2009). Chem. Commun. pp. 1001-1010.
- Pawar, A. S., Mlowe, S., Garje, S. S., Akerman, M. P. & Revaprasadu, N. (2017). *Inorg. Chim. Acta*, 463, 7–13.
- Quiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248 119–133.
- Rijt, S. H. van & Sadler, P. J. (2009). Drug Discovery Today, 14, 1089– 1097.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o1047–o1048.
- Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2009). Acta Cryst. E65, m969.
- Tiekink, E. R. T. (2017). Coord. Chem. Rev. http://dx.doi.org/10.1016/ j.ccr.2017.01.009.
- Tomić, Z. D., Sredojević, D. & Zarić, S. D. (2006). *Cryst. Growth Des.* **6**, 29–31.
- Umamatheswari, S., Pratha, J. J. & Kabilan, S. (2011). J. Mol. Struct. 989, 1–9.
- Vikneswaran, R., Eltayeb, N. E., Ramesh, S. & Yahya, R. (2016). Polyhedron, 105, 89–95.
- Viñuelas-Zahínos, E., Luna-Giles, F., Torres-García, P. & Fernández-Calderón, M. C. (2011). Eur. J. Med. Chem. 46, 150–159.
- Wang, H., Zhao, P., Shao, D., Zhang, J. & Zhu, Y. (2009). Struct. Chem. 20, 995–1003.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). University of Western Australia.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). *Dalton Trans.* pp. 955–964.

Acta Cryst. (2017). E73, 1001-1008 [https://doi.org/10.1107/S2056989017008064]

Bis(N'-{(E)-[(2E)-1,3-diphenylprop-2-en-1-ylidene]amino}-N-ethylcarbamimido-thioato- $\kappa^2 N'$,S)zinc(II): crystal structure and Hirshfeld surface analysis

Ming Yueh Tan, Karen A. Crouse, Thahira B. S. A. Ravoof, Mukesh M. Jotani and Edward R. T. Tiekink

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *QMol* (Gans & Shalloway, 2001) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $Bis(N'-\{(E)-[(2E)-1,3-diphenylprop-2-en-1-ylidene]amino\}-N-ethylcarbamimidothioato-\kappa^2N',S)zinc(II)$

Crystal data

 $[Zn(C_{36}H_{36}N_6S_2)]$ $M_r = 682.20$ Monoclinic, C2/c a = 38.3604 (9) Å b = 13.6382 (3) Å c = 26.3548 (6) Å $\beta = 91.069$ (2)° V = 13785.6 (5) Å³ Z = 16

Data collection

Agilent Technologies SuperNova Dual diffractometer with Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm⁻¹ ω scan Absorption correction: gaussian (CrysAlis PRO; Agilent, 2012)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.084$ S = 1.0415816 reflections F(000) = 5696 $D_x = 1.315 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 15819 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.87 \text{ mm}^{-1}$ T = 100 KCube, yellow $0.30 \times 0.30 \times 0.30 \text{ mm}$

 $T_{\min} = 0.782, T_{\max} = 0.830$ 37452 measured reflections 15816 independent reflections 12855 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$ $\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 3.1^{\circ}$ $h = -49 \rightarrow 48$ $k = -17 \rightarrow 14$ $l = -34 \rightarrow 22$

827 parameters 4 restraints H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0268P)^2 + 19.4617P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta\rho_{\rm max} = 1.24$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

		1 1	1 1 1		
	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.18173 (2)	0.22341 (2)	0.28606 (2)	0.01520 (6)	
S 1	0.15381 (2)	0.14511 (4)	0.35017 (2)	0.02303 (12)	
S2	0.18175 (2)	0.15280 (4)	0.20811 (2)	0.01718 (10)	
N1	0.11691 (5)	0.24993 (13)	0.41537 (7)	0.0209 (4)	
H1N	0.1105 (6)	0.3059 (10)	0.4281 (8)	0.025*	
N2	0.14118 (4)	0.34387 (12)	0.35625 (6)	0.0167 (3)	
N3	0.16200 (4)	0.35198 (12)	0.31407 (6)	0.0151 (3)	
N4	0.23674 (4)	0.17761 (14)	0.15053 (6)	0.0215 (4)	
H4N	0.2574 (3)	0.2004 (17)	0.1460 (9)	0.026*	
N5	0.24781 (4)	0.22317 (12)	0.23164 (6)	0.0153 (3)	
N6	0.23457 (4)	0.24038 (12)	0.27890 (6)	0.0138 (3)	
C1	0.13684 (5)	0.25411 (15)	0.37405 (7)	0.0168 (4)	
C2	0.10863 (6)	0.16246 (16)	0.44418 (8)	0.0240 (5)	
H2A	0.1050	0.1069	0.4205	0.029*	
H2B	0.0866	0.1732	0.4624	0.029*	
C3	0.13712 (6)	0.1363 (2)	0.48203 (10)	0.0404 (6)	
H3A	0.1590	0.1260	0.4642	0.061*	
H3B	0.1308	0.0761	0.4999	0.061*	
H3C	0.1401	0.1898	0.5065	0.061*	
C4	0.17428 (5)	0.44016 (14)	0.30504 (7)	0.0151 (4)	
C5	0.17094 (5)	0.52141 (15)	0.34000 (7)	0.0163 (4)	
Н5	0.1634	0.5076	0.3734	0.020*	
C6	0.17784 (5)	0.61502 (15)	0.32811 (7)	0.0170 (4)	
H6	0.1847	0.6271	0.2942	0.020*	
C7	0.17592 (5)	0.70083 (15)	0.36164 (8)	0.0169 (4)	
C8	0.18236 (5)	0.79338 (15)	0.34113 (8)	0.0194 (4)	
H8	0.1871	0.7992	0.3060	0.023*	
C9	0.18193 (5)	0.87665 (16)	0.37105 (9)	0.0239 (5)	
H9	0.1861	0.9391	0.3564	0.029*	
C10	0.17540 (6)	0.86904 (16)	0.42231 (9)	0.0263 (5)	
H10	0.1753	0.9260	0.4430	0.032*	
C11	0.16894 (6)	0.77787 (17)	0.44327 (8)	0.0274 (5)	
H11	0.1644	0.7727	0.4785	0.033*	
C12	0.16906 (5)	0.69427 (16)	0.41363 (8)	0.0221 (5)	
H12	0.1645	0.6322	0.4285	0.026*	
C13	0.19356 (5)	0.45041 (14)	0.25683 (7)	0.0141 (4)	
C14	0.17819 (5)	0.41984 (15)	0.21118 (7)	0.0177 (4)	

H14	0.1549	0.3964	0.2106	0.021*
C15	0.19675 (6)	0.42343 (15)	0.16651 (8)	0.0210 (4)
H15	0.1861	0.4036	0.1354	0.025*
C16	0.23107 (5)	0.45622 (15)	0.16752 (8)	0.0205 (4)
H16	0.2441	0.4569	0.1372	0.025*
C17	0.24639 (5)	0.48789 (15)	0.21253 (8)	0.0188 (4)
H17	0.2698	0.5109	0.2129	0.023*
C18	0.22768 (5)	0.48614 (14)	0.25713 (7)	0.0156 (4)
H18	0.2381	0.5092	0.2879	0.019*
C19	0.22494 (5)	0.18887 (14)	0.19800 (7)	0.0158 (4)
C20	0.21685 (6)	0.1434 (2)	0.10634 (8)	0.0307(5)
H20A	0.1958	0.1847	0.1016	0.037*
H20B	0 2091	0.0751	0 1121	0.037*
C21	0.23816 (8)	0.1477(3)	0.05985 (9)	0.0517(8)
H21A	0.2450	0.2157	0.0534	0.078*
H21R	0.2245	0.1227	0.0309	0.078*
H21C	0.2591	0.1073	0.0647	0.078*
C22	0.2551 (5)	0.1075 0.27184 (14)	0.0047 0.31400 (7)	0.078
C22	0.23031(5) 0.24220(5)	0.27104(14) 0.20702(15)	0.31400(7) 0.36244(7)	0.0139(4)
U23	0.24220 (3)	0.29792 (13)	0.30244 (7)	0.0100 (4)
П23 С24	0.2179	0.2070 0.23405(17)	0.3003	0.023°
C24	0.23988 (0)	0.33493(17)	0.40210 (8)	0.0239 (3)
П24 С25	0.2643	0.3432 0.26281 (17)	0.3990 0.45027 (8)	0.029°
C23	0.24420 (0)	0.30381(17)	0.43037(8)	0.0201(3)
C26	0.20847 (6)	0.37796 (18)	0.45508 (8)	0.0300 (5)
H26	0.1933	0.3694	0.4271	0.036*
C27	0.1948/(/)	0.4042 (2)	0.50186 (9)	0.0386 (6)
H27	0.1705	0.4139	0.5048	0.046*
C28	0.21669 (7)	0.4165 (2)	0.54402 (9)	0.0422 (7)
H28	0.2073	0.4339	0.5759	0.051*
C29	0.25221 (7)	0.4033 (2)	0.53937 (9)	0.0420 (7)
H29	0.2672	0.4112	0.5681	0.050*
C30	0.26593 (7)	0.3784 (2)	0.49281 (9)	0.0354 (6)
H30	0.2904	0.3713	0.4897	0.043*
C31	0.29471 (5)	0.28225 (15)	0.30474 (7)	0.0174 (4)
C32	0.31570 (5)	0.19919 (16)	0.30292 (7)	0.0201 (4)
H32	0.3059	0.1363	0.3086	0.024*
C33	0.35100 (6)	0.20793 (17)	0.29278 (8)	0.0251 (5)
H33	0.3652	0.1510	0.2919	0.030*
C34	0.36554 (6)	0.29898 (18)	0.28396 (9)	0.0297 (5)
H34	0.3895	0.3045	0.2759	0.036*
C35	0.34490 (6)	0.38236 (18)	0.28701 (9)	0.0281 (5)
H35	0.3549	0.4452	0.2818	0.034*
C36	0.30974 (5)	0.37415 (16)	0.29771 (8)	0.0218 (4)
H36	0.2958	0.4315	0.3003	0.026*
Zn2	0.09256 (2)	0.62509 (2)	0.50259 (2)	0.01479 (6)
S3	0.09646 (2)	0.48949 (4)	0.45303 (2)	0.01870 (11)
S4	0.13339 (2)	0.67287 (4)	0.56165 (2)	0.01954 (11)
N7	0.08819 (4)	0.49976 (13)	0.35350 (6)	0.0174 (4)

H7N	0.1005 (5)	0.4464 (11)	0.3560 (8)	0.021*
N8	0.07995 (4)	0.64722 (12)	0.39142 (6)	0.0158 (3)
N9	0.08139 (4)	0.70030 (12)	0.43591 (6)	0.0154 (3)
N10	0.11345 (5)	0.74709 (17)	0.64894 (7)	0.0315 (5)
H10N	0.1359 (3)	0.7553 (19)	0.6528 (9)	0.038*
N11	0.06752 (4)	0.70684 (13)	0.59836 (6)	0.0185 (4)
N12	0.05551 (4)	0.66810(12)	0.55301 (6)	0.0150 (3)
C37	0.08771 (5)	0.55407 (15)	0.39636 (7)	0.0151 (4)
C38	0.08438 (6)	0.54449 (17)	0.30322 (7)	0.0220 (5)
H38A	0.0963	0.5030	0.2781	0.026*
H38B	0.0959	0.6095	0.3035	0.026*
C39	0.04633 (6)	0.5567(2)	0.28717 (8)	0.020 0.0317(5)
H39A	0.0351	0.4922	0.2855	0.048*
H39R	0.0449	0.5878	0.2537	0.048*
H39C	0.0344	0.5978	0.3119	0.048*
C40	0.07469 (5)	0.3978 0.79387 (15)	0.3119 0.43138(7)	0.040 0.0157(4)
C40	0.07409(5)	0.75367(15) 0.85264(15)	0.43130(7) 0.47690(7)	0.0137(4)
U41	0.07700 (3)	0.83204 (13)	0.47090(7)	0.0101 (4)
П 4 1 С42	0.0690	0.0231 0.04250(15)	0.3033	0.022°
U42	0.00303(3)	0.94239 (13)	0.46230(7)	0.0191(4)
П42 С42	0.0524	0.9710	0.4338	0.023
C45	0.00307(0)	0.99959 (10)	0.32930 (8)	0.0234(3)
C44	0.04271(7)	1.07947 (17)	0.55472 (9)	0.0555 (0)
H44	0.0270	1.0901	0.5078	0.040^{+}
C45	0.04319 (10)	1.1348 (2)	0.57862 (11)	0.0568 (9)
H45	0.0276	1.1884	0.5819	0.068*
C46	0.06614 (12)	1.1125 (2)	0.61746 (11)	0.0708 (12)
H46	0.0666	1.1511	0.6474	0.085*
C47	0.08860 (10)	1.0336 (2)	0.61298 (10)	0.0592 (10)
H47	0.1044	1.0182	0.6400	0.071*
C48	0.08810 (7)	0.97724 (18)	0.56942 (8)	0.0348 (6)
H48	0.1035	0.9231	0.5667	0.042*
C49	0.06507 (5)	0.83867 (15)	0.38153 (7)	0.0178 (4)
C50	0.08664 (6)	0.90851 (16)	0.36002 (8)	0.0221 (5)
H50	0.1071	0.9298	0.3777	0.027*
C51	0.07828 (7)	0.94734 (17)	0.31242 (8)	0.0307 (5)
H51	0.0934	0.9938	0.2973	0.037*
C52	0.04817 (8)	0.91847 (19)	0.28721 (9)	0.0383 (6)
H52	0.0423	0.9456	0.2550	0.046*
C53	0.02658 (8)	0.8502 (2)	0.30887 (10)	0.0424 (7)
H53	0.0057	0.8311	0.2917	0.051*
C54	0.03516 (6)	0.80927 (18)	0.35533 (9)	0.0299 (5)
H54	0.0205	0.7607	0.3695	0.036*
C55	0.10145 (5)	0.70964 (16)	0.60429 (7)	0.0189 (4)
C56	0.09005 (6)	0.7936 (2)	0.68573 (9)	0.0394 (7)
H56A	0.1035	0.8408	0.7069	0.047*
H56B	0.0716	0.8304	0.6672	0.047*
C57	0.07404 (9)	0.7204 (2)	0.71847 (11)	0.0536 (8)
H57A	0.0610	0.6731	0.6975	0.080*

H57B	0.0581	0.7530	0.7418	0.080*
H57C	0.0923	0.6861	0.7380	0.080*
C58	0.02184 (5)	0.67592 (15)	0.54521 (7)	0.0150 (4)
C59	0.00695 (5)	0.63366 (15)	0.49947 (7)	0.0163 (4)
Н59	0.0216	0.5953	0.4787	0.020*
C60	-0.02650 (5)	0.64535 (15)	0.48458 (7)	0.0163 (4)
H60	-0.0408	0.6829	0.5063	0.020*
C61	-0.04328 (5)	0.60656 (15)	0.43862 (7)	0.0173 (4)
C62	-0.02457 (5)	0.56030 (15)	0.40025 (7)	0.0202 (4)
H62	0.0001	0.5554	0.4031	0.024*
C63	-0.04178 (6)	0.52170 (17)	0.35816 (8)	0.0253 (5)
H63	-0.0289	0.4901	0.3324	0.030*
C64	-0.07776 (6)	0.52884 (18)	0.35333 (8)	0.0283 (5)
H64	-0.0895	0.5013	0.3246	0.034*
C65	-0.09651 (6)	0.57606 (18)	0.39027 (8)	0.0266 (5)
H65	-0.1211	0.5818	0.3868	0.032*
C66	-0.07939 (5)	0.61493 (16)	0.43230 (8)	0.0221 (5)
H66	-0.0924	0.6480	0.4574	0.027*
C67	-0.00047 (5)	0.72828 (15)	0.58235 (7)	0.0152 (4)
C68	0.00366 (5)	0.82902 (16)	0.58950 (8)	0.0201 (4)
H68	0.0202	0.8639	0.5701	0.024*
C69	-0.01618 (6)	0.87864 (16)	0.62458 (8)	0.0227 (5)
H69	-0.0136	0.9475	0.6288	0.027*
C70	-0.03976 (6)	0.82737 (16)	0.65346 (8)	0.0236 (5)
H70	-0.0530	0.8609	0.6781	0.028*
C71	-0.04412 (5)	0.72761 (16)	0.64660 (8)	0.0222 (5)
H71	-0.0604	0.6928	0.6665	0.027*
C72	-0.02476 (5)	0.67807 (15)	0.61072 (8)	0.0192 (4)
H72	-0.0281	0.6098	0.6056	0.023*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01408 (11)	0.01313 (12)	0.01848 (11)	0.00079 (9)	0.00292 (9)	-0.00149 (9)
S 1	0.0274 (3)	0.0121 (2)	0.0300 (3)	0.0016 (2)	0.0121 (2)	0.0022 (2)
S2	0.0148 (2)	0.0176 (2)	0.0192 (2)	-0.00086 (19)	-0.00143 (19)	-0.0026 (2)
N1	0.0240 (9)	0.0138 (9)	0.0253 (9)	0.0008 (7)	0.0110 (7)	0.0027 (8)
N2	0.0158 (8)	0.0139 (8)	0.0206 (8)	0.0012 (7)	0.0073 (7)	0.0008 (7)
N3	0.0136 (8)	0.0138 (8)	0.0179 (8)	0.0017 (6)	0.0039 (6)	0.0006 (7)
N4	0.0153 (9)	0.0314 (11)	0.0178 (8)	0.0006 (8)	0.0004 (7)	-0.0059 (8)
N5	0.0161 (8)	0.0167 (9)	0.0130 (8)	0.0024 (7)	0.0014 (6)	-0.0020 (7)
N6	0.0145 (8)	0.0132 (8)	0.0137 (8)	0.0014 (6)	0.0011 (6)	-0.0005 (7)
C1	0.0154 (9)	0.0146 (10)	0.0204 (10)	0.0002 (8)	0.0034 (8)	0.0002 (8)
C2	0.0221 (11)	0.0212 (11)	0.0289 (11)	-0.0018 (9)	0.0092 (9)	0.0069 (10)
C3	0.0305 (13)	0.0499 (17)	0.0407 (14)	-0.0037 (12)	0.0011 (11)	0.0204 (13)
C4	0.0116 (9)	0.0147 (10)	0.0189 (10)	0.0018 (7)	0.0014 (7)	0.0015 (8)
C5	0.0145 (9)	0.0181 (10)	0.0165 (9)	-0.0001 (8)	0.0040 (7)	-0.0001 (8)
C6	0.0153 (9)	0.0190 (10)	0.0166 (9)	0.0001 (8)	0.0021 (8)	-0.0019 (8)

C7	0.0126 (9)	0.0155 (10)	0.0228 (10)	0.0000 (8)	0.0040 (8)	-0.0014 (8)
C8	0.0184 (10)	0.0184 (11)	0.0214 (10)	0.0020 (8)	0.0042 (8)	-0.0001 (9)
C9	0.0225 (11)	0.0145 (10)	0.0350 (12)	-0.0024 (9)	0.0058 (9)	0.0005 (10)
C10	0.0243 (11)	0.0201 (11)	0.0347 (12)	-0.0018(9)	0.0078 (9)	-0.0123 (10)
C11	0.0276 (12)	0.0312 (13)	0.0236 (11)	-0.0059 (10)	0.0070 (9)	-0.0064 (10)
C12	0.0239 (11)	0.0191 (11)	0.0235 (11)	-0.0058 (9)	0.0065 (9)	-0.0008(9)
C13	0.0163 (9)	0.0087 (9)	0.0174 (9)	0.0012 (7)	0.0014 (7)	0.0013 (8)
C14	0.0169 (10)	0.0138 (10)	0.0225 (10)	-0.0016(8)	-0.0004 (8)	0.0017 (8)
C15	0.0273 (11)	0.0178 (11)	0.0177 (10)	-0.0005(9)	-0.0030(8)	0.0011 (9)
C16	0.0254 (11)	0.0192 (11)	0.0170 (10)	0.0019 (9)	0.0055 (8)	0.0014 (9)
C17	0.0165(10)	0.0176(10)	0.0222(10)	0.0002 (8)	0.0033 (8)	0.0023(9)
C18	0.0187(10)	0.0130(10)	0.0150(9)	-0.0005(8)	0.0004 (8)	-0.0004(8)
C19	0.0157(9)	0.0133(10)	0.0188(10)	0.00002(0)	-0.0001(8)	-0.0003(8)
C20	0.0192(9) 0.0284(12)	0.0446(15)	0.0190(10)	-0.0011(11)	-0.0034(9)	-0.0063(11)
C21	0.0261(12) 0.0464(17)	0.088(2)	0.0214(12)	-0.0107(16)	0.0001(11)	-0.0106(14)
C22	0.0181(10)	0.000(2)	0.0211(12) 0.0171(9)	0.0107(10)	-0.0001(8)	0.0006 (8)
C23	0.0181(10) 0.0185(10)	0.0123(10) 0.0207(11)	0.0171(9)	0.0022(0)	-0.0004(8)	-0.0010(9)
C24	0.0103(10) 0.0213(11)	0.0207(11) 0.0280(12)	0.0173(10) 0.0224(11)	0.0017(0)	-0.0029(9)	-0.0020(9)
C24	0.0213(11) 0.0201(12)	0.0200(12)	0.0224(11)	0.0044(9)	-0.0029(9)	-0.0020(9)
C25	0.0291(12) 0.0203(12)	0.0305(13)	0.0133(10)	0.0037(10)	-0.0021(9)	-0.0076(10)
C20	0.0293(12) 0.0323(14)	0.0530(14)	0.0219(11) 0.0203(13)	0.0030(11) 0.0014(12)	0.0050(9)	-0.0133(13)
C27	0.0323(14)	0.0547(18)	0.0293(13)	-0.0014(12)	0.0050(10)	-0.0155(13)
C20	0.0453(10)	0.0387(19)	0.0220(12)	0.0010(14)	-0.0000(11)	-0.0107(13)
C29	0.0433(10)	0.0374(18)	0.0250(12)	0.0016(14)	-0.0090(11)	-0.0131(12)
C30	0.0309(13)	0.0492(10)	0.0239(12)	0.0030(12)	-0.0030(10)	-0.0121(12)
C31	0.0177(10)	0.0199 (11)	0.0144 (9)	-0.0007(8)	-0.0047 (8)	-0.0005(8)
C32	0.0204 (10)	0.0201(11)	0.0198(10)	0.0004 (8)	-0.0037(8)	-0.0011(9)
C33	0.0200 (11)	0.0282(12)	0.0269 (11)	0.0085 (9)	-0.0038 (9)	-0.0002(10)
C34	0.0148 (10)	0.0368 (14)	0.0376(13)	-0.0014 (10)	-0.0021 (9)	-0.0004 (11)
C35	0.0229 (11)	0.0263 (12)	0.0351 (13)	-0.0058 (10)	-0.0039 (10)	0.0023 (10)
C36	0.0184 (10)	0.0210 (11)	0.0257 (11)	0.0011 (9)	-0.0051 (8)	-0.0027 (9)
Zn2	0.01392 (11)	0.01808 (12)	0.01235 (11)	0.00177 (9)	0.00010 (8)	0.00002 (9)
S3	0.0247 (3)	0.0162 (2)	0.0153 (2)	0.0031 (2)	0.00224 (19)	0.0012 (2)
S4	0.0124 (2)	0.0311 (3)	0.0151 (2)	0.0007 (2)	-0.00026 (18)	0.0001 (2)
N7	0.0209 (9)	0.0161 (9)	0.0155 (8)	0.0032 (7)	0.0034 (7)	-0.0007 (7)
N8	0.0176 (8)	0.0169 (9)	0.0130 (8)	0.0020 (7)	0.0015 (6)	-0.0028 (7)
N9	0.0147 (8)	0.0189 (9)	0.0125 (7)	0.0019 (7)	-0.0004 (6)	-0.0019 (7)
N10	0.0151 (9)	0.0583 (14)	0.0210 (9)	0.0013 (9)	-0.0034 (8)	-0.0149 (10)
N11	0.0154 (8)	0.0270 (10)	0.0132 (8)	0.0012 (7)	-0.0013 (6)	-0.0030 (7)
N12	0.0161 (8)	0.0166 (9)	0.0122 (7)	-0.0002 (7)	-0.0004 (6)	-0.0010 (7)
C37	0.0115 (9)	0.0182 (10)	0.0158 (9)	0.0005 (8)	0.0028 (7)	-0.0009 (8)
C38	0.0265 (11)	0.0252 (12)	0.0144 (9)	0.0023 (9)	0.0029 (8)	-0.0030 (9)
C39	0.0297 (13)	0.0444 (15)	0.0208 (11)	0.0048 (11)	-0.0039 (9)	-0.0037 (11)
C40	0.0132 (9)	0.0185 (10)	0.0156 (9)	0.0018 (8)	0.0010 (7)	-0.0006 (8)
C41	0.0201 (10)	0.0197 (11)	0.0145 (9)	-0.0012 (8)	-0.0022 (8)	0.0020 (8)
C42	0.0213 (10)	0.0203 (11)	0.0155 (9)	-0.0034 (8)	0.0015 (8)	0.0018 (9)
C43	0.0378 (13)	0.0163 (11)	0.0166 (10)	-0.0101 (9)	0.0087 (9)	-0.0013 (9)
C44	0.0567 (16)	0.0177 (11)	0.0269 (12)	-0.0043 (11)	0.0189 (11)	0.0011 (10)
C45	0.116 (3)	0.0187 (13)	0.0368 (16)	-0.0011 (16)	0.0347 (17)	-0.0045 (12)

C46	0.158 (4)	0.0300 (16)	0.0247 (14)	-0.023 (2)	0.0151 (19)	-0.0127 (13)
C47	0.116 (3)	0.0389 (18)	0.0225 (13)	-0.0262 (19)	-0.0109 (15)	-0.0036 (13)
C48	0.0559 (17)	0.0258 (13)	0.0224 (11)	-0.0146 (12)	-0.0042 (11)	-0.0001 (10)
C49	0.0235 (10)	0.0158 (10)	0.0140 (9)	0.0056 (8)	-0.0017 (8)	-0.0019 (8)
C50	0.0258 (11)	0.0193 (11)	0.0213 (10)	0.0063 (9)	0.0030 (9)	-0.0003 (9)
C51	0.0472 (15)	0.0202 (12)	0.0250 (11)	0.0106 (11)	0.0119 (11)	0.0057 (10)
C52	0.0688 (19)	0.0274 (13)	0.0181 (11)	0.0112 (13)	-0.0101 (12)	0.0009 (10)
C53	0.0571 (18)	0.0342 (15)	0.0349 (14)	-0.0029 (13)	-0.0286 (13)	0.0050 (12)
C54	0.0344 (13)	0.0257 (12)	0.0292 (12)	-0.0015 (10)	-0.0114 (10)	0.0051 (10)
C55	0.0170 (10)	0.0225 (11)	0.0171 (9)	0.0009 (8)	-0.0008 (8)	0.0000 (9)
C56	0.0274 (13)	0.0653 (19)	0.0252 (12)	-0.0023 (13)	-0.0055 (10)	-0.0137 (13)
C57	0.066 (2)	0.055 (2)	0.0391 (16)	0.0093 (16)	0.0059 (14)	-0.0032 (15)
C58	0.0140 (9)	0.0160 (10)	0.0151 (9)	-0.0012 (8)	0.0009 (7)	0.0016 (8)
C59	0.0173 (10)	0.0168 (10)	0.0149 (9)	-0.0005 (8)	0.0013 (8)	-0.0017 (8)
C60	0.0181 (10)	0.0160 (10)	0.0148 (9)	-0.0003 (8)	0.0017 (8)	-0.0010 (8)
C61	0.0178 (10)	0.0163 (10)	0.0177 (10)	-0.0015 (8)	-0.0020 (8)	0.0032 (8)
C62	0.0195 (10)	0.0215 (11)	0.0194 (10)	-0.0002 (9)	-0.0029 (8)	0.0003 (9)
C63	0.0326 (12)	0.0253 (12)	0.0179 (10)	-0.0010 (10)	-0.0009 (9)	-0.0035 (9)
C64	0.0332 (13)	0.0322 (13)	0.0193 (10)	-0.0073 (10)	-0.0105 (9)	0.0005 (10)
C65	0.0205 (11)	0.0367 (14)	0.0223 (11)	-0.0051 (10)	-0.0070 (9)	0.0061 (10)
C66	0.0202 (10)	0.0274 (12)	0.0187 (10)	0.0000 (9)	0.0001 (8)	0.0038 (9)
C67	0.0127 (9)	0.0197 (10)	0.0131 (9)	0.0017 (8)	-0.0026 (7)	-0.0006 (8)
C68	0.0177 (10)	0.0203 (11)	0.0222 (10)	-0.0014 (8)	0.0012 (8)	0.0005 (9)
C69	0.0278 (11)	0.0148 (10)	0.0254 (11)	0.0024 (9)	-0.0008 (9)	-0.0028 (9)
C70	0.0255 (11)	0.0242 (12)	0.0214 (10)	0.0047 (9)	0.0060 (9)	-0.0045 (9)
C71	0.0212 (11)	0.0227 (11)	0.0228 (10)	-0.0010 (9)	0.0070 (8)	-0.0017 (9)
C72	0.0195 (10)	0.0159 (10)	0.0222 (10)	-0.0004 (8)	0.0004 (8)	-0.0018 (9)

Geometric parameters (Å, °)

Zn1—N6	2.0522 (16)	Zn2—N12	2.0496 (15)
Zn1—N3	2.0528 (16)	Zn2—N9	2.0727 (16)
Zn1—S2	2.2688 (5)	Zn2—S3	2.2707 (6)
Zn1—S1	2.2827 (6)	Zn2—S4	2.2823 (5)
S1—C1	1.745 (2)	S3—C37	1.761 (2)
S2—C19	1.753 (2)	S4—C55	1.751 (2)
N1—C1	1.344 (2)	N7—C37	1.351 (3)
N1—C2	1.453 (3)	N7—C38	1.464 (3)
N1—H1N	0.871 (10)	N7—H7N	0.870 (9)
N2—C1	1.323 (2)	N8—C37	1.311 (3)
N2—N3	1.385 (2)	N8—N9	1.378 (2)
N3—C4	1.315 (2)	N9—C40	1.307 (3)
N4—C19	1.347 (2)	N10—C55	1.356 (3)
N4—C20	1.457 (3)	N10—C56	1.477 (3)
N4—H4N	0.863 (9)	N10—H10N	0.874 (10)
N5—C19	1.321 (2)	N11—C55	1.309 (2)
N5—N6	1.374 (2)	N11—N12	1.378 (2)
N6—C22	1.311 (2)	N12—C58	1.308 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3	1.508 (3)	C38—C39	1.521 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—H2A	0.9900	C38—H38A	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—H2B	0.9900	C38—H38B	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—НЗА	0.9800	С39—Н39А	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3В	0.9800	С39—Н39В	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3С	0.9800	С39—Н39С	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.448 (3)	C40—C41	1.444 (3)
CSC6 1.342 (3)C41C42 1.339 (3)C5H5 0.9500 C41H41 0.9500 C6C7 1.469 (3)C42C43 1.458 (3)C6H6 0.9500 C42H42 0.9500 C7C8 1.397 (3)C43C48 1.397 (3)C7C12 1.403 (3)C43C44 1.398 (3)C8C9 1.383 (3)C44C45 1.381 (4)C8-H8 0.9500 C44H44 0.9500 C9C10 1.383 (3)C45C46 1.372 (5)C9H9 0.9500 C45H45 0.9500 C10C11 1.385 (3)C46C47 1.385 (5)C10H10 0.9500 C46H46 0.9500 C11C12 1.382 (3)C47C48 1.382 (4)C11H11 0.9500 C47H47 0.9500 C13C14 1.394 (3)C49C50 1.389 (3)C14C15 1.388 (3)C50C51 1.389 (3)C14C15 1.383 (3)C51C52 1.379 (4)C15C16 1.390 (3)C51C52 1.379 (4)C16C17 1.383 (3)C52C53 1.377 (4)C16H16 0.9500 C51H51 0.9500 C17C18 1.389 (3)C53C54 1.380 (3)C17C18 0.9900 C56H56A 0.9900 C20C21 1.487 (3)C56C57 1.462 (4)C20C21 1.487 (3)C56C57 1.462 (4)C20C21 1.487 (3)C56C57 1.462 (4)C21H21D 0	C4—C13	1.489 (3)	C40—C49	1.489 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6	1.342 (3)	C41—C42	1.339 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5	0.9500	C41—H41	0.9500
C6-H6 0.9500 C42-H42 0.9500 C7-C8 1.397 (3)C43-C48 1.397 (3)C7-C12 1.403 (3)C43-C44 1.398 (3)C8-C9 1.383 (3)C44-C45 1.381 (4)C9-C10 1.383 (3)C44-C45 0.9500 C9-C10 1.383 (3)C45-C46 1.372 (5)C9-H9 0.9500 C45-H45 0.9500 C10-C11 1.385 (3)C46-C47 1.385 (5)C10-H10 0.9500 C46-H46 0.9500 C11-C12 1.382 (3)C47-C48 1.382 (4)C11-H11 0.9500 C47-H47 0.9500 C12-H12 0.9500 C48-H48 0.9500 C13-C14 1.394 (3)C49-C54 1.387 (3)C14-C15 1.388 (3)C50-C51 1.389 (3)C14-C15 1.388 (3)C50-C51 1.394 (3)C14-H14 0.9500 C51-H51 0.9500 C15-C16 1.390 (3)C51-C52 1.379 (4)C16-C17 1.383 (3)C52-C53 1.377 (4)C16-H16 0.9500 C52-H52 0.9500 C17-C18 1.389 (3)C53-C54 1.380 (3)C17-H17 0.9500 C54-H54 0.9500 C20-H20A 0.9900 C56-H56B 0.9900 C20-H20A 0.9900 C56-H56B 0.9900 C20-H20B 0.9900 C56-H57 1.462 (4)C20-H20B 0.9900 C57-H57A 0.9800 C21-H21B 0.9800 C57-H57A 0.9800 C21	C6—C7	1.469 (3)	C42—C43	1.458 (3)
C7-C8 $1.397 (3)$ $C43-C48$ $1.397 (3)$ $C7-C12$ $1.403 (3)$ $C43-C44$ $1.398 (3)$ $C8-C9$ $1.383 (3)$ $C44-C45$ $1.381 (4)$ $C9-C10$ $1.383 (3)$ $C45-C46$ $1.372 (5)$ $C9-C10$ $1.383 (3)$ $C45-C46$ $1.372 (5)$ $C9-C10$ $1.385 (3)$ $C45-C46$ $1.372 (5)$ $C9-C10$ $1.385 (3)$ $C46-C47$ $1.385 (5)$ $C10-C11$ $1.385 (3)$ $C46-C47$ $1.385 (5)$ $C1-C12$ $1.382 (3)$ $C47-C48$ $1.382 (4)$ $C11-C12$ $1.382 (3)$ $C47-C48$ $1.382 (4)$ $C1-H10$ 0.9500 $C48-H48$ 0.9500 $C12-H12$ 0.9500 $C48-H48$ 0.9500 $C12-H12$ 0.9500 $C48-H48$ 0.9500 $C13-C14$ $1.394 (3)$ $C49-C54$ $1.387 (3)$ $C14-C15$ $1.388 (3)$ $C50-C51$ $1.389 (3)$ $C14-C15$ $1.388 (3)$ $C50-C51$ $1.394 (3)$ $C15-C16$ $1.390 (3)$ $C51-C52$ $1.377 (4)$ $C15-H15$ 0.9500 $C52-H51$ 0.9500 $C15-C16$ $1.389 (3)$ $C53-C54$ $1.380 (3)$ $C17-C18$ $1.389 (3)$ $C53-C54$ $1.380 (3)$ $C17-H17$ 0.9500 $C54-H54$ 0.9500 $C20-H20A$ 0.9900 $C56-H56A$ 0.9900 $C20-H20B$ 0.9900 $C56-H57$ $1.462 (4)$ $C20-H20A$ 0.9800 $C57-H57C$ 0.9800 $C21-H21A$ 0.9800 $C57$	С6—Н6	0.9500	C42—H42	0.9500
C7-C12 1.403 (3) $C43-C44$ 1.398 (3) $C8-C9$ 1.383 (3) $C44-C45$ 1.381 (4) $C8-H8$ 0.9500 $C44-H44$ 0.9500 $C9-C10$ 1.383 (3) $C45-C46$ 1.372 (5) $C9-H9$ 0.9500 $C45-H45$ 0.9500 $C10-C11$ 1.385 (3) $C46-C47$ 1.385 (5) $C10-H10$ 0.9500 $C46-H46$ 0.9500 $C1-C12$ 1.382 (3) $C47-C48$ 1.382 (4) $C1-H11$ 0.9500 $C47-H47$ 0.9500 $C12-H12$ 0.9500 $C48-H48$ 0.9500 $C13-C14$ 1.394 (3) $C49-C54$ 1.387 (3) $C13-C14$ 1.394 (3) $C49-C50$ 1.389 (3) $C14-C15$ 1.388 (3) $C50-C51$ 1.389 (3) $C14-C15$ 1.388 (3) $C50-C51$ 1.394 (3) $C15-C16$ 1.390 (3) $C51-C52$ 1.379 (4) $C15-H15$ 0.9500 $C51-H51$ 0.9500 $C15-C16$ 1.389 (3) $C53-C54$ 1.380 (3) $C17-C18$ 1.389 (3) $C53-C54$ 1.380 (3) $C17-H17$ 0.9500 $C54-H54$ 0.9500 $C20-H20A$ 0.9900 $C56-H56A$ 0.9900 $C20-H20A$ 0.9900 $C56-H56A$ 0.9900 $C21-H21A$ 0.9800 $C57-H57A$ 0.9800 $C21-H21A$ 0.9800 $C57-H57A$ 0.9800 $C21-H21A$ 0.9800 $C57-H57A$ 0.9800 $C21-H21A$ 0.9800 $C58-C57$ 1.444	C7—C8	1.397 (3)	C43—C48	1.397 (3)
C8-C9 1.383 (3)C44-C45 1.381 (4)C8-H8 0.9500 C44-H44 0.9500 C9-C10 1.383 (3)C45-C46 1.372 (5)C9-H9 0.9500 C45-H45 0.9500 C10-C11 1.385 (3)C46-C47 1.385 (5)C10-H10 0.9500 C46-H46 0.9500 C11-C12 1.382 (3)C47-C48 1.382 (4)C11-H11 0.9500 C47-H47 0.9500 C12-H12 0.9500 C48-H48 0.9500 C13-C14 1.394 (3)C49-C50 1.387 (3)C14-C15 1.388 (3)C50-C51 1.389 (3)C14-C15 1.388 (3)C50-C51 1.394 (3)C14-H14 0.9500 C50-H50 0.9500 C15-H15 0.9500 C51-H51 0.9500 C15-C16 1.390 (3)C51-C53 1.377 (4)C16-C17 1.383 (3)C52-C53 1.377 (4)C16-H16 0.9500 C52-H52 0.9500 C17-C18 1.389 (3)C53-C54 1.380 (3)C17-H17 0.9500 C54-H54 0.9500 C20-C21 1.487 (3)C56-C57 1.462 (4)C20-H20A 0.9900 C56-H56A 0.9900 C21-H21B 0.9800 C57-H57A 0.9800 C21-H21B 0.9800 C57-H57A 0.9800 C21-H21B 0.9800 C57-H57C 0.9800 C21-H21B 0.9800 C57-H57C 0.9800 C21-H21B 0.9500 C59-H50 1.344 (3)C22-C3	C7—C12	1.403 (3)	C43—C44	1.398 (3)
C8-H80.9500C44-H440.9500C9-C101.383 (3)C45-C461.372 (5)C9-H90.9500C45-H450.9500C10-C111.385 (3)C46-C471.385 (5)C10-H100.9500C46-H460.9500C11-C121.382 (3)C47-C481.382 (4)C11-H110.9500C47-H470.9500C12-H120.9500C48-H480.9500C13-C141.394 (3)C49-C541.387 (3)C13-C181.397 (3)C49-C501.389 (3)C14-C151.388 (3)C50-C511.394 (3)C14-H140.9500C50-H500.9500C15-C161.390 (3)C51-C521.379 (4)C15-H150.9500C52-H510.9500C16-C171.383 (3)C52-C531.377 (4)C16-H160.9500C53-H530.9500C17-C181.389 (3)C53-C541.380 (3)C17-H170.9500C54-H540.9500C20-C211.487 (3)C56-C571.462 (4)C20-H20A0.9900C56-H56A0.9900C21-H21A0.9800C57-H57A0.9800C21-H21B0.9800C57-H57B0.9800C21-H21B0.9800C57-H57C0.9800C22-C231.443 (3)C58-C671.494 (3)C22-C241.336 (3)C59-C601.344 (3)C23-C241.336 (3)C59-C601.344 (3)C23-C251.459 (3)C60C611.460 (3)	C8—C9	1.383 (3)	C44—C45	1.381 (4)
C9—C101.383 (3)C45—C461.372 (5)C9—H90.9500C45—H450.9500C10—C111.385 (3)C46—C471.385 (5)C10—H100.9500C46—H460.9500C11—C121.382 (3)C47—C481.382 (4)C11—H110.9500C47—H470.9500C12—H120.9500C48—H480.9500C13—C141.394 (3)C49—C541.387 (3)C14—C151.388 (3)C50—C511.389 (3)C14—C151.388 (3)C50—C511.394 (3)C14—H140.9500C50—H500.9500C15—C161.390 (3)C51—C521.379 (4)C15—H150.9500C51—H510.9500C16—C171.383 (3)C52—C531.377 (4)C16—H160.9500C53—H530.9500C17—H170.9500C53—H530.9500C18—H180.9500C54—H540.9500C20—C211.487 (3)C56—C571.462 (4)C20—H20A0.9900C56—H56A0.9900C21—H21A0.9800C57—H57A0.9800C21—H21B0.9800C57—H57B0.9800C21—H21C0.9800C57—H57C0.9800C22—C231.443 (3)C58—C671.494 (3)C23—C241.336 (3)C59—C601.344 (3)C23—C251.490 (3)C60C611.490 (3)	С8—Н8	0.9500	C44—H44	0.9500
C9-H90.9500C45-H450.9500C10-C111.385 (3)C46-C471.385 (5)C10-H100.9500C46-H460.9500C11-C121.382 (3)C47-C481.382 (4)C11-H110.9500C47-H470.9500C12-H120.9500C48-H480.9500C13-C141.394 (3)C49-C541.387 (3)C14-C151.388 (3)C50-C511.389 (3)C14-C151.388 (3)C50-C511.394 (3)C14-C151.388 (3)C50-C511.394 (3)C14-H140.9500C50-H500.9500C15-C161.390 (3)C51-C521.379 (4)C15-H150.9500C52-H510.9500C17-C181.389 (3)C53-C541.380 (3)C17-C181.389 (3)C53-C541.380 (3)C17-H170.9500C53-H530.9500C20-C211.487 (3)C56-C571.462 (4)C20-H20A0.9900C56-H56A0.9900C21-H21A0.9800C57-H57B0.9800C21-H21B0.9800C57-H57B0.9800C21-H21C0.9800C57-H57C0.9800C22-C231.443 (3)C58-C591.444 (3)C22-C241.336 (3)C59-C601.344 (3)C23-C241.336 (3)C59-C601.344 (3)C23-C241.336 (3)C59-C601.344 (3)C24-C251.490 (3)C60C611.460 (3)	C9—C10	1.383 (3)	C45—C46	1.372 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С9—Н9	0.9500	C45—H45	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C11	1.385 (3)	C46—C47	1.385 (5)
C11—C12 $1.382 (3)$ C47—C48 $1.382 (4)$ C11—H110.9500C47—H470.9500C12—H120.9500C48—H480.9500C13—C141.394 (3)C49—C541.387 (3)C13—C181.397 (3)C49—C501.389 (3)C14—C151.388 (3)C50—C511.394 (3)C14—H140.9500C50—H500.9500C15—C161.390 (3)C51—C521.379 (4)C15—H150.9500C51—H510.9500C16—C171.383 (3)C52—C531.377 (4)C16—H160.9500C52—H520.9500C17—C181.389 (3)C53—C541.380 (3)C17—H170.9500C54—H540.9500C20—C211.487 (3)C56—C571.462 (4)C20—H20A0.9900C56—H56A0.9900C21—H21A0.9800C57—H57A0.9800C21—H21B0.9800C57—H57A0.9800C21—H21C0.9800C57—H57C0.9800C21—H21C0.9800C57—H57C0.9800C22—C231.443 (3)C58—C591.444 (3)C22—C241.336 (3)C59—C601.344 (3)C23—C241.336 (3)C59—C601.344 (3)C23—H230.9500C59—H590.9500	C10—H10	0.9500	C46—H46	0.9500
C11—H110.9500C47—H470.9500C12—H120.9500C48—H480.9500C13—C141.394 (3)C49—C541.387 (3)C13—C181.397 (3)C49—C501.389 (3)C14—C151.388 (3)C50—C511.394 (3)C14—H140.9500C50—H500.9500C15—C161.390 (3)C51—C521.379 (4)C15—H150.9500C51—H510.9500C16—C171.383 (3)C52—C531.377 (4)C16—H160.9500C53—H520.9500C17—C181.389 (3)C53—C541.380 (3)C17—H170.9500C54—H540.9500C20—C211.487 (3)C56—C571.462 (4)C20—H20A0.9900C56—H56A0.9900C21—H21A0.9800C57—H57A0.9800C21—H21B0.9800C57—H57A0.9800C21—H21C0.9800C57—H57C0.9800C21—H21A1.443 (3)C58—C591.444 (3)C22—C231.443 (3)C58—C591.444 (3)C23—C241.336 (3)C59—C601.344 (3)C23—H230.9500C59—H590.9500	C11—C12	1.382 (3)	C47—C48	1.382 (4)
C12—H12 0.9500 C48—H48 0.9500 C13—C14 1.394 (3)C49—C54 1.387 (3)C13—C18 1.397 (3)C49—C50 1.389 (3)C14—C15 1.388 (3)C50—C51 1.394 (3)C14—H14 0.9500 C50—H50 0.9500 C15—C16 1.390 (3)C51—C52 1.379 (4)C15—H15 0.9500 C51—H51 0.9500 C16—C17 1.383 (3)C52—C53 1.377 (4)C16—H16 0.9500 C52—H52 0.9500 C17—C18 1.389 (3)C53—C54 1.380 (3)C17—H17 0.9500 C54—H54 0.9500 C20—C21 1.487 (3)C56—C57 1.462 (4)C20—H20A 0.9900 C56—H56A 0.9900 C21—H21A 0.9800 C57—H57A 0.9800 C21—H21B 0.9800 C57—H57B 0.9800 C21—H21B 0.9800 C57—H57C 0.9800 C22—C23 1.443 (3)C58—C59 1.444 (3)C22—C24 1.336 (3)C59—C60 1.344 (3)C23—C24 1.336 (3)C59—C60 1.344 (3)C23—H23 0.9500 C59—H59 0.9500	C11—H11	0.9500	C47—H47	0.9500
C13—C141.394 (3)C49—C541.387 (3)C13—C181.397 (3)C49—C501.389 (3)C14—C151.388 (3)C50—C511.394 (3)C14—H140.9500C50—H500.9500C15—C161.390 (3)C51—C521.379 (4)C15—H150.9500C51—H510.9500C16—C171.383 (3)C52—C531.377 (4)C16—H160.9500C52—H520.9500C17—C181.389 (3)C53—C541.380 (3)C17—H170.9500C54—H540.9500C20—C211.487 (3)C56—C571.462 (4)C20—H20A0.9900C56—H56A0.9900C21—H21A0.9800C57—H57A0.9800C21—H21B0.9800C57—H57B0.9800C21—H21C0.9800C57—H57C0.9800C22—C231.443 (3)C58—C591.444 (3)C22—C241.336 (3)C59—C601.344 (3)C23—C241.336 (3)C59—H590.9500C24—C251.469 (3)C60C611.460 (5)	C12—H12	0.9500	C48—H48	0.9500
C13C181.397 (3)C49C501.389 (3)C14C151.388 (3)C50C511.394 (3)C14H140.9500C50H500.9500C15C161.390 (3)C51C521.379 (4)C15H150.9500C51H510.9500C16C171.383 (3)C52C531.377 (4)C16H160.9500C52H520.9500C17C181.389 (3)C53C541.380 (3)C17H170.9500C54H540.9500C20C211.487 (3)C56C571.462 (4)C20H20A0.9900C56H56A0.9900C21H21A0.9800C57H57A0.9800C21H21B0.9800C57H57B0.9800C21H21C0.9800C57H57C0.9800C22C231.443 (3)C58C671.444 (3)C22C241.336 (3)C59C601.344 (3)C23C241.336 (3)C59C601.344 (3)C23H230.9500C59H590.9500	C13—C14	1.394 (3)	C49—C54	1.387 (3)
C14—C15 1.388 (3)C50—C51 1.394 (3)C14—H14 0.9500 C50—H50 0.9500 C15—C16 1.390 (3)C51—C52 1.379 (4)C15—H15 0.9500 C51—H51 0.9500 C16—C17 1.383 (3)C52—C53 1.377 (4)C16—H16 0.9500 C52—H52 0.9500 C17—C18 1.389 (3)C53—C54 1.380 (3)C17—H17 0.9500 C54—H54 0.9500 C20—C21 1.487 (3)C56—C57 1.462 (4)C20—H20A 0.9900 C56—H56A 0.9900 C21—H21A 0.9800 C57—H57A 0.9800 C21—H21B 0.9800 C57—H57B 0.9800 C21—H21C 0.9800 C57—H57C 0.9800 C22—C23 1.443 (3)C58—C57 1.444 (3)C22—C23 1.447 (3)C58—C67 1.494 (3)C23—C24 1.336 (3)C59 1.444 (3)C23—C24 1.336 (3)C59—H59 0.9500 C24 1.336 (3)C59—H59 0.9500	C13—C18	1.397 (3)	C49—C50	1.389 (3)
C14—H14 0.9500 $C50$ —H50 0.9500 C15—C16 1.390 (3)C51—C52 1.379 (4)C15—H15 0.9500 C51—H51 0.9500 C16—C17 1.383 (3)C52—C53 1.377 (4)C16—H16 0.9500 C52—H52 0.9500 C17—C18 1.389 (3)C53—C54 1.380 (3)C17—H17 0.9500 C53—H53 0.9500 C18—H18 0.9500 C54—H54 0.9500 C20—C21 1.487 (3)C56—C57 1.462 (4)C20—H20A 0.9900 C56—H56A 0.9900 C21—H21A 0.9800 C57—H57A 0.9800 C21—H21B 0.9800 C57—H57B 0.9800 C21—H21C 0.9800 C57—H57C 0.9800 C22—C23 1.443 (3)C58—C59 1.444 (3)C22—C23 1.497 (3)C58—C67 1.494 (3)C23—C24 1.336 (3)C59—C60 1.344 (3)C23—H23 0.9500 C59—H59 0.9500	C14—C15	1.388 (3)	C50—C51	1.394 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—H14	0.9500	С50—Н50	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C16	1.390 (3)	C51—C52	1.379 (4)
C16—C171.383 (3)C52—C531.377 (4)C16—H16 0.9500 C52—H52 0.9500 C17—C18 1.389 (3)C53—C54 1.380 (3)C17—H17 0.9500 C53—H53 0.9500 C18—H18 0.9500 C54—H54 0.9500 C20—C21 1.487 (3)C56—C57 1.462 (4)C20—H20A 0.9900 C56—H56A 0.9900 C21—H21A 0.9800 C57—H57A 0.9800 C21—H21B 0.9800 C57—H57B 0.9800 C21—H21C 0.9800 C57—H57C 0.9800 C22—C23 1.443 (3)C58—C59 1.444 (3)C23—C24 1.336 (3)C59—C60 1.344 (3)C23—H23 0.9500 C59—H59 0.9500	C15—H15	0.9500	C51—H51	0.9500
C16—H16 0.9500 C52—H52 0.9500 C17—C18 $1.389 (3)$ C53—C54 $1.380 (3)$ C17—H17 0.9500 C53—H53 0.9500 C18—H18 0.9500 C54—H54 0.9500 C20—C21 $1.487 (3)$ C56—C57 $1.462 (4)$ C20—H20A 0.9900 C56—H56A 0.9900 C20—H20B 0.9900 C56—H56B 0.9900 C21—H21A 0.9800 C57—H57A 0.9800 C21—H21B 0.9800 C57—H57B 0.9800 C21—H21C 0.9800 C57—H57C 0.9800 C22—C23 $1.443 (3)$ C58—C59 $1.444 (3)$ C23—C24 $1.336 (3)$ C59—C60 $1.344 (3)$ C23—H23 0.9500 C59—H59 0.9500	C16—C17	1.383 (3)	C52—C53	1.377 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—H16	0.9500	С52—Н52	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—C18	1.389 (3)	C53—C54	1.380 (3)
C18—H180.9500 $C54$ —H540.9500 $C20$ — $C21$ 1.487 (3) $C56$ — $C57$ 1.462 (4) $C20$ —H20A0.9900 $C56$ —H56A0.9900 $C20$ —H20B0.9900 $C56$ —H56B0.9900 $C21$ —H21A0.9800 $C57$ —H57A0.9800 $C21$ —H21B0.9800 $C57$ —H57B0.9800 $C21$ —H21C0.9800 $C57$ —H57C0.9800 $C22$ —C231.443 (3) $C58$ —C591.444 (3) $C22$ —C311.497 (3) $C58$ —C671.494 (3) $C23$ —C241.336 (3) $C59$ —C601.344 (3) $C23$ —H230.9500 $C59$ —H590.9500 $C24$ —C251.469 (3)C60C611.460 (3)	C17—H17	0.9500	С53—Н53	0.9500
C20—C21 $1.487 (3)$ C56—C57 $1.462 (4)$ C20—H20A 0.9900 C56—H56A 0.9900 C20—H20B 0.9900 C56—H56B 0.9900 C21—H21A 0.9800 C57—H57A 0.9800 C21—H21B 0.9800 C57—H57B 0.9800 C21—H21C 0.9800 C57—H57C 0.9800 C22—C23 $1.443 (3)$ C58—C59 $1.444 (3)$ C22—C31 $1.497 (3)$ C58—C67 $1.494 (3)$ C23—C24 $1.336 (3)$ C59—C60 $1.344 (3)$ C23—H23 0.9500 C59—H59 0.9500	C18—H18	0.9500	С54—Н54	0.9500
C20—H20A 0.9900 C56—H56A 0.9900 C20—H20B 0.9900 C56—H56B 0.9900 C21—H21A 0.9800 C57—H57A 0.9800 C21—H21B 0.9800 C57—H57B 0.9800 C21—H21C 0.9800 C57—H57C 0.9800 C22—C23 1.443 (3) C58—C59 1.444 (3) C22—C31 1.497 (3) C58—C67 1.494 (3) C23—C24 1.336 (3) C59—C60 1.344 (3) C23—H23 0.9500 C59—H59 0.9500	C20—C21	1.487 (3)	C56—C57	1.462 (4)
C20—H20B0.9900C56—H56B0.9900C21—H21A0.9800C57—H57A0.9800C21—H21B0.9800C57—H57B0.9800C21—H21C0.9800C57—H57C0.9800C22—C231.443 (3)C58—C591.444 (3)C22—C311.497 (3)C58—C671.494 (3)C23—C241.336 (3)C59—C601.344 (3)C23—H230.9500C59—H590.9500C24C251.469 (3)C60C61	C20—H20A	0.9900	С56—Н56А	0.9900
C21—H21A0.9800C57—H57A0.9800C21—H21B0.9800C57—H57B0.9800C21—H21C0.9800C57—H57C0.9800C22—C231.443 (3)C58—C591.444 (3)C22—C311.497 (3)C58—C671.494 (3)C23—C241.336 (3)C59—C601.344 (3)C23—H230.9500C59—H590.9500C24C251.469 (3)C60C61	C20—H20B	0.9900	С56—Н56В	0.9900
C21—H21B0.9800C57—H57B0.9800C21—H21C0.9800C57—H57C0.9800C22—C231.443 (3)C58—C591.444 (3)C22—C311.497 (3)C58—C671.494 (3)C23—C241.336 (3)C59—C601.344 (3)C23—H230.9500C59—H590.9500C24C251.469 (3)C60C61	C21—H21A	0.9800	С57—Н57А	0.9800
C21—H21C0.9800C57—H57C0.9800C22—C231.443 (3)C58—C591.444 (3)C22—C311.497 (3)C58—C671.494 (3)C23—C241.336 (3)C59—C601.344 (3)C23—H230.9500C59—H590.9500C24C251.469 (3)C60C61	C21—H21B	0.9800	С57—Н57В	0.9800
C22—C23 1.443 (3) C58—C59 1.444 (3) C22—C31 1.497 (3) C58—C67 1.494 (3) C23—C24 1.336 (3) C59—C60 1.344 (3) C23—H23 0.9500 C59—H59 0.9500 C24 C25 1.469 (3) C60 C61 1.460 (3)	C21—H21C	0.9800	С57—Н57С	0.9800
C22—C31 1.497 (3) C58—C67 1.494 (3) C23—C24 1.336 (3) C59—C60 1.344 (3) C23—H23 0.9500 C59—H59 0.9500 C24 C25 1.469 (3) C60 C61 1.460 (3)	C22—C23	1.443 (3)	C58—C59	1.444 (3)
C23—C24 1.336 (3) C59—C60 1.344 (3) C23—H23 0.9500 C59—H59 0.9500 C24 C25 1.469 (3) C60 C61 1.460 (3)	C22—C31	1.497 (3)	C58—C67	1.494 (3)
C23—H23 0.9500 C59—H59 0.9500 C24 C25 1.469 (3) C60 C61 1.460 (3)	C23—C24	1.336 (3)	C59—C60	1.344 (3)
C_{24} C_{25} $1.469(3)$ C_{60} C_{61} $1.460(3)$	С23—Н23	0.9500	С59—Н59	0.9500
1.409(3) $1.409(3)$ $1.400(3)$	C24—C25	1.469 (3)	C60—C61	1.460 (3)
C24—H24 0.9500 C60—H60 0.9500	C24—H24	0.9500	С60—Н60	0.9500
C25—C26 1.396 (3) C61—C66 1.397 (3)	C25—C26	1.396 (3)	C61—C66	1.397 (3)
C_{25} — C_{30} 1.395 (3) C_{61} — C_{62} 1.401 (3)	C25—C30	1.395 (3)	C61—C62	1.401 (3)

C26—C27	1.380 (3)	C62—C63	1.384 (3)
C26—H26	0.9500	С62—Н62	0.9500
C27—C28	1.389 (3)	C63—C64	1.387 (3)
С27—Н27	0.9500	С63—Н63	0.9500
C28—C29	1.382 (4)	C64—C65	1.380 (3)
C28—H28	0.9500	C64—H64	0.9500
C29—C30	1.386 (3)	C65—C66	1,383 (3)
С29—Н29	0.9500	С65—Н65	0.9500
C30—H30	0.9500	C66—H66	0.9500
$C_{31} - C_{32}$	1 391 (3)	C67-C72	1 386 (3)
$C_{31} - C_{36}$	1.391(3) 1.393(3)	C67 - C68	1.300(3) 1.395(3)
C_{32} C_{33}	1.393(3)	C68 - C69	1.395(3)
С32—Н32	0.9500	C68—H68	0.9500
C_{33} C_{34}	1 383 (3)	C69-C70	1.383(3)
C33 H33	0.9500	C60 H60	0.9500
C34 C35	1 380 (3)	C70 C71	1.382(3)
$C_{34} = U_{34}$	1.569 (5)	C70_H70	0.0500
C_{34} C_{35} C_{36}	1.299(2)	C70 - 1170	1.280(2)
$C_{25} = U_{25}$	1.366 (3)	C/1 - C/2	1.369 (3)
Сээ—пээ	0.9500	C/I—H/I C72_U72	0.9300
С30—П30	0.9300	C/2—H/2	0.9300
\$1 7n1 \$2	118 67 (2)	S_{2} T_{n2} S_{4}	124.07(2)
S1_Zn1_N3	87 25 (5)	S_{3}^{-} Z_{n2}^{-} N9	85.99 (5)
S1 - Zn1 - NS S1 - Zn1 - N6	126 78 (5)	$S_3 = Z_{112} = 1V_3$ S ₃ = $Z_{112} = 1V_3$	131.29(5)
$S_1 = Z_{n1} = N_0$	120.78(5) 134.00(5)	$S_{12} = 112$	131.29(5) 124.42(5)
$S_2 = Z_{\text{III}} = N_5$	134.00(5)	S4 Zn2 N3	124.42(3)
$N_2 = 7n1 = N_0$	87.00 (3) 107.05 (6)	34-2112-1112 NO $7n2$ N12	87.23 (J) 105.85 (6)
N_{3} Z_{11} N_{0}	107.93(0)	$\frac{1}{2} \frac{1}{2} \frac{1}$	103.83(0)
C1 = S1 = ZIII	92.90 (7)	$C55 S4 7r^2$	93.64 (7)
C19 - S2 - Z111	91.99 (7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92.29 (7)
CI = NI = UIN	120.29 (18)	$C_3/(-N)/(-C_3)$	121.72(18)
CI-NI-HIN	110.4 (15)	$C_3/=N/=H/N$	114.2 (15)
C2—NI—HIN	110.8 (15)	C_{38} N/ $-H/N$	11/.0(15)
CI - N2 - N3	115.89 (16)	$C_3/$ —N8—N9	114.79 (16)
C4 - N3 - N2	115.61 (16)	C40—N9—N8	115.50 (16)
C4 - N3 - Zn1	125.47 (12)	C40—N9—Zn2	126.72 (13)
N2 - N3 - Zn1	116.26 (12)	N8 - N9 - Zn2	117.76 (12)
C19—N4—C20	126.77 (18)	C55—N10—C56	122.08 (18)
C19—N4—H4N	114.5 (16)	C55—N10—H10N	117.9 (17)
C20—N4—H4N	118.2 (16)	C56—N10—H10N	118.7 (17)
C19—N5—N6	114.62 (16)	C55—N11—N12	115.50 (16)
C22—N6—N5	116.88 (16)	C58—N12—N11	114.72 (15)
C22—N6—Zn1	126.45 (13)	C58—N12—Zn2	128.03 (13)
N5—N6—Zn1	116.52 (12)	N11—N12—Zn2	116.56 (12)
N2—C1—N1	113.83 (17)	N8—C37—N7	117.06 (18)
N2—C1—S1	127.62 (15)	N8—C37—S3	127.47 (15)
N1—C1—S1	118.55 (15)	N7—C37—S3	115.44 (15)
N1—C2—C3	112.14 (19)	N7—C38—C39	112.11 (17)
N1—C2—H2A	109.2	N7—C38—H38A	109.2

C3—C2—H2A	109.2	C39—C38—H38A	109.2
N1—C2—H2B	109.2	N7—C38—H38B	109.2
C3—C2—H2B	109.2	C39—C38—H38B	109.2
H2A—C2—H2B	107.9	H38A—C38—H38B	107.9
С2—С3—НЗА	109.5	С38—С39—Н39А	109.5
С2—С3—Н3В	109.5	C38—C39—H39B	109.5
H3A—C3—H3B	109.5	H39A—C39—H39B	109.5
C2—C3—H3C	109.5	C38—C39—H39C	109.5
H_{3A} $-C_{3}$ $-H_{3C}$	109.5	H39A-C39-H39C	109.5
H3B_C3_H3C	109.5	H39B_C39_H39C	109.5
N3 C4 C5	109.5	N9-C40-C41	117 21 (18)
$N_3 = C_4 = C_3$	125.20(17) 115.20(17)	N9 C40 C49	117.21(10) 121.76(18)
$C_{5} = C_{4} = C_{13}$	113.20(17) 121.40(17)	C_{41} C_{40} C_{40}	121.70(18) 121.04(18)
$C_{5} - C_{4} - C_{15}$	121.49(17) 124.01(18)	C41 - C40 - C49	121.04(10) 125.62(10)
$C_0 = C_3 = C_4$	124.01 (18)	C42 - C41 - C40	123.02 (19)
C6-C5-H5	118.0	C42 - C41 - H41	117.2
C4—C5—H5	118.0	C40 - C41 - H41	117.2
C5—C6—C7	127.24 (18)	C41—C42—C43	124.9 (2)
С5—С6—Н6	116.4	C41—C42—H42	117.6
С7—С6—Н6	116.4	C43—C42—H42	117.6
C8—C7—C12	118.24 (18)	C48—C43—C44	118.2 (2)
C8—C7—C6	118.42 (17)	C48—C43—C42	122.6 (2)
C12—C7—C6	123.30 (18)	C44—C43—C42	119.2 (2)
C9—C8—C7	121.16 (19)	C45—C44—C43	120.8 (3)
С9—С8—Н8	119.4	C45—C44—H44	119.6
С7—С8—Н8	119.4	C43—C44—H44	119.6
C10—C9—C8	120.0 (2)	C46—C45—C44	120.2 (3)
С10—С9—Н9	120.0	C46—C45—H45	119.9
С8—С9—Н9	120.0	C44—C45—H45	119.9
C9-C10-C11	119.6 (2)	C45—C46—C47	120.0 (3)
С9—С10—Н10	120.2	C45—C46—H46	120.0
C11—C10—H10	120.2	C47—C46—H46	120.0
C12—C11—C10	120.9 (2)	C48—C47—C46	120.3 (3)
C12—C11—H11	119.6	C48—C47—H47	119.9
C10-C11-H11	119.6	$C_{46} - C_{47} - H_{47}$	119.9
$C_{11} - C_{12} - C_{7}$	120 1 (2)	C47 - C48 - C43	1204(3)
$C_{11} = C_{12} = H_{12}$	119.9	C47 - C48 - H48	119.8
C7-C12-H12	110.0	C43 - C48 - H48	119.8
$C_1 = C_1 $	110.38 (17)	$C_{45} = C_{40} = C_{50}$	119.0
$C_{14} = C_{13} = C_{18}$	119.36(17) 120.00(17)	$C_{54} = C_{49} = C_{50}$	119.23(19) 120.62(10)
C18 C13 C4	120.00(17) 120.55(17)	$C_{54} - C_{49} - C_{40}$	120.02(19)
C15 - C13 - C4	120.33(17) 120.42(10)	$C_{30} - C_{49} - C_{40}$	120.10(10)
C15 - C14 - C13	120.42 (19)	C49 - C50 - C51	119.9 (2)
C13 - C14 - H14	119.8	C49—C30—H30	120.0
C13—C14—H14	119.8	C51—C50—H50	120.0
C14—C15—C16	119./1 (19)	C52—C51—C50	120.1 (2)
C14—C15—H15	120.1	C52—C51—H51	119.9
C16—C15—H15	120.1	C50—C51—H51	119.9
C17—C16—C15	120.26 (18)	C53—C52—C51	119.9 (2)
C17—C16—H16	119.9	С53—С52—Н52	120.1

C15—C16—H16	119.9	C51—C52—H52	120.1
C16—C17—C18	120.16 (19)	C52—C53—C54	120.4 (2)
C16—C17—H17	119.9	С52—С53—Н53	119.8
C18—C17—H17	119.9	C54—C53—H53	119.8
C17—C18—C13	120.02 (18)	C53—C54—C49	120.4 (2)
C17—C18—H18	120.0	C53—C54—H54	119.8
C13—C18—H18	120.0	C49—C54—H54	119.8
N5—C19—N4	115.66 (17)	N11—C55—N10	115.82 (18)
N5—C19—S2	127.95 (15)	N11—C55—S4	128.40 (15)
N4—C19—S2	116.36 (15)	N10-C55-S4	115.77 (15)
N4—C20—C21	111.0 (2)	C57—C56—N10	111.2 (2)
N4—C20—H20A	109.4	C57—C56—H56A	109.4
C21—C20—H20A	109.4	N10-C56-H56A	109.4
N4-C20-H20B	109.4	C57—C56—H56B	109.4
C21—C20—H20B	109.4	N10-C56-H56B	109.4
H_{20A} C_{20} H_{20B}	108.0	H56A—C56—H56B	108.0
C20-C21-H21A	109.5	C56—C57—H57A	109.5
C_{20} C_{21} H_{21B}	109.5	C56-C57-H57B	109.5
$H_{21}A = C_{21} = H_{21}B$	109.5	H57A—C57—H57B	109.5
C_{20} C_{21} H_{21C}	109.5	C56—C57—H57C	109.5
$H_{21} = C_{21} = H_{21}C$	109.5	H57A—C57—H57C	109.5
$H_{21B} - C_{21} - H_{21C}$	109.5	H57B-C57-H57C	109.5
N6-C22-C23	117.06 (17)	N12-C58-C59	118 20 (17)
N6-C22-C31	122.24(17)	N12 - C58 - C67	120.79(17)
C^{23} C^{22} C^{31}	122.24(17) 120.69(17)	C59 - C58 - C67	120.79(17) 121.00(17)
$C_{23} = C_{23} = C_{22}$	126.09(17) 126.2(2)	C60 - C59 - C58	121.00(17) 123.84(18)
$C_{24} = C_{23} = H_{23}$	116.9	C60-C59-H59	118 1
$C_{2}^{2} - C_{2}^{2} - H_{2}^{2}$	116.9	C58-C59-H59	118.1
C_{23} C_{24} C_{25}	1247(2)	C59 - C60 - C61	127.06 (18)
C_{23} C_{24} C_{23} C_{24} H_{24}	117.6	C59 - C60 - H60	116.5
$C_{25} = C_{24} = H_{24}$	117.6	C61 - C60 - H60	116.5
$C_{26} - C_{25} - C_{30}$	117.0 118.2(2)	$C_{66} - C_{61} - C_{62}$	118.10(18)
$C_{26} - C_{25} - C_{24}$	110.2(2) 122.8(2)	C66-C61-C60	110.10 (10)
$C_{20} = C_{25} = C_{24}$	122.0(2) 119.0(2)	C62 - C61 - C60	122 56 (18)
C_{27} C_{26} C_{25}	120.9(2)	C63 - C62 - C61	122.50(10) 120.5(2)
C_{27} C_{26} H_{26}	119.6	C63 - C62 - H62	119.8
C_{25} C_{26} H_{26}	119.6	C61 - C62 - H62	119.8
$C_{26} - C_{27} - C_{28}$	120 3 (2)	C62 - C63 - C64	120.4(2)
C26—C27—H27	119.9	C62 - C63 - H63	119.8
$C_{28} - C_{27} - H_{27}$	119.9	C64 - C63 - H63	119.8
C_{29} C_{28} C_{27}	119.6 (2)	C65 - C64 - C63	119.0 119.9(2)
C29—C28—H28	120.2	C65 - C64 - H64	120.0
C27—C28—H28	120.2	C63—C64—H64	120.0
C_{28} C_{29} C_{30}	120.2 120.1(2)	C64 - C65 - C66	1199(2)
C28—C29—H29	119.9	C64—C65—H65	120.1
C30—C29—H29	119.9	С66—С65—Н65	120.1
C_{29} C_{30} C_{25}	120.9 (2)	C65—C66—C61	121.3 (2)
C29—C30—H30	119.5	C65—C66—H66	119.4
		202 200 1100	**/**

С25—С30—Н30	119.5	C61—C66—H66	119.4
C32—C31—C36	119.14 (19)	C72—C67—C68	119.29 (18)
C32—C31—C22	119.82 (18)	C72—C67—C58	121.08 (18)
C36—C31—C22	121.04 (18)	C68—C67—C58	119.61 (18)
C33—C32—C31	120.2 (2)	C69—C68—C67	120.59 (19)
С33—С32—Н32	119.9	С69—С68—Н68	119.7
С31—С32—Н32	119.9	С67—С68—Н68	119.7
C34—C33—C32	120.4 (2)	C70—C69—C68	119.6 (2)
С34—С33—Н33	119.8	С70—С69—Н69	120.2
С32—С33—Н33	119.8	С68—С69—Н69	120.2
C33—C34—C35	119.6 (2)	C71—C70—C69	120.3 (2)
С33—С34—Н34	120.2	С71—С70—Н70	119.8
C35—C34—H34	120.2	С69—С70—Н70	119.8
$C_{36} - C_{35} - C_{34}$	120.2 (2)	C70-C71-C72	120.2 (2)
C36—C35—H35	119.9	C70-C71-H71	119.9
C_{34} C_{35} H_{35}	119.9	C72-C71-H71	119.9
C_{35} C_{36} C_{31}	1204(2)	C67 - C72 - C71	120.02 (19)
$C_{35} = C_{36} = H_{36}$	110.4 (2)	C67 - C72 - H72	120.02 (19)
C31_C36_H36	119.8	C71 - C72 - H72	120.0
051-050-1150	119.0	C/1-C/2-II/2	120.0
C1—N2—N3—C4	-161.61 (18)	C37—N8—N9—C40	178.13 (17)
C1—N2—N3—Zn1	0.9 (2)	C37—N8—N9—Zn2	-3.3 (2)
C19—N5—N6—C22	178.11 (17)	C55—N11—N12—C58	-172.63 (18)
C19—N5—N6—Zn1	-6.0 (2)	C55—N11—N12—Zn2	-1.4 (2)
N3—N2—C1—N1	179.06 (17)	N9—N8—C37—N7	-177.12 (16)
N3—N2—C1—S1	-0.8 (3)	N9—N8—C37—S3	4.9 (3)
C2—N1—C1—N2	-177.69 (19)	C38—N7—C37—N8	7.1 (3)
C2—N1—C1—S1	2.2 (3)	C38—N7—C37—S3	-174.65 (14)
Zn1— $S1$ — $C1$ — $N2$	0.30 (19)	Zn2—S3—C37—N8	-3.59(18)
Zn1-S1-C1-N1	-179.60(16)	Zn2-S3-C37-N7	178.41 (14)
C1—N1—C2—C3	82.8 (3)	C37—N7—C38—C39	-86.1 (2)
N2—N3—C4—C5	8.6 (3)	N8—N9—C40—C41	-178.13(16)
Zn1-N3-C4-C5	-152.08(15)	Zn2-N9-C40-C41	3.5 (3)
N2—N3—C4—C13	-173.99(16)	N8—N9—C40—C49	1.8 (3)
Zn1-N3-C4-C13	25.3 (2)	Zn2—N9—C40—C49	-176.55(14)
N3-C4-C5-C6	-168 14 (19)	N9-C40-C41-C42	-1636(2)
C_{13} C_{4} C_{5} C_{6}	14.6 (3)	C49 - C40 - C41 - C42	16.4 (3)
C4-C5-C6-C7	-17840(18)	C40-C41-C42-C43	177 55 (19)
$C_{5}-C_{6}-C_{7}-C_{8}$	-176.6(2)	C41 - C42 - C43 - C48	17 1 (3)
C_{5} C_{6} C_{7} C_{12}	56(3)	C41 - C42 - C43 - C44	-1631(2)
C12 - C7 - C8 - C9	-0.2(3)	C_{48} C_{43} C_{44} C_{45}	-0.5(3)
C6-C7-C8-C9	-178 13 (19)	C42-C43-C44-C45	1797(2)
C7 - C8 - C9 - C10	0.7(3)	C_{43} C_{44} C_{45} C_{46}	10(4)
$C_{8} - C_{9} - C_{10} - C_{11}$	-0.7(3)	C44 - C45 - C46 - C47	-0.8(5)
C9-C10-C11-C12	0.7(3)	C45-C46-C47-C48	0.2(5)
C_{10} C_{11} C_{12} C_{7}	0.2(3)	$C_{46} - C_{47} - C_{48} - C_{43}$	0.2(3)
C8 - C7 - C12 - C11	-0.3(3)	C44 - C43 - C48 - C47	-0.2(4)
$C_{0} = C_{1} = C_{12} = C_{11}$	177 55 (10)	$C_{42} = C_{43} = C_{40} = C_{47}$	1707(2)
	1//.JJ (17)	U72-U4J-U40-U4/	1/7./(4)

N3-C4-C13-C14	52.5 (2)	N9—C40—C49—C54	61.8 (3)
C5—C4—C13—C14	-130.1 (2)	C41—C40—C49—C54	-118.2(2)
N3—C4—C13—C18	-124.4 (2)	N9—C40—C49—C50	-116.2 (2)
C5—C4—C13—C18	53.0 (3)	C41—C40—C49—C50	63.7 (3)
C18—C13—C14—C15	1.0 (3)	C54—C49—C50—C51	-0.7(3)
C4—C13—C14—C15	-175.98 (18)	C40—C49—C50—C51	177.40 (19)
C13—C14—C15—C16	1.1 (3)	C49—C50—C51—C52	1.7 (3)
C14—C15—C16—C17	-1.9(3)	C50-C51-C52-C53	-0.8(4)
C15—C16—C17—C18	0.7 (3)	C51—C52—C53—C54	-1.0(4)
C16-C17-C18-C13	14(3)	C52 - C53 - C54 - C49	2.0(4)
C_{14} C_{13} C_{18} C_{17}	-22(3)	C_{50} C_{49} C_{54} C_{53}	-12(3)
C4-C13-C18-C17	174 75 (18)	C40-C49-C54-C53	-1792(2)
$N_{6} N_{5} C_{19} N_{4}$	175 76 (16)	N12 - N11 - C55 - N10	-179.60(19)
$N_{6} = N_{5} = C_{19} = S_{2}^{2}$	-65(3)	N12N11C55S4	14(3)
$C_{20} N_{4} C_{19} N_{5}$	-1786(2)	C_{56} N10 C_{55} N11	-7.7(3)
C_{20} N/ C_{10} S2	3 4 (3)	C_{56} N10 C_{55} S4	7.7(3)
7n1 S2 C10 N5	3.4(3)	$7n^2 = 84 = C55 = N11$	-0.6(2)
$Z_{\rm III} = S_2 = C_{\rm I}_{\rm 9} = N_3$	15.04(19)	$Z_{112} = 54 = C55 = N10$	-0.0(2)
211 - 52 - 019 - 114	-109.19(13)	2112 - 54 - C53 - N10	-1/9.03(17)
C19 - N4 - C20 - C21	173.9(2)	C_{33} N10 C_{30} C_{37}	84.3 (5) 177.59 (17)
$N_{0} = N_{0} = C_{22} = C_{23}$	1/4.90 (16)	N11 - N12 - C58 - C59	-1//.58(1/)
2n1 - N6 - C22 - C23	-0.5(3)	Zn2—N12—C58—C59	12.4 (3)
$N_{0} = N_{0} = C_{2} = C_{3}$	-4.2(3)	N11—N12—C58—C67	3.2 (3)
Zn1—N6—C22—C31	-179.56 (14)	Zn2—N12—C58—C67	-166.85 (14)
N6—C22—C23—C24	-177.1 (2)	N12—C58—C59—C60	-172.94 (19)
C31—C22—C23—C24	1.9 (3)	C67—C58—C59—C60	6.3 (3)
C22—C23—C24—C25	177.8 (2)	C58—C59—C60—C61	178.86 (19)
C23—C24—C25—C26	-16.0 (4)	C59—C60—C61—C66	171.7 (2)
C23—C24—C25—C30	164.3 (2)	C59—C60—C61—C62	-8.0 (3)
C30—C25—C26—C27	-1.0 (4)	C66—C61—C62—C63	-1.9 (3)
C24—C25—C26—C27	179.4 (2)	C60—C61—C62—C63	177.8 (2)
C25—C26—C27—C28	-0.3 (4)	C61—C62—C63—C64	0.3 (3)
C26—C27—C28—C29	0.7 (5)	C62—C63—C64—C65	1.0 (3)
C27—C28—C29—C30	0.4 (5)	C63—C64—C65—C66	-0.9 (3)
C28—C29—C30—C25	-1.7 (4)	C64—C65—C66—C61	-0.7 (3)
C26—C25—C30—C29	2.0 (4)	C62—C61—C66—C65	2.0 (3)
C24—C25—C30—C29	-178.3 (2)	C60—C61—C66—C65	-177.6 (2)
N6-C22-C31-C32	-74.8 (3)	N12—C58—C67—C72	-112.5 (2)
C23—C22—C31—C32	106.1 (2)	C59—C58—C67—C72	68.2 (3)
N6-C22-C31-C36	105.0 (2)	N12-C58-C67-C68	66.0 (3)
C23—C22—C31—C36	-74.1 (3)	C59—C58—C67—C68	-113.2 (2)
C36—C31—C32—C33	-1.8 (3)	C72—C67—C68—C69	0.1 (3)
C22—C31—C32—C33	178.02 (18)	C58—C67—C68—C69	-178.50 (19)
C31—C32—C33—C34	-0.6 (3)	C67—C68—C69—C70	1.3 (3)
C32—C33—C34—C35	2.2 (3)	C68—C69—C70—C71	-1.5(3)
C33—C34—C35—C36	-1.4 (3)	C69—C70—C71—C72	0.2 (3)
C_{34} C_{35} C_{36} C_{31}	-1.0(3)	C68 - C67 - C72 - C71	-1.4(3)
C_{32} C_{31} C_{36} C_{35}	2.6(3)	C58 - C67 - C72 - C71	177 18 (19)
$C_{2} = C_{31} = C_{36} = C_{35}$	-177 24 (19)	C70-C71-C72-C67	13(3)
	······································	0.0 0.1 0.2 001	(-)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
N1—H1 <i>N</i> ····S3	0.87 (2)	2.65 (2)	3.5077 (19)	170 (2)	
N7—H7 <i>N</i> ···N2	0.87 (2)	2.10 (2)	2.941 (2)	164 (2)	
N10—H10 N ···S2 ⁱ	0.87(1)	2.59 (2)	3.318 (2)	142 (2)	
C11—H11…S4	0.95	2.86	3.715 (2)	151	
C8—H8··· <i>Cg</i> 1 ⁱⁱ	0.95	2.73	3.608 (2)	154	
C32—H32…Cg2 ⁱⁱⁱ	0.95	2.64	3.532 (2)	157	

Cg1 and Cg2 are the centroids of the C31–C36 and C13–C18 rings, respectively.

Symmetry codes: (i) -*x*+1/2, *y*+3/2, -*z*+1/2; (ii) *x*, -*y*, *z*-1/2; (iii) *x*, -*y*-1, *z*-1/2.