Edited by W. Imhof, University Koblenz-Landau, Germany

Keywords: crystal structure; tin; oxalate; bridging ligand; disorder.

CCDC reference: 1554751
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of μ-oxalato- $\kappa^{2} O^{1}: O^{2}$ bis[(dimethyl sulfoxide- κ O)triphenyltin(IV)]

Serigne Fallou Pouye, ${ }^{\text {a* }}$ Ibrahima Cisse, ${ }^{\text {a }}$ Libasse Diop, ${ }^{\text {a }}$ Alessandro Dolmella ${ }^{\text {b }}$ and Sylvain Bernès ${ }^{\text {c }}$

${ }^{\text {a }}$ Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, 'buniversita di Padova, Dipartimento di Scienze del Farmaco RMXS, Laboratorio di Radiofarmacia, Modellistica Molecolare e Diffrattometria a Raggi X, Via Francesco Marzolo 5, 35131, Padova, Italy, and ${ }^{\text {c Instituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y } 18 \text { Sur, } 72570 \text { Puebla, Pue., }}$ Mexico. *Correspondence e-mail: sgne0281@yahoo.fr

In the previously reported $\left[\mathrm{C}_{2} \mathrm{O}_{4}\left(\mathrm{SnPh}_{3}\right)_{2}\right]$ complex [Diop et al. (2003). Appl. Organomet. Chem. 17, 881-882.], the $\mathrm{Sn}^{\mathrm{IV}}$ atoms are able to formally complete their coordination by addition of dimethyl sulfoxide (DMSO) molecules provided by the reaction medium, affording the title complex, $\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\right]$. The $\mathrm{Sn}^{\text {IV }}$ atoms are then pentacoordinated, with a common trans trigonal-bipyramidal arrangement. The asymmetric unit contains one half-molecule, which is completed by inversion symmetry in space group type $C 2 / c$. The inversion centre is placed at the mid-point of the central bis-monodentate oxalate dianion, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, which bridges the $\left[\left(\mathrm{SnPh}_{3}\right)(\mathrm{DMSO})\right]$ moieties. The molecule crystallizes as a disordered system, with two phenyl rings disordered by rotation about their $\mathrm{Sn}-\mathrm{C}$ bonds, while the DMSO molecule is split over two positions due to a tetrahedral inversion at the S atom. All disordered parts were refined with occupancies fixed of 0.5 .

1. Chemical context

One of the values of $\mathrm{Sn}^{\mathrm{IV}}$ coordination chemistry is related to the ambiguous valency of this main element, for which a plethora of tetra- and pentacoordinated compounds have been described. This makes a difference with C and Si compounds, based almost exclusively on tetravalent nodes, with very few cases of hypervalency. For Sn mononuclear compounds, a survey of the current Cambridge database (CSD V5.38 updated February 2017; Groom et al., 2016) shows that coordination number four is more represented than coordination number five, with distributions of 63 and 37%, respectively, for the ca 4700 structures deposited to date. Stable compounds with a coordination number of four for the $\mathrm{Sn}^{\text {IV }}$ atom are thus attractive starting materials for the chemistry of $\mathrm{Sn}^{\mathrm{IV}}$ complexes with a coordination number of five, including polynuclear species, which have no equivalent with the other elements of group 14. Triphenyltin chloride, $\mathrm{SnPh}_{3} \mathrm{Cl}$, is one of these well used molecules, with the additional advantage that the Cl atom may behave as a leaving group, while the SnPh_{3} fragment is a stable core structure.

The here reported dinuclear compound is a continuation of previous works carried out by the Dakar group about the synthesis of Sn_{2} complexes using the oxalate dianion as a bridging ligand. The simplest member of this family is $\left[\mathrm{C}_{2} \mathrm{O}_{4}\left(\mathrm{SnPh}_{3}\right)_{2}\right]$, where both Sn sites exhibit coordination number four (Diop et al., 2003). However, it seems that
whenever possible, the fifth coordination site in such complexes is occupied by a Lewis base, for example if the reaction is realized in a donor solvent such as $\mathrm{H}_{2} \mathrm{O}$, DMF, thiourea, etc. In this context, the structures of $\left\{\mathrm{C}_{2} \mathrm{O}_{4}\left[\left(\mathrm{SnMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\right\}, \quad\left\{\mathrm{C}_{2} \mathrm{O}_{4}\left[\left(\mathrm{SnPh}_{3}\right)(\mathrm{DMF})\right]_{2}\right\} \quad$ and $\left\{\mathrm{C}_{2} \mathrm{O}_{4}\left[\left(\mathrm{SnPh}_{3}\right) \text { (thiourea) }\right]_{2}\right\}$ have been described (Diop et al., 1997; Gueye et al., 2011; Sow et al., 2012). In this dynamic, we now report a new complex synthesized using a mixture of dimethyl sulfoxide (DMSO) and methanol as solvent. The former component of this mixture is clearly a more stabilizing ligand for Sn atoms, resulting in the crystallization of the title compound, $\left\{\mathrm{C}_{2} \mathrm{O}_{4}\left[\left(\mathrm{SnPh}_{3}\right)(\mathrm{DMSO})\right]_{2}\right\}$. Interestingly, the complex [(DMSO) SnPh_{3}] is known (Kumar et al., 2009), but was not detected in this reaction, indicating that the oxalatebridged species is probably formed prior to solvent coordination.

2. Structural commentary

As expected, the oxalate dianion behaves as a bis-monodentate μ_{2}-bridging ligand for two $\left[\mathrm{SnPh}_{3}(\mathrm{DMSO})\right]$ moieties. The resulting neutral dinuclear complex is situated on a crystallographic inversion centre, placed at the midpoint of the $\mathrm{C}-\mathrm{C}$ bond of the oxalate bridge (Fig. 1). Although that symmetry is consistent with the molecular symmetry, the molecule is strongly disordered: two of the three phenyl rings in the asymmetric unit are disordered over two positions by

Figure 1
The molecular structure of the title complex, with displacement ellipsoids at the 30% probability level. For phenyl rings C8-C13 and C14-C19 and for the DMSO molecule, only disordered part A (occupancy 0.5) is represented, and all H atoms are omitted. Unlabelled atoms are generated by the symmetry operation $\left(\frac{3}{2}-x, \frac{1}{2}-y, 2-z\right)$.

Table 1
Hydrogen-bond geometry ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 20 A-\mathrm{H} 20 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.96	2.51	$3.43(4)$	162
${\mathrm{C} 21 A-\mathrm{H} 21 A \cdots \mathrm{O} 2^{\mathrm{i}}}^{\mathrm{ii}}$	0.96	2.60	$3.49(2)$	154
${\mathrm{C} 21 B-\mathrm{H} 21 D \cdots \mathrm{O} 1^{2}}^{2}$	0.96	2.36	$3.278(19)$	160

Symmetry codes: (i) $x,-y+1, z-\frac{1}{2}$; (ii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.
rotation about their $\mathrm{Sn}-\mathrm{C}$ bonds, and the DMSO molecule is also disordered over two positions, as a consequence of an inversion at the tetrahedral S atom.

The $\mathrm{Sn}^{\mathrm{IV}}$ atom is pentacoordinated in a common trans trigonal-bipyramidal manner, the phenyl groups being in equatorial positions, while the coordinating O atoms from the oxalate and DMSO ligands occupy the apical sites. The three $\mathrm{Sn}-\mathrm{C}$ bonds are similar in length to those already reported for related complexes including the SnPh_{3} fragment (Sow et al., 2012; Gueye et al., 2011), while the Sn - O bond for the oxalate is rather short, 2.147 (2) \AA, compared to that found in $\left\{\mathrm{C}_{2} \mathrm{O}_{4}\left[\left(\mathrm{SnMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\right\}, 2.209 \AA$, or in the anionic polymer $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~S}_{n}\left[\mathrm{C}_{2} \mathrm{O}_{4} \mathrm{SnPh}_{3}\right]_{n}(2.220 \AA\right.$; Ng et al., 1994). This tight bonding character for the bridging oxalate may be related to its planar conformation, imposed by symmetry. The staggered arrangement for the six phenyl rings, also imposed by symmetry, avoids any steric hindrance in the complex. The apical DMSO molecule has an $\mathrm{Sn}-\mathrm{O}$ bond length of 2.354 (6)-2.403 (6) A, reflecting a less pronounced coordination strength.

3. Supramolecular features

These discrete binuclear molecules interact through van der Waals forces in the crystal, and no strong interactions are observed. The carbonyl groups of the oxalate dianion, $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 1=\mathrm{O} 2$, are the unique potential acceptor groups for hydrogen bonding, and indeed, weak intermolecular C $\mathrm{H} \cdots \mathrm{O}$ contacts are formed (Table 1): two molecules related by a glide plane are oriented almost perpendicular, in such a way that methyl groups of the terminal DMSO ligands in one molecule form $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts with the oxalate bridge of the other molecule (Fig. 2). These contacts are favoured by the disorder affecting the DMSO ligands, and allow to pack the complexes densely in the crystal, even in the absence of any $\pi-$ π contacts between the phenyl rings.

4. Database survey

According to the Cambridge Structural Database (CSD V5.38 updated February 2017; Groom et al., 2016), eleven structures containing a bis-monodentate bridging μ_{2}-oxalate linked to two Sn atoms have been characterized by X-ray diffraction. In addition to those already mentioned in the previous sections, a cis $\left[\mathrm{C}_{2} \mathrm{O}_{4}\left(\mathrm{Sn} R_{3}\right)_{2}\right]$ complex with bulky R groups has been reported (Tan et al., 2014), as well as stannate complexes (Sow et al., 2011; Ng \& Kumar Das, 1990, 1993; Kruger et al., 1976). Among these structures, the trans coordination mode for the

Figure 2
Part of the crystal structure viewed down reciprocal axis a^{*}. For disordered phenyl rings, only one orientation is retained, while both disordered parts for the DMSO molecules are represented, in green and magenta (parts A and B, respectively). Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts listed in Table 1 are represented for the central molecule as blue dashed lines.
oxalate bridge dominates. The oxalate dianion is, however, known for having a very rich coordination behaviour, and the $\mu_{2}-\kappa^{2}-O, O^{\prime}$ coordination mode observed in the title compound is not the most common. Limiting the survey to Sn compounds, the chelating bis-bidentate bridging mode is more represented (i.e. polynuclear complexes including the $\mu_{2^{-}}$ oxalato- $\kappa^{4} O^{1}, O^{2}: O^{1^{\prime}}, O^{2^{\prime}}$ bridge). In that case, the conformation of the bridge is invariably planar, while the $\mu_{2}-\kappa^{2}-O, O^{\prime}$ bridge may be planar or twisted.

5. Synthesis and crystallization

$\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2} \mathrm{CH}_{3}\right] \mathrm{C}_{2} \mathrm{O}_{4}(\mathbf{L})$ was obtained as a powder, on mixing the diamine $\mathrm{CH}_{3} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHCH}_{3}$ with $\mathrm{C}_{2} \mathrm{O}_{4} \mathrm{H}_{2} \cdot-$ $2 \mathrm{H}_{2} \mathrm{O}$ in a 1:1 ratio (v / v) in water, and allowing the water to
evaporate at 333 K . When $0.10 \mathrm{~g}(0.26 \mathrm{mmol})$ of $\mathrm{SnPh}_{3} \mathrm{Cl}$ in 15 ml of a 1:1 ratio (v / v) DMSO/methanol mixture was reacted with $0.06 \mathrm{~g}(0.26 \mathrm{mmol})$ of \mathbf{L}, a clear solution was obtained. Slow solvent evaporation over two weeks afforded a powder, which was collected. This powder dissolved in acetonitrile gave a slightly cloudy solution, which was quickly filtered off. The resulting clear solution, when allowed to evaporate slowly, afforded, six months after, colourless crystals of the title complex suitable for X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The molecular structure is strongly disordered. Three different data sets were collected for three

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\right]$
$M_{\text {r }}$	944.25
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	297
$a, b, c(\AA)$	$\begin{aligned} & 15.4638(14), 16.2069(10), \\ & 17.6205(15) \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	111.213 (10)
$V\left(\AA^{3}\right)$	4116.8 (6)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	1.36
Crystal size (mm)	$0.19 \times 0.18 \times 0.11$
Data collection	
Diffractometer	Agilent Xcalibur Atlas Gemini
Absorption correction	Gaussian (CrysAlis PRO; Agilent, 2013)
$T_{\text {min }}, T_{\text {max }}$	0.955, 0.978
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	27591, 5762, 3476
$R_{\text {int }}$	0.064
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.694
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.047, 0.090, 1.02
No. of reflections	5762
No. of parameters	383
No. of restraints	180
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.50, -0.53

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXT2014 (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).
different crystals, on different diffractometers; however, all gave the same disordered structure. In the asymmetric unit, two of the three phenyl rings are disordered over two positions: rings C8-C13 and C14-C19 were split over sites A and B. Attempts to refine site occupancies for the disordered parts resulted in free variables converging to values very close to $1 / 2$ [maximum deviation for DMSO: 0.477 (5) and 0.523 (5)] with no clear improvement for the involved displacement parameters.

The four rings were restrained to be flat with standard deviation of $0.02 \AA^{3}$, and the C atoms in a given ring were
restrained to have the same anisotropic components, within a standard deviation of $0.04 \AA^{2}$. Finally, A and B rings for each disordered phenyl group were restrained to have the same geometry (standard deviations: $0.02 \AA$ for $\mathrm{C}-\mathrm{C}$ bond lengths and $0.04 \AA$ for 1,3 -distances). The DMSO molecule is also disordered over two positions, labelled A and B, with occupancies fixed to 0.5 . These parts were refined freely.

Acknowledgements

SB thanks Francisco Javier Ríos-Merino (BUAP) for performing the data collection of one of the studied crystals.

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. \& Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881-882.

Diop, L., Mahon, M. F., Molloy, K. C. \& Sidibe, M. (1997). Main Group Met. Chem. 20, 649-654.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Gueye, N., Diop, L., Molloy, K. C. \& Kociok-Köhn, G. (2011). Main Group Met. Chem. 34, 3-4.
Kruger, G. J., Breet, E. L. J. \& Van Eldik, R. (1976). Inorg. Chim. Acta, 19, 151-157.
Kumar, S., Shadab, S. M. \& Idrees, M. (2009). Acta Cryst. E65, m1602m1603.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Ng, S. W. \& Kumar Das, V. G. (1990). J. Organomet. Chem. 390, 19-28.
Ng, S. W. \& Kumar Das, V. G. (1993). J. Organomet. Chem. 456, 175179.

Ng, S. W., Kumar Das, V. G., Luo, B.-S. \& Mak, T. C. W. (1994). Z. Kristallogr. 209, 882-884.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Sow, Y., Diop, L., Molloy, K. C. \& Kociok-Köhn, G. (2011). Main Group Met. Chem. 34, 127-130.
Sow, Y., Diop, L., Molloy, K. C. \& Kociok-Kohn, G. (2012). Acta Cryst. E68, m1337.
Tan, Y.-X., Feng, Y.-L., Yin, D.-L., Yu, J.-X., Jiang, W.-J., Zhang, F.-X. \& Kuang, D.-Z. (2014). Chin. J. Inorg. Chem. 30, 2781-2788.

supporting information

Acta Cryst. (2017). E73, 1033-1036 [https://doi.org/10.1107/S2056989017008519]

Crystal structure of μ-oxalato- $\kappa^{2} O^{1}: O^{2}$-bis [(dimethyl sulfoxide- κO)triphenyltin(IV)]

Serigne Fallou Pouye, Ibrahima Cisse, Libasse Diop, Alessandro Dolmella and Sylvain Bernès

Computing details

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).
μ-Oxalato- $\kappa^{2} O^{1}: O^{2}$-bis[triphenyl(dimethyl sulfoxide- κO)tin(IV)]

Crystal data

$\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\right]$
$M_{r}=944.25$
Monoclinic, C2/c
$a=15.4638$ (14) Å
$b=16.2069$ (10) \AA
$c=17.6205(15) \AA$
$\beta=111.213(10)^{\circ}$
$V=4116.8(6) \AA^{3}$
$Z=4$

Data collection

Agilent Xcalibur Atlas Gemini
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 10.5564 pixels mm^{-1}
ω scans
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
$T_{\text {min }}=0.955, T_{\text {max }}=0.978$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.090$
$S=1.02$
5762 reflections
383 parameters
180 restraints
0 constraints
$F(000)=1896$
$D_{\mathrm{x}}=1.523 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5828 reflections
$\theta=3.5-25.5^{\circ}$
$\mu=1.36 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Block, colourless
$0.19 \times 0.18 \times 0.11 \mathrm{~mm}$

27591 measured reflections
5762 independent reflections
3476 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=29.6^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-21 \rightarrow 20$
$k=-20 \rightarrow 22$
$l=-23 \rightarrow 24$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0254 P)^{2}+2.4676 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.50 \mathrm{e}^{-3}
\end{aligned}
$$

$$
\Delta \rho_{\min }=-0.53 \mathrm{e}^{-3}
$$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Sn	0.74863 (2)	0.38396 (2)	0.82897 (2)	0.05437 (10)	
O1	0.73200 (18)	0.28181 (13)	0.90012 (13)	0.0554 (6)	
O2	0.81455 (18)	0.34129 (15)	1.01798 (14)	0.0627 (7)	
C1	0.7646 (2)	0.2865 (2)	0.9783 (2)	0.0454 (8)	
C2	0.8950 (3)	0.3837 (2)	0.8639 (2)	0.0558 (9)	
C3	0.9412 (3)	0.3172 (3)	0.8478 (3)	0.0744 (12)	
H3A	0.908158	0.269872	0.824646	0.089*	
C4	1.0369 (4)	0.3197 (4)	0.8656 (3)	0.0940 (15)	
H4A	1.067176	0.274125	0.854909	0.113*	
C5	1.0860 (4)	0.3893 (4)	0.8988 (3)	0.1056 (19)	
H5A	1.149565	0.391281	0.910245	0.127*	
C6	1.0420 (4)	0.4552 (4)	0.9148 (3)	0.1067 (18)	
H6A	1.075612	0.502164	0.938234	0.128*	
C7	0.9470 (3)	0.4532 (3)	0.8967 (3)	0.0811 (13)	
H7A	0.917543	0.499630	0.906752	0.097*	
C8A	0.6690 (7)	0.3048 (6)	0.7188 (8)	0.041 (3)	0.5
C9A	0.5839 (5)	0.2732 (4)	0.7073 (4)	0.060 (2)	0.5
H9AA	0.558300	0.282628	0.746799	0.072*	0.5
C10A	0.5333 (6)	0.2272 (5)	0.6388 (5)	0.072 (2)	0.5
H10A	0.475126	0.206430	0.632941	0.087*	0.5
C11A	0.5698 (11)	0.2132 (8)	0.5811 (8)	0.073 (4)	0.5
H11A	0.536487	0.182846	0.534959	0.088*	0.5
C12A	0.6553 (12)	0.2434 (11)	0.5901 (11)	0.081 (5)	0.5
H12A	0.680493	0.232811	0.550534	0.097*	0.5
C13A	0.7046 (10)	0.2895 (10)	0.6578 (11)	0.069 (5)	0.5
H13A	0.762268	0.310741	0.662866	0.083*	0.5
C8B	0.6772 (8)	0.3329 (6)	0.7227 (8)	0.045 (3)	0.5
C9B	0.5824 (6)	0.3406 (6)	0.6914 (4)	0.074 (2)	0.5
H9BA	0.554540	0.375035	0.718110	0.089*	0.5
C10B	0.5261 (7)	0.2996 (7)	0.6223 (5)	0.100 (3)	0.5
H10B	0.462179	0.306921	0.603236	0.120*	0.5
C11B	0.5651 (13)	0.2487 (8)	0.5825 (9)	0.098 (5)	0.5
H11B	0.527747	0.220670	0.536246	0.118*	0.5
C12B	0.6595 (13)	0.2385 (12)	0.6105 (11)	0.089 (6)	0.5
H12B	0.686415	0.203745	0.583203	0.107*	0.5
C13B	0.7142 (11)	0.2802 (10)	0.6793 (11)	0.066 (5)	0.5
H13B	0.778203	0.273077	0.697646	0.079*	0.5
C14A	0.6762 (6)	0.4614 (6)	0.8894 (5)	0.051 (3)	0.5
C15A	0.6973 (8)	0.5429 (6)	0.9128 (5)	0.069 (3)	0.5
H15A	0.747612	0.568106	0.905281	0.083*	0.5
C16A	0.6444 (9)	0.5870 (10)	0.9473 (7)	0.097 (6)	0.5
H16A	0.658909	0.641741	0.962574	0.116*	0.5

C17A	$0.5707(8)$	$0.5503(8)$	$0.9590(6)$	$0.117(4)$	0.5
H17A	0.536018	0.580073	0.983054	0.141^{*}	0.5
C18A	$0.5470(6)$	$0.4700(7)$	$0.9358(5)$	$0.099(3)$	0.5
H18A	0.495829	0.445820	0.942794	0.118^{*}	0.5
C19A	$0.6004(5)$	$0.4259(5)$	$0.9020(4)$	$0.065(2)$	0.5
H19A	0.585513	0.371091	0.887310	0.078^{*}	0.5
C14B	$0.6686(6)$	$0.4733(6)$	$0.8548(5)$	$0.048(2)$	0.5
C15B	$0.6971(7)$	$0.5049(6)$	$0.9333(6)$	$0.066(3)$	0.5
H15B	0.750368	0.484317	0.973173	0.079^{*}	0.5
C16B	$0.6469(10)$	$0.5669(8)$	$0.9528(10)$	$0.098(7)$	0.5
H16B	0.666347	0.587680	1.005548	0.117^{*}	0.5
C17B	$0.5690(8)$	$0.5971(5)$	$0.8944(8)$	$0.093(3)$	0.5
H17B	0.535329	0.638907	0.907265	0.111^{*}	0.5
C18B	$0.5398(6)$	$0.5661(6)$	$0.8164(6)$	$0.095(3)$	0.5
H18B	0.486350	0.587047	0.777086	0.114^{*}	0.5
C19B	$0.5887(5)$	$0.5041(5)$	$0.7957(5)$	$0.066(2)$	0.5
H19B	0.568470	0.483432	0.742912	0.079^{*}	0.5
S1A	$0.7716(2)$	$0.52338(16)$	$0.68682(18)$	$0.0811(8)$	0.5
O3A	$0.7554(4)$	$0.5126(4)$	$0.7693(4)$	$0.0732(16)$	0.5
C20A	$0.865(2)$	$0.575(3)$	$0.708(3)$	$0.137(14)$	0.5
H20A	0.864484	0.604834	0.660865	0.205^{*}	0.5
H20B	0.917345	0.538392	0.725717	0.205^{*}	0.5
H20C	0.870035	0.613586	0.751115	0.205^{*}	0.5
C21A	$0.6862(16)$	$0.5830(16)$	$0.6302(14)$	$0.184(13)$	0.5
H21A	0.701270	0.605139	0.585978	0.276^{*}	0.5
H21B	0.677325	0.627345	0.662722	0.276^{*}	0.5
H21C	0.630197	0.551118	0.608857	0.276^{*}	0.5
S1B	$0.76364(17)$	$0.56427(15)$	$0.72611(17)$	$0.0723(6)$	0.5
O3B	$0.7508(4)$	$0.4700(3)$	$0.7186(4)$	$0.0728(17)$	0.5
C20B	$0.8649(16)$	$0.597(3)$	$0.710(3)$	$0.096(7)$	0.5
H20D	0.861031	0.655418	0.699420	0.144^{*}	0.5
H20E	0.870286	0.568154	0.664730	0.144^{*}	0.5
H20F	0.918280	0.585965	0.758107	0.144^{*}	0.5
C21B	$0.6869(12)$	$0.6082(12)$	$0.6425(14)$	$0.101(6)$	0.5
H21D	0.704256	0.664491	0.639061	0.152^{*}	0.5
H21E	0.626177	0.606439	0.645634	0.152^{*}	0.5
H21F	0.686267	0.578628	0.595114	0.152^{*}	0.5

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Sn	$0.05831(17)$	$0.05370(17)$	$0.05635(17)$	$0.00491(13)$	$0.02705(13)$	$0.01576(12)$
O 1	$0.0847(18)$	$0.0497(14)$	$0.0311(13)$	$-0.0065(12)$	$0.0201(12)$	$0.0076(10)$
O 2	$0.0827(19)$	$0.0523(15)$	$0.0485(15)$	$-0.0168(14)$	$0.0183(14)$	$0.0011(12)$
C 1	$0.055(2)$	$0.0419(19)$	$0.041(2)$	$0.0038(17)$	$0.0200(17)$	$0.0037(15)$
C 2	$0.055(2)$	$0.072(3)$	$0.043(2)$	$-0.002(2)$	$0.0201(17)$	$0.0074(18)$
C 3	$0.064(3)$	$0.084(3)$	$0.075(3)$	$0.002(2)$	$0.024(2)$	$0.000(2)$
C 4	$0.074(4)$	$0.125(5)$	$0.091(4)$	$0.017(3)$	$0.040(3)$	$-0.001(3)$

C5	0.063 (3)	0.174 (6)	0.083 (4)	-0.025 (4)	0.030 (3)	-0.021 (4)
C6	0.088 (4)	0.145 (5)	0.079 (4)	-0.042 (4)	0.021 (3)	-0.023 (3)
C7	0.079 (3)	0.095 (4)	0.067 (3)	-0.009 (3)	0.024 (2)	-0.012 (2)
C8A	0.054 (6)	0.033 (6)	0.032 (4)	-0.004 (4)	0.011 (4)	0.007 (4)
C9A	0.063 (5)	0.063 (5)	0.053 (5)	-0.008 (4)	0.021 (4)	-0.004 (4)
C10A	0.071 (6)	0.078 (6)	0.064 (6)	-0.026 (5)	0.021 (5)	-0.005 (5)
C11A	0.085 (8)	0.074 (8)	0.052 (6)	-0.020 (6)	0.014 (6)	-0.001 (5)
C12A	0.126 (13)	0.083 (10)	0.046 (7)	-0.007 (9)	0.045 (8)	-0.006 (6)
C13A	0.072 (9)	0.075 (9)	0.073 (11)	-0.019 (7)	0.041 (8)	0.004 (7)
C8B	0.053 (6)	0.047 (8)	0.037 (5)	-0.005 (5)	0.020 (4)	0.007 (5)
C9B	0.061 (6)	0.113 (7)	0.047 (5)	-0.006 (6)	0.017 (4)	-0.014 (5)
C10B	0.062 (6)	0.169 (11)	0.060 (6)	-0.019 (7)	0.010 (5)	-0.025 (7)
C11B	0.108 (11)	0.125 (14)	0.052 (7)	-0.027 (10)	0.016 (7)	-0.023 (8)
C12B	0.117 (13)	0.085 (11)	0.068 (11)	0.013 (9)	0.036 (8)	-0.011 (8)
C13B	0.070 (8)	0.065 (8)	0.057 (8)	0.021 (6)	0.018 (6)	-0.005 (6)
C14A	0.059 (5)	0.056 (6)	0.032 (5)	0.002 (4)	0.010 (5)	0.002 (5)
C15A	0.074 (6)	0.061 (7)	0.063 (7)	0.021 (6)	0.013 (5)	-0.008 (5)
C16A	0.100 (14)	0.082 (9)	0.100 (12)	0.022 (8)	0.026 (11)	-0.038 (8)
C17A	0.095 (9)	0.155 (12)	0.091 (8)	0.038 (9)	0.020 (7)	-0.045 (8)
C18A	0.074 (6)	0.152 (10)	0.076 (6)	0.008 (7)	0.035 (5)	-0.012 (6)
C19A	0.065 (5)	0.084 (6)	0.051 (5)	0.003 (4)	0.027 (4)	-0.005 (4)
C14B	0.053 (5)	0.049 (5)	0.045 (6)	-0.001 (4)	0.021 (5)	0.003 (4)
C15B	0.067 (6)	0.060 (7)	0.065 (7)	0.023 (6)	0.018 (5)	0.013 (6)
C16B	0.101 (14)	0.073 (9)	0.106 (12)	0.022 (8)	0.021 (10)	-0.020 (7)
C17B	0.091 (8)	0.071 (7)	0.130 (10)	0.022 (6)	0.057 (8)	-0.004 (6)
C18B	0.064 (6)	0.100 (8)	0.111 (8)	0.028 (5)	0.019 (6)	0.021 (6)
C19B	0.058 (5)	0.078 (6)	0.059 (5)	0.006 (4)	0.019 (4)	0.004 (4)
S1A	0.110 (2)	0.0488 (14)	0.107 (2)	-0.0064 (13)	0.0655 (18)	-0.0066 (14)
O3A	0.103 (5)	0.057 (4)	0.069 (4)	-0.005 (3)	0.043 (4)	0.021 (3)
C20A	0.125 (19)	0.15 (3)	0.152 (19)	-0.008 (14)	0.076 (15)	0.07 (2)
C21A	0.128 (16)	0.27 (3)	0.093 (12)	-0.073 (16)	-0.037 (10)	0.093 (16)
S1B	0.0840 (17)	0.0567 (14)	0.0848 (18)	-0.0119 (12)	0.0407 (14)	-0.0040 (13)
O3B	0.108 (5)	0.039 (3)	0.084 (5)	-0.010 (3)	0.050 (4)	0.010 (3)
C20B	0.045 (9)	0.110 (13)	0.125 (14)	-0.016 (7)	0.021 (8)	0.059 (11)
C21B	0.080 (10)	0.080 (7)	0.171 (17)	0.044 (7)	0.079 (11)	0.071 (9)

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Sn}-\mathrm{C} 8 \mathrm{~B}$	$1.979(13)$	$\mathrm{C} 12 \mathrm{~B}-\mathrm{H} 12 \mathrm{~B}$	0.9300
$\mathrm{Sn}-\mathrm{C} 14 \mathrm{~B}$	$2.060(10)$	$\mathrm{C} 13 \mathrm{~B}-\mathrm{H} 13 \mathrm{~B}$	0.9300
$\mathrm{Sn}-\mathrm{C} 2$	$2.120(4)$	$\mathrm{C} 14 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}$	$1.387(11)$
$\mathrm{Sn}-\mathrm{O} 1$	$2.147(2)$	$\mathrm{C} 14 \mathrm{~A}-\mathrm{C} 19 \mathrm{~A}$	$1.394(10)$
$\mathrm{Sn}-\mathrm{C} 14 \mathrm{~A}$	$2.196(10)$	$\mathrm{C} 15 \mathrm{~A}-\mathrm{C} 16 \mathrm{~A}$	$1.383(12)$
$\mathrm{Sn}-\mathrm{C} 8 \mathrm{~A}$	$2.281(12)$	$\mathrm{C} 15 \mathrm{~A}-\mathrm{H} 15 \mathrm{~A}$	0.9300
$\mathrm{Sn}-\mathrm{O} 3 \mathrm{~A}$	$2.354(6)$	$\mathrm{C} 16 \mathrm{~A}-\mathrm{C} 17 \mathrm{~A}$	$1.366(15)$
$\mathrm{Sn}-\mathrm{O} 3 \mathrm{~B}$	$2.403(6)$	$\mathrm{C} 16 \mathrm{~A}-\mathrm{H} 16 \mathrm{~A}$	0.9300
$\mathrm{O} 1-\mathrm{C} 1$	$1.286(4)$	$\mathrm{C} 17 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A}$	$1.373(12)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.218(4)$	$\mathrm{C} 17 \mathrm{~A}-\mathrm{H} 17 \mathrm{~A}$	0.9300

$\mathrm{C} 1-\mathrm{C} 1^{\text {i }}$	1.562 (6)
C2-C3	1.379 (5)
C2-C7	1.382 (6)
C3-C4	1.398 (6)
C3-H3A	0.9300
C4-C5	1.367 (7)
C4-H4A	0.9300
C5-C6	1.350 (7)
C5-H5A	0.9300
C6-C7	1.386 (6)
C6-H6A	0.9300
C7-H7A	0.9300
C8A-C9A	1.357 (11)
C8A-C13A	1.395 (12)
C9A-C10A	1.394 (9)
C9A-H9AA	0.9300
C10A-C11A	1.348 (12)
C10A-H10A	0.9300
C11A-C12A	1.365 (13)
C11A-H11A	0.9300
C12A-C13A	1.380 (12)
C12A-H12A	0.9300
C13A-H13A	0.9300
C8B-C9B	1.372 (11)
C8B-C13B	1.399 (11)
C9B-C10B	1.384 (10)
C9B-H9BA	0.9300
C10B-C11B	1.357 (13)
C10B-H10B	0.9300
C11B-C12B	1.371 (13)
C11B-H11B	0.9300
C12B-C13B	1.379 (12)
C8B-Sn-C2	116.5 (4)
C14B-Sn-C2	126.9 (3)
C8B-Sn-O1	94.9 (3)
C14B-Sn-O1	101.8 (2)
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{O} 1$	99.80 (12)
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{C} 14 \mathrm{~A}$	122.6 (3)
$\mathrm{O} 1-\mathrm{Sn}-\mathrm{C} 14 \mathrm{~A}$	88.1 (2)
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{C} 8 \mathrm{~A}$	115.9 (3)
$\mathrm{O} 1-\mathrm{Sn}-\mathrm{C} 8 \mathrm{~A}$	85.5 (3)
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{O} 3 \mathrm{~A}$	85.17 (18)
O1-Sn-O3A	167.81 (17)
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{O} 3 \mathrm{~B}$	84.84 (18)
$\mathrm{O} 1-\mathrm{Sn}-\mathrm{O} 3 \mathrm{~B}$	163.62 (16)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Sn}$	119.8 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	125.4 (3)

C18A-C19A	1.381 (10)
C18A-H18A	0.9300
C19A-H19A	0.9300
C14B-C19B	1.388 (10)
C14B-C15B	1.389 (11)
C15B-C16B	1.387 (12)
C15B-H15B	0.9300
C16B-C17B	1.361 (14)
C16B-H16B	0.9300
C17B-C18B	1.378 (12)
C17B-H17B	0.9300
C18B-C19B	1.384 (10)
C18B-H18B	0.9300
C19B-H19B	0.9300
S1A-O3A	1.572 (6)
S1A-C20A	1.60 (3)
S1A-C21A	1.65 (2)
C20A-H20A	0.9600
C20A-H20B	0.9600
C20A-H20C	0.9600
C21A-H21A	0.9600
C21A-H21B	0.9600
C21A-H21C	0.9600
S1B-O3B	1.540 (6)
S1B-C21B	1.679 (19)
S1B-C20B	1.77 (3)
C20B-H20D	0.9600
C20B-H20E	0.9600
C20B-H20F	0.9600
C21B-H21D	0.9600
C21B-H21E	0.9600
C21B-H21F	0.9600
C8B-C13B-H13B	118.7
C15A-C14A-C19A	117.8 (9)
C15A-C14A-Sn	125.6 (7)
C19A-C14A-Sn	116.6 (7)
C16A-C15A-C14A	120.7 (11)
C16A-C15A-H15A	119.6
C14A-C15A-H15A	119.6
C17A-C16A-C15A	119.9 (13)
C17A-C16A-H16A	120.0
C15A-C16A-H16A	120.0
C16A-C17A-C18A	121.1 (11)
C16A-C17A-H17A	119.5
C18A-C17A-H17A	119.5
C17A-C18A-C19A	118.8 (9)
C17A-C18A-H18A	120.6

$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	120.4 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Cl}^{\mathrm{i}}$	114.2 (4)
C3-C2-C7	117.2 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Sn}$	121.3 (3)
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{Sn}$	121.2 (3)
C2-C3-C4	121.1 (4)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.5
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	119.9 (5)
C5-C4-H4A	120.0
C3-C4-H4A	120.0
C6-C5-C4	119.9 (5)
C6-C5-H5A	120.1
C4-C5-H5A	120.1
C5-C6-C7	120.3 (5)
C5-C6-H6A	119.8
C7-C6-H6A	119.8
C2-C7-C6	121.6 (5)
C2-C7-H7A	119.2
C6-C7-H7A	119.2
C9A-C8A-C13A	116.7 (10)
C9A-C8A-Sn	122.4 (9)
C13A-C8A-Sn	120.9 (9)
C8A-C9A-C10A	122.8 (9)
C8A-C9A-H9AA	118.6
C10A-C9A-H9AA	118.6
C11A-C10A-C9A	119.0 (9)
C11A-C10A-H10A	120.5
C9A-C10A-H10A	120.5
C10A-C11A-C12A	120.3 (12)
C10A-C11A-H11A	119.9
C12A-C11A-H11A	119.9
C11A-C12A-C13A	120.3 (13)
C11A-C12A-H12A	119.9
C13A-C12A-H12A	119.9
C12A-C13A-C8A	120.9 (12)
C12A-C13A-H13A	119.6
C8A-C13A-H13A	119.6
C9B-C8B-C13B	115.2 (11)
C9B-C8B-Sn	119.4 (9)
C13B-C8B-Sn	125.0 (10)
C8B-C9B-C10B	123.3 (9)
C8B-C9B-H9BA	118.3
C10B-C9B-H9BA	118.3
C11B-C10B-C9B	119.4 (10)
C11B-C10B-H10B	120.3
C9B-C10B-H10B	120.3
C10B-C11B-C12B	120.2 (12)

C19A-C18A-H18A	120.6
C18A-C19A-C14A	121.6 (9)
C18A-C19A-H19A	119.2
C14A-C19A-H19A	119.2
C19B-C14B-C15B	119.3 (9)
C19B-C14B-Sn	122.0 (6)
C15B-C14B-Sn	118.7 (7)
C16B-C15B-C14B	120.6 (10)
C16B-C15B-H15B	119.7
C14B-C15B-H15B	119.7
C17B-C16B-C15B	119.7 (12)
C17B-C16B-H16B	120.2
C15B-C16B-H16B	120.2
C16B-C17B-C18B	120.2 (10)
C16B-C17B-H17B	119.9
C18B-C17B-H17B	119.9
C17B-C18B-C19B	121.1 (8)
C17B-C18B-H18B	119.5
C19B-C18B-H18B	119.5
C18B-C19B-C14B	119.1 (8)
C18B-C19B-H19B	120.5
C14B-C19B-H19B	120.5
O3A-S1A-C20A	105.9 (18)
O3A-S1A-C21A	105.3 (9)
C20A-S1A-C21A	107.1 (17)
S1A-O3A-Sn	124.0 (4)
S1A-C20A-H20A	109.5
S1A-C20A-H20B	109.5
H20A-C20A-H20B	109.5
S1A-C20A-H20C	109.5
H20A-C20A-H20C	109.5
H20B-C20A-H20C	109.5
S1A-C21A-H21A	109.5
S1A-C21A-H21B	109.5
H21A-C21A-H21B	109.5
S1A-C21A-H21C	109.5
H21A-C21A-H21C	109.5
H21B-C21A-H21C	109.5
O3B-S1B-C21B	108.4 (8)
O3B-S1B-C20B	112.3 (15)
C21B-S1B-C20B	96.8 (13)
S1B-O3B-Sn	123.0 (4)
S1B-C20B-H20D	109.5
S1B-C20B-H20E	109.5
H20D-C20B-H20E	109.5
S1B-C20B-H20F	109.5
H20D-C20B-H20F	109.5
H20E-C20B-H20F	109.5

C10B-C11B-H11B	119.9
C12B-C11B-H11B	119.9
C11B-C12B-C13B	$119.4(13)$
C11B-C12B-H12B	120.3
C13B-C12B-H12B	120.3
C12B-C13B-C8B	$122.5(12)$
C12B-C13B-H13B	118.7

$\mathrm{Sn}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$-8.7(5)$
$\mathrm{Sn}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 1 \mathrm{i}$	$171.7(3)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.3(6)$
$\mathrm{Sn}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$175.3(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.7(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.5(8)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-1.1(9)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-1.9(6)$
$\mathrm{Sn}-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-175.8(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$1.8(8)$
$\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$0.3(5)$
$\mathrm{Sn}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$177.7(6)$
$\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	$0.0(6)$
$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$	$0.4(12)$
$\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}$	$-1.0(16)$
$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$1.3(16)$
$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$	$-0.9(12)$
$\mathrm{Sn}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$	$-178.4(9)$
$\mathrm{C} 13 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	$0.2(5)$
$\mathrm{Sn}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	$-172.7(7)$
$\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	$0.3(6)$
$\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}$	$-0.5(12)$
$\mathrm{C} 10 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}$	$0.2(16)$

S1B-C21B-H21D	109.5
S1B-C21B-H21E	109.5
H21D-C21B-H21E	109.5
S1B-C21B-H21F	109.5
H21D-C21B-H21F	109.5
H21E-C21B-H21F	109.5

$\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B} \quad 0.3$ (16)
C9B-C8B-C13B-C12B $\quad-0.4$ (12)
$\mathrm{Sn}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B} \quad 172.0$ (9)
C19A-C14A-C15A-C16A -0.2 (4)
$\mathrm{Sn}-\mathrm{C} 14 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}-\mathrm{C} 16 \mathrm{~A} \quad 177.1$ (6)
C14A-C15A-C16A-C17A 0.3 (5)
$\mathrm{C} 15 \mathrm{~A}-\mathrm{C} 16 \mathrm{~A}-\mathrm{C} 17 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A}-1.0(11)$
C16A-C17A-C18A-C19A 1.6 (13)
$\mathrm{C} 17 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A}-\mathrm{C} 19 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}-1.4(11)$
C15A-C14A-C19A-C18A 0.7 (9)
$\mathrm{Sn}-\mathrm{C} 14 \mathrm{~A}-\mathrm{C} 19 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A} \quad-176.8$ (6)
C19B-C14B-C15B-C16B $-0.2(5)$
$\mathrm{Sn}-\mathrm{C} 14 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B}-\mathrm{C} 16 \mathrm{~B} \quad 178.0$ (6)
C14B-C15B-C16B-C17B $\quad-0.1$ (5)
$\mathrm{C} 15 \mathrm{~B}-\mathrm{C} 16 \mathrm{~B}-\mathrm{C} 17 \mathrm{~B}-\mathrm{C} 18 \mathrm{~B} \quad 0.3(10)$
$\mathrm{C} 16 \mathrm{~B}-\mathrm{C} 17 \mathrm{~B}-\mathrm{C} 18 \mathrm{~B}-\mathrm{C} 19 \mathrm{~B} \quad-0.2(12)$
$\mathrm{C} 17 \mathrm{~B}-\mathrm{C} 18 \mathrm{~B}-\mathrm{C} 19 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}-0.1(11)$
C15B-C14B-C19B-C18B 0.4 (9)
$\mathrm{Sn}-\mathrm{C} 14 \mathrm{~B}-\mathrm{C} 19 \mathrm{~B}-\mathrm{C} 18 \mathrm{~B} \quad-177.8$ (6)
C20A-S1A-O3A—Sn -119.3 (17)
$\mathrm{C} 21 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}-\mathrm{O} 3 \mathrm{~A}-\mathrm{Sn} \quad 127.4$ (10)
C21B-S1B-O3B—Sn -135.9 (7)
C20B—S1B—O3B—Sn 118.3 (13)

Symmetry code: (i) $-x+3 / 2,-y+1 / 2,-z+2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 20 A — \mathrm{H} 20 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.96	2.51	$3.43(4)$	162
$\mathrm{C} 21 A-\mathrm{H} 21 A \cdots 2^{\mathrm{iii}}$	0.96	2.60	$3.49(2)$	154
$\mathrm{C} 21 B — \mathrm{H} 21 D \cdots \mathrm{O}^{\mathrm{iii}}$	0.96	2.36	$3.278(19)$	160

Symmetry codes: (ii) $x,-y+1, z-1 / 2$; (iii) $-x+3 / 2, y+1 / 2,-z+3 / 2$.

