

Received 30 May 2017 Accepted 1 June 2017

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; caffeine; hydrogen bonding; single-crystal X-ray diffraction analysis.

CCDC reference: 1553654

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of the tetraaquabis(thiocyanato- κN)cobalt(II)–caffeine–water (1/2/4) co-crystal

H. El Hamdani,^a* M. El Amane^a and C. Duhayon^{b,c}

^aEquipe Métallation, Complexes Moléculaires et Applications, Université Moulay Ismail, Faculté des Sciences, BP 11201 Zitoune, 50000 Meknès, Morocco, ^bCNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse, France, and ^cUniversité de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France. *Correspondence e-mail: elhamdanihicham41@gmail.com

In the structure of the title compound [systematic name: tetraaquabis(thiocyanato- κN)cobalt(II)–1,3,7-trimethyl-1,2,3,6-tetrahydro-7*H*-purine-2,6-dione– water (1/2/4)], [Co(NCS)₂(H₂O)₄]·2C₈H₁₀N₄O₂·4H₂O, the cobalt(II) cation lies on an inversion centre and is coordinated in a slightly distorted octahedral geometry by the oxygen atoms of four water molecules and two N atoms of two *trans*-arranged thiocyanate anions. In the crystal, the complex molecules interact with the caffeine molecules through O–H···N, O–H···O and C–H···S hydrogen bonds and π - π interactions [centroid-to-centroid distance = 3.4715 (5) Å], forming layers parallel to the *ab* plane, which are further connected into a three-dimensional network by O–H···O and O–H···S hydrogen bonds involving the non-coordinating water molecules.

1. Chemical context

Compounds with supramolecular metal-organic structures, which are diversified by their innovative applications, attract attention in various fields such as non-linear optical activity, catalysis, electrical conductivity, and cooperative magnetic behavior (Fan et al., 2016). In particular, the supramolecular complexes of mixed metals and ligands that possess active pharmaceutical ingredients (APIs) offers an approach to generate crystalline materials that form pharmaceutical cocrystals to effect therapeutic parameters such as solubility and lipophilicity (Ma & Moulton, 2007). The properties of caffeine as a pharmaceutical compound exhibiting moisture instability with the formation of a non-stoichiometric crystalline hydrate have been widely studied. Caffeine is a stimulant of the central nervous system and a smooth muscle relaxant, and is used as a formulation additive to analgesic remedies (Trask *et al.*, 2005). Caffeine has attractive effects on various biological systems, including cardiovascular, gastrointestinal, respiratory and muscle systems (Taşdemir et al., 2016), and forms complexes with transition metals having different coordination and biological properties such as anti-inflammatory and antibacterial (Taşdemir et al., 2016). Thiocyanate is a commonly used ligand because of its numerous bonding modes to one or more transition metal ions, and provides useful precursors for numerous coordination complexes. Usually, the thiocyanate anion bonds terminally through the nitrogen atom with firstrow transition metals, and can act as a hydrogen-bond acceptor through the nitrogen or sulfur atom (Bie et al., 2005).

Table 1Hydrogen-bond geometry (Å, °).

, , ,				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C2-H21\cdots S17^{i}$	0.97	2.83	3.7622 (9)	160.6
O20−H202···O21 ⁱⁱ	0.86	1.98	2.8119 (11)	161.6
O19−H191···O21	0.86	1.91	2.7634 (10)	174.9
O18−H182···N3 ⁱⁱⁱ	0.85	2.01	2.8671 (11)	178.4
$O21 - H211 \cdot \cdot \cdot S17^{iv}$	0.88	2.38	3.2481 (7)	173.3
$O21 - H212 \cdot \cdot \cdot O20^{iv}$	0.87	1.97	2.8157 (11)	164.8
O20−H201···O12	0.85	2.02	2.8531 (10)	166.8
$O19-H192\cdots O14^{v}$	0.85	1.89	2.7460 (10)	178.5

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y + 1, z; (iii) x + 1, y, z; (iv) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$; (v) -x + 2, -y + 1, -z + 1.

3. Supramolecular features

In the crystal, each complex molecule interacts with four neighboring caffeine molecules through classical $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds (Table 1) involving the coordinating water molecules as H-atom donors to form layers parallel to the *ab* plane. These planes are further enforced by $C-H\cdots S$ hydrogen bonds and $\pi-\pi$ interactions occurring between centrosymmetrically related six-membered rings of the purine ring system [$Cg\cdots Cg^i = 3.4715$ (5) Å; Cg is the centroid of the N3/N7/C4/C6/C8/C9 ring; symmetry code: (i) 1 - x, 2 - y, 1 - z; Fig. 2], and are alternated by layers of non-coordinating water molecules linked through $O-H\cdots O$ and $O-H\cdots S$ hydrogen bonds (Fig. 3), leading to the formation of a three-dimensional network (Fig. 3).

4. Synthesis and crystallization

In a glass tube, a solution of $CoCl_2 \cdot 6H_2O$ (129 mg, 1 mmol) in 5 ml of water and caffeine (194.19 mg, 1 mmol) in 10 ml of ethanol was added to a solution of potassium thiocyanate (190 mg, 2 mmol) in 5 ml of water. Single crystals of the title compound suitable for X-ray analysis were grown after several months by slow evaporation of the solvent at room temperature.

Figure 1

The asymmetric unit [expanded for the cobalt(II) cation to show the full coordination sphere; primed atoms are related to the non-primed atoms by the symmetry operation -x + 2, -y + 1, -z + 1] of the title compound, with displacement ellipsoids drawn at the 50% probability level

Partial packing diagram of the title compound, showing the network of hydrogen bonds (orange dotted lines) and π - π interactions (purple dotted lines) linking complexes and caffeine molecules into layers parallel to the *ab* plane.

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1) contains half a complex molecule of formula $[Co(NCS)_2(H_2O)_4]$, a caffeine molecule and two free water molecules. The cobalt(II) cation lies on an inversion centre and displays a trans-arranged octahedral coordination geometry provided by the N atoms of two thiocvanate anions and four O atoms of coordinating water molecules. The Co1-N15 [2.0981 (8) Å] and Co1 - O18 [2.0981 (7) Å] bond lengths are equal within standard uncertainties and significantly longer than the Co1-O19 bond length [2.0732 (7) Å], and therefore the CoN_2O_4 octahedron is slightly axially compressed. This structural feature is typical for related compounds (Shylin et al., 2013, 2015). The thiocyanato ligands are bound through the nitrogen atoms and are nearly linear [N15-C16-S17 =177.81 (8)°], while the Co–NCS linkage is bent [C16-N15- $Co1 = 167.35 (8)^{\circ}$]. Previously reported complexes with an Nbound NCS group possess similar structural features (Petrusenko et al., 1997). The caffeine molecule is nearly planar (r.m.s. deviation = 0.0346 Å), with a maximum deviation from the mean plane of 0.0404 (7) Å for atom N5.

Figure 3 Crystal packing of the title compound viewed down the *a* axis.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms could be located in a difference-Fourier map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C-H = 0.98, O-H = 0.82 Å) and with U_{iso} (H) set at 1.2–1.5 times of the U_{eq} of the parent atom, after which the positions were refined with riding constraints (Cooper *et al.*, 2010).

Acknowledgements

The authors would like to thank the LCC CNRS (Laboratory of Chemistry of Coordination) for their help.

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bie, H. Y., Lu, J., Yu, J. H., Xu, J., Zhao, K. & Zhang, X. (2005). J. Solid State Chem. 178, 1445–1451.
- Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.
- Fan, G., Deng, L.-J., Ma, Z.-Y., Li, X.-B., Zhang, Y.-L. & Sun, J.-J. (2016). Chin. J. Struct. Chem. 35, 100–106.
- Ma, Z. & Moulton, B. (2007). Mol. Pharm. 4, 373-385.

Experimental details.	
Crystal data	
Chemical formula	$[Co(NCS)_{2}(H_{2}O)_{4}]\cdot 2C_{8}H_{10}N_{4}O_{2}-4H_{2}O$
$M_{\rm r}$	707.61
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.65854 (19), 8.16642 (14), 18.0595 (3)
β (°)	96.4701 (15)
$V(Å^3)$	1561.93 (3)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.75
Crystal size (mm)	$0.25 \times 0.20 \times 0.20$
Data collection	
Diffractometer	Oxford Diffraction Gemini
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011)
T_{\min}, T_{\max}	0.78, 0.86
No. of measured, independent and observed $[I > 2.0\sigma(I)]$ reflections	62568, 4002, 3693
R _{int}	0.023
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.689
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.023, 0.022, 1.13
No. of reflections	3586
No. of parameters	196
H-atom treatment	H-atom parameters not refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.36, -0.24

Table 2

Computer programs: *GEMINI* (Oxford Diffraction, 2006), *CrysAlis PRO* (Agilent, 2011), *SIR92* (Altomare *et al.*, 1994), *CRYSTALS* (Betteridge *et al.*, 2003) and *CAMERON* (Watkin *et al.*, 1996). Weighting scheme: Chebychev polynomial, (Watkin, 1994; Prince, 1982).

- Oxford Diffraction (2006). *Gemini User Manual*. Oxford Diffraction, Abingdon, England.
- Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.
- Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Shylin, S. I., Gural'skiy, I. A., Bykov, D., Demeshko, S., Dechert, S., Meyer, F., Hauka, M. & Fritsky, I. O. (2015). *Polyhedron*, 87, 147– 155.
- Shylin, S. I., Gural'skiy, I. A., Haukka, M. & Golenya, I. A. (2013). Acta Cryst. E69, m280.
- Taşdemir, E., Özbek, F. E., Sertçelik, M., Hökelek, T., Çelik, R. Ç., & Necefoğlu, H. (2016). J. Mol. Struct. 1119, 472–478.
- Trask, A. V., Motherwell, W. D. S. & Jones, W. (2005). Cryst. Growth Des. 5, 1013–1021.
- Watkin, D. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2017). E73, 980-982 [https://doi.org/10.1107/S2056989017008180]

Crystal structure of the tetraaquabis(thiocyanato-*k*/N)cobalt(II)–caffeine–water (1/2/4) co-crystal

H. El Hamdani, M. El Amane and C. Duhayon

Computing details

Data collection: Gemini (Oxford Diffraction, 2006); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS* (Betteridge *et al.*, 2003).

(I)

Crystal data	
$[Co(NCS)_{2}(H_{2}O)_{4}] \cdot 2C_{8}H_{10}N_{4}O_{2} \cdot 4H_{2}O$ $M_{r} = 707.61$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 10.65854 (19) Å b = 8.16642 (14) Å c = 18.0595 (3) Å $\beta = 96.4701 (15)^{\circ}$ $V = 1561.93 (3) \text{ Å}^{3}$ Z = 2	F(000) = 738 $D_x = 1.504 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 26895 reflections $\theta = 4-29^{\circ}$ $\mu = 0.75 \text{ mm}^{-1}$ T = 120 K Block, orange $0.25 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Oxford Diffraction Gemini diffractometer Graphite monochromator $\varphi \& \omega$ scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.78, T_{\max} = 0.86$ 62568 measured reflections	4002 independent reflections 3693 reflections with $I > 2.0\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 29.3^\circ$, $\theta_{min} = 3.1^\circ$ $h = -14 \rightarrow 13$ $k = -10 \rightarrow 10$ $l = -24 \rightarrow 24$
Refinement	
Refinement on F	Primary atom site location: structure-invariant

Refinement on F Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.022$ S = 1.133586 reflections 196 parameters 0 restraints

direct methods Hydrogen site location: difference Fourier map H-atom parameters not refined Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A₀*T₀(x) + A₁*T₁(x) ··· + A_{n-1}]*T_{n-1}(x)] where A_i are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)²]² A_i are: 4.58 -1.83 2.76 (Δ/σ)_{max} = 0.001 $\Delta\rho_{max} = 0.36$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.52963 (7)	0.70159 (10)	0.44118 (4)	0.0159
N3	0.39238 (7)	0.69668 (10)	0.52732 (4)	0.0165
N5	0.50891 (7)	0.88202 (9)	0.61607 (4)	0.0138
N7	0.70166 (7)	0.97981 (10)	0.57845 (4)	0.0148
N15	0.87722 (7)	0.56972 (10)	0.57738 (4)	0.0177
C2	0.42006 (9)	0.64292 (12)	0.46092 (5)	0.0177
C4	0.49202 (8)	0.79469 (11)	0.55076 (5)	0.0134
C6	0.61761 (8)	0.97269 (11)	0.63265 (5)	0.0145
C8	0.68939 (8)	0.89801 (11)	0.50972 (5)	0.0140
C9	0.57826 (8)	0.80031 (11)	0.49965 (5)	0.0138
C10	0.58693 (10)	0.66144 (13)	0.37365 (5)	0.0214
C11	0.41902 (9)	0.86319 (12)	0.67132 (5)	0.0187
C13	0.81636 (9)	1.07902 (13)	0.59652 (6)	0.0212
C16	0.82097 (8)	0.58619 (11)	0.62832 (5)	0.0146
O12	0.63887 (6)	1.04807 (9)	0.69164 (4)	0.0199
O14	0.76700 (6)	0.91542 (9)	0.46473 (4)	0.0191
O18	1.14207 (7)	0.63274 (10)	0.56379 (4)	0.0243
019	1.04404 (7)	0.29467 (9)	0.56531 (4)	0.0202
O20	0.85940 (7)	1.15725 (10)	0.78244 (4)	0.0218
O21	1.04346 (7)	0.33657 (9)	0.71711 (4)	0.0227
S17	0.73704 (2)	0.60472 (3)	0.699098 (13)	0.0206
Col	1.0000	0.5000	0.5000	0.0133
H21	0.3674	0.5683	0.4293	0.0226*
H103	0.6697	0.6105	0.3874	0.0339*
H102	0.5958	0.7614	0.3446	0.0343*
H101	0.5302	0.5835	0.3448	0.0347*
H111	0.4397	0.9420	0.7112	0.0299*
H112	0.3339	0.8828	0.6471	0.0298*
H113	0.4258	0.7533	0.6921	0.0310*
H131	0.8546	1.0964	0.5513	0.0326*
H132	0.7942	1.1847	0.6172	0.0322*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H133	0.8741	1.0211	0.6328	0.0327*	
H181	1.1398	0.6463	0.6098	0.0378*	
H202	0.9034	1.2295	0.7618	0.0364*	
H191	1.0428	0.3014	0.6127	0.0336*	
H182	1.2164	0.6538	0.5531	0.0384*	
H211	1.1073	0.2809	0.7394	0.0376*	
H212	1.0591	0.4409	0.7176	0.0382*	
H201	0.7920	1.1412	0.7538	0.0355*	
H192	1.1020	0.2292	0.5552	0.0330*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
N1	0.0180 (4)	0.0155 (4)	0.0136 (3)	0.0004 (3)	0.0001 (3)	-0.0018 (3)
N3	0.0150 (3)	0.0163 (4)	0.0178 (4)	-0.0018 (3)	0.0000 (3)	-0.0004 (3)
N5	0.0130 (3)	0.0168 (4)	0.0119 (3)	-0.0009 (3)	0.0028 (3)	-0.0008 (3)
N7	0.0127 (3)	0.0175 (4)	0.0140 (3)	-0.0031 (3)	0.0010 (3)	0.0002 (3)
N15	0.0152 (3)	0.0229 (4)	0.0155 (3)	-0.0010 (3)	0.0039 (3)	-0.0018 (3)
C2	0.0164 (4)	0.0178 (4)	0.0185 (4)	-0.0015 (3)	-0.0005 (3)	-0.0012 (3)
C4	0.0133 (4)	0.0136 (4)	0.0132 (4)	0.0012 (3)	0.0007 (3)	0.0012 (3)
C6	0.0140 (4)	0.0156 (4)	0.0135 (4)	0.0007 (3)	0.0002 (3)	0.0007 (3)
C8	0.0137 (4)	0.0141 (4)	0.0140 (4)	0.0024 (3)	0.0012 (3)	0.0023 (3)
C9	0.0149 (4)	0.0146 (4)	0.0120 (4)	0.0011 (3)	0.0011 (3)	0.0000 (3)
C10	0.0269 (5)	0.0228 (5)	0.0152 (4)	0.0007 (4)	0.0058 (4)	-0.0028 (4)
C11	0.0177 (4)	0.0244 (5)	0.0152 (4)	-0.0010 (4)	0.0067 (3)	-0.0006 (3)
C13	0.0154 (4)	0.0269 (5)	0.0208 (4)	-0.0084 (4)	0.0000 (3)	-0.0009 (4)
C16	0.0139 (4)	0.0147 (4)	0.0146 (4)	-0.0021 (3)	-0.0005 (3)	-0.0003 (3)
O12	0.0199 (3)	0.0232 (3)	0.0163 (3)	-0.0028 (3)	0.0006 (2)	-0.0052 (3)
O14	0.0172 (3)	0.0224 (3)	0.0190 (3)	0.0006 (3)	0.0071 (2)	0.0021 (3)
O18	0.0175 (3)	0.0413 (4)	0.0147 (3)	-0.0121 (3)	0.0044 (2)	-0.0074 (3)
O19	0.0212 (3)	0.0232 (3)	0.0173 (3)	0.0041 (3)	0.0063 (2)	0.0018 (3)
O20	0.0203 (3)	0.0300 (4)	0.0146 (3)	-0.0021 (3)	-0.0004 (2)	0.0011 (3)
O21	0.0241 (3)	0.0246 (4)	0.0195 (3)	0.0044 (3)	0.0020 (3)	0.0047 (3)
S17	0.01944 (11)	0.02902 (12)	0.01456 (10)	-0.00462 (9)	0.00757 (8)	-0.00446 (9)
Co1	0.01068 (8)	0.01859 (9)	0.01093 (8)	-0.00186 (6)	0.00259 (5)	-0.00104 (6)

Geometric parameters (Å, °)

N1—C2	1.3469 (12)	C10—H102	0.980
N1—C9	1.3820 (11)	C10—H101	0.985
N1-C10	1.4616 (12)	C11—H111	0.972
N3—C2	1.3407 (12)	C11—H112	0.975
N3—C4	1.3588 (12)	C11—H113	0.972
N5—C4	1.3727 (11)	C13—H131	0.963
N5—C6	1.3792 (11)	C13—H132	0.980
N5-C11	1.4672 (11)	C13—H133	0.969
N7—C6	1.4006 (11)	C16—S17	1.6476 (9)
N7—C8	1.4027 (11)	O18—Co1	2.0981 (7)

supporting information

N7—C13	1.4723 (11)	O18—H181	0.842
N15—C16	1.1610 (12)	O18—H182	0.853
N15—Co1	2.0981 (8)	O19—Co1	2.0732 (7)
C2—H21	0.969	O19—H191	0.860
C4—C9	1.3749 (12)	O19—H192	0.853
C6—O12	1.2291 (11)	O20—H202	0.864
C8—C9	1.4226 (12)	O20—H201	0.846
C8—O14	1.2314 (11)	O21—H211	0.877
C10—H103	0.982	O21—H212	0.868
C2—N1—C9	105.49 (7)	H111—C11—H112	110.1
C2—N1—C10	126.68 (8)	N5-C11-H113	109.5
C9—N1—C10	127.76 (8)	H111—C11—H113	109.0
C2—N3—C4	103.21 (8)	H112—C11—H113	110.5
C4—N5—C6	119.42 (7)	N7—C13—H131	108.3
C4—N5—C11	119.83 (7)	N7—C13—H132	109.8
C6—N5—C11	120.37 (7)	H131—C13—H132	109.6
C6—N7—C8	126.55 (7)	N7—C13—H133	109.2
C6—N7—C13	116.65 (7)	H131—C13—H133	110.3
C8—N7—C13	116.77 (7)	H132—C13—H133	109.6
C16—N15—Co1	167.35 (8)	N15-C16-S17	177.81 (8)
N1—C2—N3	113.89 (8)	Co1-O18-H181	120.7
N1—C2—H21	122.0	Co1-O18-H182	127.7
N3—C2—H21	124.1	H181—O18—H182	109.1
N5—C4—N3	126.58 (8)	Co1-019-H191	119.2
N5—C4—C9	121.78 (8)	Co1-019-H192	120.6
N3—C4—C9	111.64 (8)	H191—O19—H192	110.2
N7—C6—N5	117.28 (8)	H202—O20—H201	107.9
N7—C6—O12	120.99 (8)	H211—O21—H212	111.4
N5-C6-012	121.70 (8)	O18 ⁱ —Co1—O18	179.995
N7—C8—C9	111.93 (7)	O18 ⁱ —Co1—N15 ⁱ	87.69 (3)
N7—C8—O14	121.76 (8)	O18—Co1—N15 ⁱ	92.31 (3)
C9—C8—O14	126.29 (8)	O18 ⁱ —Co1—N15	92.31 (3)
C8—C9—N1	131.30 (8)	O18—Co1—N15	87.69 (3)
C8—C9—C4	122.88 (8)	N15 ⁱ —Co1—N15	179.995
N1—C9—C4	105.77 (8)	O18 ⁱ —Co1—O19	89.86 (3)
N1—C10—H103	109.4	O18—Co1—O19	90.14 (3)
N1—C10—H102	109.5	N15 ⁱ —Co1—O19	92.36 (3)
H103—C10—H102	110.5	N15—Co1—O19	87.64 (3)
N1—C10—H101	107.3	O18 ⁱ —Co1—O19 ⁱ	90.14 (3)
H103—C10—H101	109.9	O18—Co1—O19 ⁱ	89.86 (3)
H102—C10—H101	110.2	N15 ⁱ —Co1—O19 ⁱ	87.64 (3)
N5—C11—H111	108.8	N15—Co1—O19 ⁱ	92.36 (3)
N5—C11—H112	108.9	O19—Co1—O19 ⁱ	179.994

Symmetry code: (i) -x+2, -y+1, -z+1.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C2—H21…S17 ⁱⁱ	0.97	2.83	3.7622 (9)	160.6
O20—H202…O21 ⁱⁱⁱ	0.86	1.98	2.8119 (11)	161.6
O19—H191…O21	0.86	1.91	2.7634 (10)	174.9
O18—H182…N3 ^{iv}	0.85	2.01	2.8671 (11)	178.4
O21—H211····S17 ^v	0.88	2.38	3.2481 (7)	173.3
O21—H212···O20 ^v	0.87	1.97	2.8157 (11)	164.8
O20—H201…O12	0.85	2.02	2.8531 (10)	166.8
O19—H192…O14 ⁱ	0.85	1.89	2.7460 (10)	178.5

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) -x+2, y-1/2, -z+3/2.