research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (–)-methyl (R,E)-4-[(2R,4R)-2-amino-2-tri­chloro­methyl-1,3-dioxolan-4-yl]-4-hy­dr­oxy-2-methyl­but-2-enoate

aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: oec@keio.jp

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 June 2017; accepted 5 June 2017; online 7 June 2017)

In the title compound, C10H14Cl3NO5, the five-membered dioxolane ring adopts an envelope conformation with the C atom bonded to the butenoate side chain as the flap. It deviates from the mean plane of the other atoms in the ring by 0.446 (6) Å. In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds into helical chains running along the b-axis direction. The chains are linked into a sheet structure parallel to (001) by an N—H⋯O hydrogen bond. These classical hydrogen bonds enclose an R44(24) graph-set motif in the sheet structure. Furthermore, a weak inter­molecular C—H⋯Cl inter­action expands the sheet structures into a three-dimensional network.

1. Chemical context

Cyclic compounds often play a significant role, not only in controlling stereochemistry due to their conformational rigidity, but also as protecting groups in organic synthesis. On the basis of this concept, we have explored the utilization of cyclic ortho­amides, prepared from allylic diol and triol with known conditions (Overman, 1974[Overman, L. E. (1974). J. Am. Chem. Soc. 96, 597-599.]; 1976[Overman, L. E. (1976). J. Am. Chem. Soc. 98, 2901-2910.]), and have developed a new strategy for the total synthesis of a certain natural product (Nakayama, et al., 2013[Nakayama, Y., Sekiya, R., Oishi, H., Hama, N., Yamazaki, M., Sato, T. & Chida, N. (2013). Chem. Eur. J. 19, 12052-12058.]). The title compound is a structural isomer of a recently reported compound (Oishi et al., 2016[Oishi, T., Yasushima, D., Yuasa, K., Sato, T. & Chida, N. (2016). Acta Cryst. E72, 343-346.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The 1,3-dioxolane ring (C5/O7/C8/C9/O10) adopts an envelope conformation with the flap atom C9 deviating by 0.446 (6) Å from the mean plane of the other four atoms [puckering parameters are Q(2) = 0.285 (4) Å and φ(2) = 296.7 (8)°]. The C=C and C=O double bonds of the unsat­urated ester are slightly skewed with torsion angle C13=C14—C16=O18 being of 8.4 (6)°. There is a weak intra­molecular N6—H6A⋯Cl1 inter­action present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯Cl1 0.87 (2) 2.66 (4) 3.118 (4) 115 (3)
O12—H12⋯O17i 0.84 1.97 2.774 (4) 161
N6—H6B⋯O12ii 0.84 (2) 2.28 (3) 3.047 (5) 152 (4)
C8—H8B⋯Cl2iii 0.99 2.83 3.713 (5) 149
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The purple dotted line indicates the short intra­molecular N—H⋯Cl contact (see Table 1[link]). Only H atoms connected to N, O and chiral C atoms are shown for clarity.

3. Supra­molecular features

In the crystal, a classical O—H⋯O hydrogen bond (O12—H12⋯O17i; Table 1[link]) connects the mol­ecules into a helical-chain running along the b-axis direction, with a C(7) graph-set motif (Fig. 2[link]). A classical N—H⋯O hydrogen bond (N6—H6B⋯O12ii; Table 1[link]), which is formed between one of N-bound H atoms and hy­droxy O group, links the chains into a sheet structure parallel to (001), also generating a C(7) graph-set motif (Fig. 3[link]). In the sheet structure, the classical O—H⋯O and N—H⋯O hydrogen bonds enclose an R44(24) graph-set motif (Fig. 4[link]). Furthermore, a weak C—H⋯Cl inter­action (C8—H8B⋯Cl2iii; Table 1[link]) supports the crystal packing to construct a three-dimensional architecture (Fig. 2[link]). An inter­molecular Cl1⋯O17 (x, y − 1, z) short contact of 3.076 (3) Å is also observed.

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis, showing the helical chain structures running along the b-axis direction. Yellow lines indicate the inter­molecular O—H⋯O hydrogen bonds. Black dashed lines indicate weak inter­molecular C—H⋯Cl inter­actions. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry codes: (i) −x + 1, y – 1/2, −z; (iii) −x + 1, y + [{1\over 2}], −z + 1.]
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the c axis, showing the sheet structure parallel to (001). The helical chain running along the b-axis direction is drawn as overlapped mol­ecules. Yellow lines indicate the inter­molecular N—H⋯O hydrogen bonds. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry code: (ii) x – 1, y, z.]
[Figure 4]
Figure 4
A part of sheet structure, showing the R44 graph-set motif generated by classical O—H⋯O and N—H⋯O hydrogen bonds. Yellow lines indicate the inter­molecular O—H⋯O and N—H⋯O hydrogen bonds. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry codes: (i) −x + 1, y – 1/2, −z; (ii) x – 1, y, z; (iv) −x, y − [{1\over 2}], −z.]

4. Database survey

In the Cambridge Structural Database (CSD, Version 5.38, Feb. 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are two structures containing the 4-alk­oxy-2-methyl-4-(2-methyl-1,3-dioxolan-4-yl)but-2-enoate skeleton, (a), related to the title compound (Fig. 5[link]), but its 4-hy­droxy free derivative (R = H) has not yet been reported.

[Figure 5]
Figure 5
The core structures for the database survey; (a) 4-alk­oxy-2-methyl-4-(2-methyl-1,3-dioxolan-4-yl)but-2-enoate, (b) 2-amino-2-tri­chloro­methyl-1,3-dioxolane, and its (c) -1,3-oxa­thiol­ane and (d) -1,3-dioxane derivatives instead of the 1,3-dioxolane ring.

For the cyclic ortho­amide core with a tri­chloro­methyl group on the central carbon atom, four structures are registered in the CSD. These are two derivatives (WEKWOY: Haeckel et al., 1994[Haeckel, R., Troll, C., Fischer, H. & Schmidt, R. R. (1994). Synlett, pp. 84-86.]; and LAGMAK: Oishi et al., 2016[Oishi, T., Yasushima, D., Yuasa, K., Sato, T. & Chida, N. (2016). Acta Cryst. E72, 343-346.]) of 1,3-dioxolane (b), one derivative (WAXBEE: Metwally, 2011[Metwally, N. H. (2011). Arkivoc, 10, 254-265.]) of 1,3-oxa­thiol­ane (c), and one derivative (LIBHIO: Rondot et al., 2007[Rondot, C., Retailleau, P. & Zhu, J. (2007). Org. Lett. 9, 247-250.]) of 1,3-dioxane (d). The amino H atoms were refined as adopting an sp2 configuration for WEKWOY and WAXBEE, while they were refined assuming an sp3 configuration of the N atom for LIBHIO and LAGMAK, as in the present study. Each N—H bond of the amino group in LIBHIO is mostly eclipsed by the neighbouring C—Cl bonds of the tri­chloro­methyl group, whereas those in the title compound are slightly tilted (Fig. 6[link]). There is an intra­molecular N—H⋯Cl inter­action [H6A⋯Cl1 = 2.66 (4) Å; N6—H6A⋯Cl1 = 115 (3)°] in the title compound (Table 1[link]), while the corres­ponding geometries are 2.76 Å and 109° in LIBHIO. These amino groups may be oriented to avoid intra­molecular non-bonding short contacts as well as to form classical inter­molecular hydrogen bonds. The amino H atoms in LAGMAK are disordered according to the possible intra­molecular N—H⋯O and N⋯H—O hydrogen bonds with the hy­droxy group (Oishi et al., 2016[Oishi, T., Yasushima, D., Yuasa, K., Sato, T. & Chida, N. (2016). Acta Cryst. E72, 343-346.]).

[Figure 6]
Figure 6
A projected diagram looking through the N atom of the amino group onto the C atom of the tri­chloro­methyl group.

5. Synthesis and crystallization

The title compound was afforded from L-threose, which can be prepared according to the reported procedure (Smith et al., 1992[Smith, A. B. III, Sulikowski, G. A., Sulikowski, M. M. & Fujimoto, K. (1992). J. Am. Chem. Soc. 114, 2567-2576.]) from D-galactose (Kidena et al., 2017[Kidena, M., Sugai, T., Sato, T. & Chida, N. (2017). In preparation.]). Purification was carried out by silica gel column chromatography, and colourless crystals were obtained from a benzene solution under a hexane-saturated atmosphere, by slow evaporation at ambient temperature (m.p. 358–359 K). [α]D24 – 32.7 (c 1.01, CHCl3). HRMS (ESI) m/z calculated for C10H15Cl3NO5+ [M + H]+: 334.0016; found: 334.0016.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(C) for other C-bound H atoms. The hy­droxy H atom was placed, guided by difference-Fourier maps, with O—H = 0.84 Å and refined with Uiso(H) = 1.5Ueq(O). The amino H atoms were placed, guided by difference-Fourier maps, and were refined with distance restraints of N—H = 0.86 (2) Å and H⋯H = 1.40 (2) Å, with Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula C10H14Cl3NO5
Mr 334.57
Crystal system, space group Monoclinic, P21
Temperature (K) 90
a, b, c (Å) 5.8494 (4), 12.6458 (8), 9.5658 (6)
β (°) 104.763 (2)
V3) 684.23 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.68
Crystal size (mm) 0.28 × 0.22 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.83, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 10686, 2376, 2268
Rint 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.060, 1.06
No. of reflections 2376
No. of parameters 181
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.29
Absolute structure Flack x determined using 993 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.04 (3)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

(-)-Methyl (R,E)-4-[(2R,4R)-2-amino-2-trichloromethyl-1,3-dioxolan-4-yl]-4-hydroxy-2-methylbut-2-enoate top
Crystal data top
C10H14Cl3NO5Dx = 1.624 Mg m3
Mr = 334.57Melting point = 358–359 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.8494 (4) ÅCell parameters from 8568 reflections
b = 12.6458 (8) Åθ = 2.7–25.4°
c = 9.5658 (6) ŵ = 0.68 mm1
β = 104.763 (2)°T = 90 K
V = 684.23 (8) Å3Plate, colorless
Z = 20.28 × 0.22 × 0.08 mm
F(000) = 344
Data collection top
Bruker D8 Venture
diffractometer
2376 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Multilayered confocal mirror monochromatorRint = 0.042
Detector resolution: 7.4074 pixels mm-1θmax = 25.0°, θmin = 2.2°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1515
Tmin = 0.83, Tmax = 0.95l = 1111
10686 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + 0.7994P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2376 reflectionsΔρmax = 0.28 e Å3
181 parametersΔρmin = 0.29 e Å3
4 restraintsAbsolute structure: Flack x determined using 993 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (3)
Special details top

Experimental. IR (film): 3393, 3325, 2953, 1714, 1438, 1239, 1093, 1035, 825, 803, 749 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 6.78 (dq, J = 8.7, 1.4 Hz, 1H; H13), 4.69–4.62 (m, 1H; H12), 4.65 (ddd, J = 7.0, 4.3, 2.9 Hz, 1H; H9), 4.43–4.39 (m, 3H; H8AB & H11), 3.75 (s, 3H; H19ABC), 2.95 (bs, 2H; H6AB), 1.92 (d, J = 1.4 Hz, 3H; H14ABC); 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 168.2 (C; C16), 138.9 (CH; C13), 130.2 (C; C14), 116.0 (C; C5), 103.3 (C; C4), 82.9 (CH; C9), 70.1 (CH2; C8), 69.2 (CH; C11), 52.2 (CH3; C19), 13.2 (CH3; C14).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49362 (19)0.09132 (8)0.28126 (12)0.0182 (2)
Cl20.63815 (19)0.22438 (8)0.53302 (11)0.0188 (3)
Cl30.14274 (19)0.19083 (8)0.40183 (12)0.0218 (3)
C40.4229 (7)0.2071 (3)0.3659 (4)0.0158 (9)
C50.4173 (7)0.3050 (3)0.2656 (5)0.0136 (9)
N60.2535 (7)0.2954 (3)0.1287 (4)0.0173 (8)
H6A0.236 (7)0.230 (2)0.099 (5)0.021*
H6B0.121 (6)0.321 (3)0.128 (5)0.021*
O70.3602 (5)0.3953 (2)0.3345 (3)0.0151 (7)
C80.5670 (8)0.4608 (3)0.3782 (5)0.0163 (10)
H8A0.64820.44920.48120.02*
H8B0.52550.53660.36330.02*
C90.7202 (8)0.4255 (3)0.2809 (4)0.0149 (9)
H90.89090.43020.3340.018*
O100.6524 (5)0.3163 (2)0.2537 (3)0.0136 (6)
C110.6763 (8)0.4863 (3)0.1386 (5)0.0146 (10)
H110.5080.47740.08260.018*
O120.8311 (5)0.4449 (2)0.0574 (3)0.0162 (7)
H120.75060.4170.0190.024*
C130.7305 (7)0.6008 (3)0.1666 (4)0.0142 (9)
H130.89090.61870.20910.017*
C140.5772 (7)0.6801 (4)0.1381 (4)0.0137 (9)
C150.3168 (7)0.6713 (4)0.0683 (5)0.0198 (10)
H15A0.2820.70220.02880.03*
H15B0.22820.70930.12680.03*
H15C0.27040.59660.06150.03*
C160.6582 (8)0.7912 (3)0.1764 (5)0.0146 (10)
O170.5238 (5)0.8654 (2)0.1682 (3)0.0165 (7)
O180.8922 (5)0.8021 (2)0.2209 (3)0.0151 (7)
C190.9749 (8)0.9094 (3)0.2504 (5)0.0209 (11)
H19A1.14810.91030.27630.031*
H19B0.9180.93780.33070.031*
H19C0.91470.9530.16410.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0221 (6)0.0107 (5)0.0232 (6)0.0009 (5)0.0080 (5)0.0014 (5)
Cl20.0220 (6)0.0165 (6)0.0159 (5)0.0020 (5)0.0014 (4)0.0028 (5)
Cl30.0160 (6)0.0218 (6)0.0312 (6)0.0003 (5)0.0124 (5)0.0039 (5)
C40.015 (2)0.017 (3)0.017 (2)0.0005 (19)0.0063 (18)0.001 (2)
C50.012 (2)0.012 (2)0.016 (2)0.0005 (19)0.0046 (19)0.0001 (19)
N60.0160 (19)0.017 (2)0.018 (2)0.0019 (17)0.0027 (17)0.0012 (17)
O70.0155 (16)0.0100 (16)0.0208 (16)0.0031 (13)0.0068 (13)0.0037 (13)
C80.022 (2)0.011 (2)0.016 (2)0.002 (2)0.0044 (19)0.0007 (19)
C90.016 (2)0.012 (2)0.016 (2)0.0047 (18)0.0028 (18)0.0050 (19)
O100.0141 (15)0.0077 (15)0.0204 (16)0.0000 (12)0.0068 (13)0.0006 (12)
C110.014 (2)0.013 (2)0.016 (2)0.0026 (18)0.0025 (19)0.0009 (19)
O120.0160 (16)0.0174 (17)0.0154 (16)0.0006 (13)0.0042 (13)0.0033 (14)
C130.014 (2)0.014 (2)0.015 (2)0.0002 (19)0.0040 (18)0.002 (2)
C140.018 (2)0.011 (2)0.013 (2)0.003 (2)0.0053 (18)0.0030 (19)
C150.014 (2)0.016 (2)0.030 (3)0.0027 (19)0.006 (2)0.000 (2)
C160.018 (2)0.017 (2)0.010 (2)0.001 (2)0.0072 (18)0.002 (2)
O170.0167 (16)0.0138 (16)0.0186 (16)0.0034 (14)0.0034 (13)0.0005 (14)
O180.0124 (16)0.0105 (15)0.0208 (16)0.0026 (13)0.0016 (13)0.0004 (13)
C190.020 (3)0.009 (2)0.030 (3)0.0012 (19)0.000 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C41.773 (4)C11—C131.492 (6)
Cl2—C41.778 (4)C11—H111.0
Cl3—C41.770 (4)O12—H120.84
C4—C51.561 (6)C13—C141.327 (6)
C5—O71.401 (5)C13—H130.95
C5—O101.416 (5)C14—C161.498 (6)
C5—N61.417 (6)C14—C151.503 (6)
N6—H6A0.87 (2)C15—H15A0.98
N6—H6B0.84 (2)C15—H15B0.98
O7—C81.438 (5)C15—H15C0.98
C8—C91.514 (6)C16—O171.213 (5)
C8—H8A0.99C16—O181.333 (5)
C8—H8B0.99O18—C191.444 (5)
C9—O101.442 (5)C19—H19A0.98
C9—C111.527 (6)C19—H19B0.98
C9—H91.0C19—H19C0.98
C11—O121.433 (5)
C5—C4—Cl3109.6 (3)O12—C11—C13108.4 (3)
C5—C4—Cl1110.2 (3)O12—C11—C9108.3 (3)
Cl3—C4—Cl1109.1 (2)C13—C11—C9110.4 (3)
C5—C4—Cl2110.8 (3)O12—C11—H11109.9
Cl3—C4—Cl2108.6 (2)C13—C11—H11109.9
Cl1—C4—Cl2108.5 (2)C9—C11—H11109.9
O7—C5—O10108.0 (3)C11—O12—H12109.5
O7—C5—N6108.5 (3)C14—C13—C11126.5 (4)
O10—C5—N6112.1 (3)C14—C13—H13116.7
O7—C5—C4109.1 (3)C11—C13—H13116.7
O10—C5—C4105.1 (3)C13—C14—C16120.2 (4)
N6—C5—C4113.8 (4)C13—C14—C15126.2 (4)
C5—N6—H6A112 (3)C16—C14—C15113.6 (4)
C5—N6—H6B112 (3)C14—C15—H15A109.5
H6A—N6—H6B109 (4)C14—C15—H15B109.5
C5—O7—C8108.8 (3)H15A—C15—H15B109.5
O7—C8—C9103.7 (3)C14—C15—H15C109.5
O7—C8—H8A111.0H15A—C15—H15C109.5
C9—C8—H8A111.0H15B—C15—H15C109.5
O7—C8—H8B111.0O17—C16—O18122.5 (4)
C9—C8—H8B111.0O17—C16—C14123.3 (4)
H8A—C8—H8B109.0O18—C16—C14114.2 (4)
O10—C9—C8102.4 (3)C16—O18—C19115.2 (3)
O10—C9—C11110.2 (3)O18—C19—H19A109.5
C8—C9—C11114.1 (4)O18—C19—H19B109.5
O10—C9—H9110.0H19A—C19—H19B109.5
C8—C9—H9110.0O18—C19—H19C109.5
C11—C9—H9110.0H19A—C19—H19C109.5
C5—O10—C9108.0 (3)H19B—C19—H19C109.5
Cl3—C4—C5—O759.6 (4)C4—C5—O10—C9131.3 (3)
Cl1—C4—C5—O7179.7 (3)C8—C9—O10—C527.3 (4)
Cl2—C4—C5—O760.2 (4)C11—C9—O10—C594.5 (4)
Cl3—C4—C5—O10175.2 (3)O10—C9—C11—O1265.3 (4)
Cl1—C4—C5—O1064.7 (3)C8—C9—C11—O12179.8 (3)
Cl2—C4—C5—O1055.5 (4)O10—C9—C11—C13176.1 (3)
Cl3—C4—C5—N661.8 (4)C8—C9—C11—C1361.6 (5)
Cl1—C4—C5—N658.4 (4)O12—C11—C13—C14127.4 (4)
Cl2—C4—C5—N6178.5 (3)C9—C11—C13—C14114.1 (5)
O10—C5—O7—C84.9 (4)C11—C13—C14—C16178.3 (4)
N6—C5—O7—C8126.7 (4)C11—C13—C14—C151.5 (7)
C4—C5—O7—C8108.8 (3)C13—C14—C16—O17171.5 (4)
C5—O7—C8—C921.5 (4)C15—C14—C16—O178.3 (6)
O7—C8—C9—O1029.3 (4)C13—C14—C16—O188.4 (6)
O7—C8—C9—C1189.7 (4)C15—C14—C16—O18171.7 (3)
O7—C5—O10—C914.9 (4)O17—C16—O18—C193.5 (6)
N6—C5—O10—C9104.6 (4)C14—C16—O18—C19176.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···Cl10.87 (2)2.66 (4)3.118 (4)115 (3)
O12—H12···O17i0.841.972.774 (4)161
N6—H6B···O12ii0.84 (2)2.28 (3)3.047 (5)152 (4)
C8—H8B···Cl2iii0.992.833.713 (5)149
Symmetry codes: (i) x+1, y1/2, z; (ii) x1, y, z; (iii) x+1, y+1/2, z+1.
 

Acknowledgements

We thank Professor S. Ohba (Keio University, Japan) for his valuable advice.

Funding information

Funding for this research was provided by: Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research.

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaeckel, R., Troll, C., Fischer, H. & Schmidt, R. R. (1994). Synlett, pp. 84–86.  CSD CrossRef Google Scholar
First citationKidena, M., Sugai, T., Sato, T. & Chida, N. (2017). In preparationGoogle Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMetwally, N. H. (2011). Arkivoc, 10, 254–265.  Google Scholar
First citationNakayama, Y., Sekiya, R., Oishi, H., Hama, N., Yamazaki, M., Sato, T. & Chida, N. (2013). Chem. Eur. J. 19, 12052–12058.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOishi, T., Yasushima, D., Yuasa, K., Sato, T. & Chida, N. (2016). Acta Cryst. E72, 343–346.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOverman, L. E. (1974). J. Am. Chem. Soc. 96, 597–599.  CrossRef CAS Web of Science Google Scholar
First citationOverman, L. E. (1976). J. Am. Chem. Soc. 98, 2901–2910.  CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRondot, C., Retailleau, P. & Zhu, J. (2007). Org. Lett. 9, 247–250.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, A. B. III, Sulikowski, G. A., Sulikowski, M. M. & Fujimoto, K. (1992). J. Am. Chem. Soc. 114, 2567–2576.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds