

Received 2 June 2017 Accepted 12 June 2017

Edited by M. Weil, Vienna University of Technology, Austria

‡ Additional correspondence author, e-mail: raphael.enoque@gmail.com.

Keywords: gold(III); 1,10-phenanthroline ligand; square-planar coordination; anion- π interactions; crystal structure.

CCDC reference: 1555623

Supporting information: this article has supporting information at journals.iucr.org/e

https://doi.org/10.1107/S2056989017008763

1048

Raphael Enoque Ferraz de Paiva,‡ Douglas Hideki Nakahata and Pedro Paulo Corbi*

Institute of Chemistry, University of Campinas - UNICAMP, Campinas - SP, Brazil. *Correspondence e-mail: ppcorbi@iqm.unicamp.br

A gold(III) salt of composition $[AuCl_2(C_{12}H_8N_2)]PF_6$ was prepared and characterized by elemental and mass spectrometric analysis (ESI(+)–QTOF–MS), ¹H nuclear magnetic resonance measurements and by single-crystal X-ray diffraction. The square-planar coordination sphere of Au^{III} comprises the bidentate 1,10-phenanthroline ligand and two chloride ions, with the Au^{III} ion only slightly shifted from the least-squares plane of the ligating atoms (r.m.s. = 0.018 Å). In contrast to two other previously reported Au^{III}-phenantroline structures that are stabilized by interactions involving the chlorido ligands, the packing of the title compound does not present these features. Instead, the hexafluoridophosphate counter-ion gives rise to anion··· π interactions that are a crucial factor for the crystal packing.

1. Chemical context

Au^{III} is isoelectronic with Pt^{II} and forms compounds with similar coordination modes and structures. Therefore, the synthesis of Au^{III}-based compounds has attracted much interest in the field of bioinorganic and medicinal chemistry after the successful application of cis-platin [cis-diamminedichloridoplatinum(II)] for cancer treatment (Siddik, 2003). Aromatic N-donors, such as 1,10-phenanthroline, are of interest given their planar structure that synergizes well with the typical square-planar coordination sphere of Au^{III}, producing potent DNA-intercalating agents (Abbate et al., 2000; Zou et al., 2015). On the other hand, Au^{III} compounds differ from Pt^{II} compounds in terms of their interactions with biomolecules, their stability in biological media or their mechanism of action. A review on cytotoxic properties and mechanisms of Au^{III} compounds with N-donors has been provided by Zou et al. (2015).

In this context we have prepared the title salt, $[AuCl_2(C_{12}H_8N_2)]PF_6$, that was characterized by elemental and mass spectrometric analysis (ESI(+)–QTOF–MS), ¹H nuclear magnetic resonance measurements and by single crystal X-ray diffraction.

2. Structural commentary

All atoms in the title salt are on general positions. The Au^{III} atom has a square-planar coordination environment, with the chlorido ligands in a *cis* configuration to each other. The Au^{III} atom deviates from planarity (as determined based on the four coordinating atoms) by 0.018 Å (r.m.s.). The main bond lengths [Au–N1 = 2.032 (2), Au–N2 = 2.036 (2), Au–Cl1 = 2.251 (1) and Au–Cl2 = 2.255 (1) Å] are in the normal ranges for this kind of complexes (see *Database survey*). The bite angle of the 1,10-phenanthroline ligand is 81.75 (9)°, while the Cl1–Au–Cl2 angle is 89.28 (3)°. Despite the highly symmetrical nature of the hexafluoridophosphate counter-ion, this unit does not show any disorder. The structures of the molecular entities of the [AuCl₂(C₁₂H₈N₂)]PF₆ salt are shown in Fig. 1.

3. Supramolecular features

The molecular packing in the crystal is shown in Fig. 2. Despite the square-planar coordination environment around Au^{III} and the presence of the highly conjugated and planar 1,10-phenanthroline ligand, π - π interactions have little relevance

Figure 1

The molecular entities of the title salt $[AuCl_2(C_{12}H_8N_2)]PF_6$. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms are not labelled for clarity.

to the stabilization of the crystal. The shortest π -like interaction between the centroids $[Cg1\cdots Cg2^i;$ symmetry code: (i) $\frac{1}{2} + x, y, \frac{1}{2} - z;$ Fig. 3] of two neighbouring 1,10-phenanthroline rings are associated with a distance of 4.2521 (15) Å, which is very close to the upper limit of the threshold established by Janiak (2000) for a relevant offset π interaction.

The interactions between the hexafluoridophosphate counter-ion and the 1,10-phenanthroline ligands constitute the major intermolecular interactions in the crystal and can be divided into two types. The first type corresponds to an anion-donor $\cdots \pi$ -acceptor interaction (Chifotides & Dunbar, 2013),

Figure 3

Intermolecular interactions present in the crystal structure. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms were omitted for clarity. [Symmetry codes: (i) $\frac{1}{2} + x$, y, $\frac{1}{2} - z$, (ii) x, $\frac{1}{2} - y$, $\frac{1}{2} + z$, (iii) $-\frac{1}{2} + x$, y, $\frac{1}{2} - z$.]

research communications

with the shortest contact being C1···F5ⁱⁱ, of 3.096 (4) Å [symmetry code: (ii) $x, \frac{1}{2} - y, \frac{1}{2} + z$; Fig. 3]. The second and unique type of interaction between the PF₆⁻ anion and the π system of the phenanthroline ligand is observed where fluorine atoms point directly to the mid-point of an aromatic C-C bond. The distance between F6ⁱⁱ and the mid-point of C5 and C6 is 2.822 Å. The individual distances are C5···F6ⁱⁱ 2.925 (3) and C6···F6ⁱⁱⁱ 2.894 (3) Å [symmetry code: (iii) $-\frac{1}{2} + x, y, \frac{1}{2} - z$].

4. Database survey

A few structures of Au^{III}-(1,10-phenanthroline) compounds have been reported in the literature with different counterions. Abbate et al. (2000) reported the monohydrate chloride structure that crystallizes in the space group type $P2_1/n$, with Au-N distances of 2.033 (8) and 2.056 (8) Å and Au-Cl distances of 2.266 (3) and 2.263 (3) Å, respectively. The N-Au-N angle is 82.0 (3)° and the Cl-Au-Cl angle 89.5 (1)°. Pitteri et al. (2008) determined the structure with a disordered $[AuBrCl(CN)_2]^-$ unit as a counter-ion in space group type $P\overline{1}$. The Au-N distances are 2.05 (1) and 2.05 (1) Å, while the Au-Cl distances are 2.290 (5) and 2.299 (5) Å. The title compound has Au-N distances similar to that of the structure reported by Abbate et al. (2000), but slightly shorter than the one by Pitteri et al. (2008). Regarding the Au-Cl distances, $[AuCl_2(C_{12}H_8N_2)]PF_6$ and the structure reported by Abbate et al. (2000) have shorter ones than that reported by Pitteri et al. (2008). Although the $[AuCl_2(C_{12}H_8N_2)]^+$ cations in the three structures exhibit no significant differences, their crystal packings vary greatly as a consequence of the intermolecular interactions with the different counter-ions. The structure reported by Abbate et al. (2000) has the Au^{III}-(1,10-phenanthroline) units closer in space, with the shortest centroid-to-

Figure 4

¹H NMR spectra following the Cl replacement by DMSO- d_6 in the salt [Au(phen)Cl₂]PF₆, where phen = 1,10-phenanthroline. (Top) Spectrum obtained from a freshly dissolved sample and (bottom) 72 h after dissolution. Two populations were identified, [Au(phen)Cl₂]⁺ (symbolized by a black square) and a chloride replacement product, most likely [Au(phen)(dmso- d_6)₂]³⁺ (symbolized by a black dot).

Table 1
Experimental details.
Crystal data
Chemical formula

Chemical formula	$[AuCl_2(C_{12}H_8N_2)]PF_6$
$M_{\rm r}$	593.04
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	150
a, b, c (Å)	12.9983 (7), 15.2709 (10),
	15.5153 (10)
$V(Å^3)$	3079.7 (3)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	10.07
Crystal size (mm)	$0.15\times0.13\times0.05$
Data collection	
Diffractometer	Bruker APEX CCD detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2010)
T_{\min}, T_{\max}	0.576, 0.746
No. of measured, independent and	15573, 3822, 3192
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.027
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.019, 0.040, 1.01
No. of reflections	3822
No. of parameters	217
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	1.08, -0.56

Computer programs: *APEX2* and *SAINT* (Bruker, 2010), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *Mercury* (Macrae *et al.*, 2006) and *publCIF* (Westrip, 2010).

centroid distance being 3.820 Å, much closer than 4.2521 (15) Å observed in the title compound. Furthermore, the presence of a water molecule and the chloride counter-ion establish a classical hydrogen-bonding network, which is absent in the structure of the title compound. The structure determined by Pitteri *et al.* (2008) is the only one with an axial Au \cdots L interaction, namely Au \cdots Br (3.374 Å).

5. Synthesis and crystallization

 $[AuCl_2(C_{12}H_8N_2)]PF_6$ was synthesized by a modification of a literature protocol (Casini et al., 2010): K[AuCl₄] (0.25 mmol, 95.0 mg) was dissolved in 3 ml of H_2O/CH_3CN (1:5, v/v), and 1,10-phenanthroline, (0.25 mmol, 45 mg) dissolved in 0.5 ml of CH₃CN was then added to the gold(III)-containing solution. Finally, NH_4PF_6 (0.75 mmol, 124.6 mg) was added to the solution and the mixture was refluxed for 16 h. The obtained solid was isolated by filtration, washed with cold water and dried in vacuo. Elemental Analysis was performed on an Elemental Analyzer CHNS-O 2400 Perkin Elmer. Anal. Calcd. for $C_{12}H_8AuCl_2F_6N_2P$ (593.04 g mol⁻¹): C 24.30%, H 1.36%, N 4.72%. Found: C 24.08%, H 0.70%, N 4.73%. Mass spectra were acquired in a XEVO QTOF-MS instrument (Waters). The sample was dissolved in the smallest possible volume of DMSO and diluted in a 1:1 (v/v) mixture of water and acetonitrile containing 0.1% formic acid. ESI(+)-QTOF-MS $(m/z, [AuCl_2(C_{12}H_8N_2)]^+, 100\%$ relative abundance): 446. 9707 (calculated 446.9730). Crystals suitable for single crystal

X-ray analysis were obtained by recrystallization from acetonitrile solution.

6. Solution stability

The stability of the $[Au(1,10\text{-phenanthroline})]^{3+}$ moiety is critical for the biological properties of the compound, including cytotoxicity. The $[AuCl_2(C_{12}H_8N_2)]PF_6$ salt was dissolved in deuterated dimethylsulfoxide (DMSO-*d*6) and the solvent replacement was followed by ¹H NMR for 72 h (Fig. 4). ¹H NMR spectra were acquired on a Bruker Avance III 400 MHz. The labile chlorido ligands were replaced, as expected, but the $[Au(1,10\text{-phenanthroline})]^{3+}$ moiety remained stable in the presence of the coordinating solvent (DMSO) throughout the period evaluated.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were set in calculated positions, with C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

The authors are grateful to Dr Déborah de Alencar Simoni, technician of the Institutional Single Crystal XRD facility – UNICAMP, Brazil, for the data collection and preliminary data refinements.

Funding information

Funding for this research was provided by: Fundação de Amparo à Pesquisa do Estado de São Paulo (grant No. 2015/ 25114-4 to Pedro Paulo Corbi; grant No. 2015/20882-3 to Douglas Hideki Nakahata); Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant No. 140466/2014-2 to Raphael Enoque Ferraz de Paiva).

References

- Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). *Inorg. Chim. Acta*, **311**, 1–5.
- Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Casini, A., Diawara, M. C., Scopelliti, R., Zakeeruddin, S. M., Grätzel, M. & Dyson, P. J. (2010). *Dalton Trans.* **39**, 2239–2245.
- Chifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894– 906.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- Pitteri, B., Bortoluzzi, M. & Bertolasi, V. (2008). *Transition Met. Chem.* **33**, 649–654.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Siddik, Z. H. (2003). Oncogene, 22, 7265-7279.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zou, T., Lum, C. T., Lok, C. N., Zhang, J. J. & Che, C. M. (2015). Chem. Soc. Rev. 44, 8786–8801.

supporting information

Acta Cryst. (2017). E73, 1048-1051 [https://doi.org/10.1107/S2056989017008763]

Synthesis and crystal structure of dichlorido(1,10-phenanthroline- $\kappa^2 N, N'$)gold(III) hexafluoridophosphate

Raphael Enoque Ferraz de Paiva, Douglas Hideki Nakahata and Pedro Paulo Corbi

Computing details

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT* (Bruker, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Dichlorido(1,10-phenanthroline- $\kappa^2 N, N'$)gold(III) hexafluoridophosphate

Crystal data	
$[AuCl_2(C_{12}H_8N_2)]PF_6$ $M_r = 593.04$ Orthorhombic, <i>Pbca</i> a = 12.9983 (7) Å b = 15.2709 (10) Å c = 15.5153 (10) Å V = 3079.7 (3) Å ³ Z = 8 F(000) = 2208	$D_x = 2.558 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 119 reflections $\theta = 3.4-27.3^{\circ}$ $\mu = 10.07 \text{ mm}^{-1}$ T = 150 K Plate, yellow $0.15 \times 0.13 \times 0.05 \text{ mm}$
Data collection	
Bruker APEX CCD detector diffractometer Radiation source: fine-focus sealed tube Detector resolution: 8.3333 pixels mm ⁻¹ phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2010) $T_{\min} = 0.576$, $T_{\max} = 0.746$	15573 measured reflections 3822 independent reflections 3192 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -17 \rightarrow 15$ $k = -20 \rightarrow 15$ $l = -15 \rightarrow 20$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from

Hydrogen site location: inferred fr neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0194P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.08 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.56 \text{ e } \text{Å}^{-3}$

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$

 $wR(F^2) = 0.040$

3822 reflections

217 parameters

0 restraints

S = 1.01

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Au1	0.44227 (2)	0.09568 (2)	0.04214 (2)	0.01802 (4)
C11	0.29239 (6)	0.03883 (5)	-0.00417 (5)	0.03186 (17)
Cl2	0.48300 (6)	0.12866 (5)	-0.09535 (5)	0.02952 (17)
N1	0.57092 (15)	0.15008 (15)	0.09387 (16)	0.0184 (5)
N2	0.41395 (16)	0.06735 (15)	0.16813 (15)	0.0170 (5)
C1	0.6465 (2)	0.1908 (2)	0.0529 (2)	0.0254 (7)
H1	0.6468	0.1921	-0.0083	0.030*
C2	0.7252 (2)	0.2317 (2)	0.0982 (2)	0.0295 (7)
H2	0.7786	0.2608	0.0677	0.035*
C3	0.7262 (2)	0.2303 (2)	0.1863 (2)	0.0270 (7)
Н3	0.7794	0.2591	0.2172	0.032*
C4	0.6474 (2)	0.18577 (19)	0.2310 (2)	0.0221 (6)
C5	0.57038 (18)	0.14663 (18)	0.18156 (19)	0.0173 (6)
C6	0.48791 (19)	0.10177 (17)	0.22131 (18)	0.0166 (5)
C7	0.4824 (2)	0.09379 (18)	0.31033 (19)	0.0204 (6)
C8	0.5628 (2)	0.1336 (2)	0.3608 (2)	0.0241 (6)
H8	0.5611	0.1288	0.4218	0.029*
С9	0.6403 (2)	0.1775 (2)	0.3226 (2)	0.0260 (7)
Н9	0.6918	0.2036	0.3576	0.031*
C10	0.3993 (2)	0.04620 (19)	0.3444 (2)	0.0230 (6)
H10	0.3929	0.0386	0.4050	0.028*
C11	0.3274 (2)	0.01083 (19)	0.29003 (19)	0.0240 (6)
H11	0.2715	-0.0218	0.3129	0.029*
C12	0.3362 (2)	0.02256 (17)	0.20087 (19)	0.0210 (6)
H12	0.2858	-0.0019	0.1636	0.025*
P1	0.40487 (5)	0.14377 (5)	0.61776 (5)	0.01992 (16)
F1	0.38930 (15)	0.08895 (13)	0.70331 (12)	0.0412 (5)
F2	0.41427 (15)	0.05546 (12)	0.56412 (13)	0.0362 (5)
F3	0.52589 (12)	0.14548 (12)	0.63152 (14)	0.0399 (5)
F4	0.41879 (16)	0.19932 (14)	0.53096 (13)	0.0443 (5)
F5	0.28305 (12)	0.14421 (12)	0.60406 (14)	0.0410 (5)
F6	0.39496 (14)	0.23393 (12)	0.67051 (14)	0.0423 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.02348 (6)	0.01722 (6)	0.01336 (6)	0.00051 (4)	-0.00115 (4)	-0.00098 (4)
Cl1	0.0364 (4)	0.0344 (4)	0.0249 (4)	-0.0106 (3)	-0.0115 (3)	0.0001 (4)
C12	0.0419 (4)	0.0329 (4)	0.0138 (3)	0.0045 (3)	0.0028 (3)	-0.0002 (3)

supporting information

N1	0.0192 (11)	0.0202 (12)	0.0159 (12)	0.0014 (9)	0.0006 (9)	-0.0011 (10)
N2	0.0210 (11)	0.0166 (11)	0.0134 (12)	0.0001 (9)	-0.0008 (10)	-0.0012 (10)
C1	0.0246 (14)	0.0276 (16)	0.0239 (17)	0.0031 (12)	0.0071 (13)	0.0020 (13)
C2	0.0211 (14)	0.0331 (18)	0.0342 (19)	-0.0027 (13)	0.0067 (13)	0.0066 (15)
C3	0.0183 (14)	0.0269 (16)	0.0359 (19)	0.0008 (12)	-0.0035 (13)	-0.0017 (14)
C4	0.0189 (13)	0.0219 (15)	0.0256 (16)	0.0023 (11)	-0.0023 (12)	-0.0007 (13)
C5	0.0178 (13)	0.0168 (13)	0.0173 (14)	0.0044 (10)	-0.0005 (11)	-0.0010 (11)
C6	0.0177 (12)	0.0140 (12)	0.0182 (14)	0.0043 (10)	-0.0007 (11)	-0.0005 (12)
C7	0.0236 (13)	0.0192 (13)	0.0184 (15)	0.0051 (11)	-0.0007 (12)	0.0011 (12)
C8	0.0304 (15)	0.0259 (15)	0.0158 (15)	0.0058 (12)	-0.0056 (13)	-0.0020 (13)
C9	0.0252 (15)	0.0277 (16)	0.0250 (17)	0.0017 (12)	-0.0082 (13)	-0.0068 (14)
C10	0.0266 (14)	0.0237 (15)	0.0187 (15)	0.0048 (12)	0.0022 (13)	0.0040 (13)
C11	0.0261 (14)	0.0233 (14)	0.0227 (16)	-0.0014 (12)	0.0034 (13)	0.0020 (13)
C12	0.0208 (13)	0.0178 (13)	0.0244 (16)	-0.0014 (11)	-0.0016 (12)	-0.0007 (12)
P1	0.0199 (3)	0.0183 (4)	0.0216 (4)	-0.0015 (3)	0.0008 (3)	-0.0005 (3)
F1	0.0531 (12)	0.0476 (12)	0.0228 (11)	-0.0131 (10)	-0.0014 (9)	0.0103 (9)
F2	0.0484 (11)	0.0258 (10)	0.0345 (12)	0.0000 (9)	-0.0003 (9)	-0.0105 (9)
F3	0.0205 (8)	0.0374 (11)	0.0619 (15)	-0.0024 (8)	-0.0029 (9)	-0.0005 (11)
F4	0.0583 (12)	0.0407 (12)	0.0340 (13)	-0.0018 (10)	0.0028 (9)	0.0167 (10)
F5	0.0221 (8)	0.0325 (11)	0.0683 (15)	-0.0025 (8)	-0.0081 (9)	0.0000 (10)
F6	0.0387 (10)	0.0321 (11)	0.0560 (14)	-0.0106 (8)	0.0194 (10)	-0.0224 (10)

Geometric parameters (Å, °)

Au1—N1	2.032 (2)	C6—C7	1.388 (4)
Au1—N2	2.036 (2)	C7—C10	1.406 (4)
Au1—Cl1	2.2506 (7)	C7—C8	1.440 (4)
Au1—Cl2	2.2549 (8)	C8—C9	1.348 (4)
N1C1	1.325 (3)	C8—H8	0.9500
N1—C5	1.362 (4)	С9—Н9	0.9500
N2-C12	1.322 (3)	C10—C11	1.370 (4)
N2—C6	1.372 (3)	C10—H10	0.9500
C1—C2	1.389 (4)	C11—C12	1.400 (4)
C1—H1	0.9500	C11—H11	0.9500
C2—C3	1.368 (4)	C12—H12	0.9500
С2—Н2	0.9500	P1—F1	1.582 (2)
C3—C4	1.411 (4)	P1—F3	1.5877 (17)
С3—Н3	0.9500	P1—F2	1.589 (2)
C4—C5	1.396 (4)	P1—F5	1.5976 (18)
С4—С9	1.430 (4)	P1—F4	1.602 (2)
C5—C6	1.414 (4)	P1—F6	1.6070 (19)
N1—Au1—N2	81.75 (9)	C10—C7—C8	124.8 (3)
N1—Au1—Cl1	174.84 (7)	C9—C8—C7	120.9 (3)
N2—Au1—Cl1	93.90 (6)	С9—С8—Н8	119.5
N1—Au1—Cl2	95.11 (7)	С7—С8—Н8	119.5
N2—Au1—Cl2	176.74 (6)	C8—C9—C4	122.0 (3)
Cl1—Au1—Cl2	89.28 (3)	С8—С9—Н9	119.0

C1 N1 C5	120 1 (2)	C_{4} C_{0} U_{0}	110.0
CI-NI-CS	120.1 (2)	C4—C9—H9	119.0
CI—NI—Aul	127.8 (2)	C11—C10—C7	119.7 (3)
C5—N1—Aul	112.00 (17)	C11—C10—H10	120.1
C12—N2—C6	120.2 (2)	C7—C10—H10	120.1
C12—N2—Au1	128.12 (19)	C10-C11-C12	120.2 (3)
C6—N2—Au1	111.69 (18)	C10-C11-H11	119.9
N1—C1—C2	121.0 (3)	С12—С11—Н11	119.9
N1—C1—H1	119.5	N2—C12—C11	120.5 (3)
C2—C1—H1	119.5	N2—C12—H12	119.7
C3—C2—C1	120.4 (3)	C11—C12—H12	119.7
C3—C2—H2	119.8	F1—P1—F3	91.30 (11)
C1—C2—H2	119.8	F1—P1—F2	90.01 (11)
$C^2 - C^3 - C^4$	119.5 (3)	F3P1F2	90.47 (10)
$C_2 = C_3 = H_3$	120.3	F1P1F5	89 25 (11)
C_{4} C_{3} H_{3}	120.3	F3 P1 F5	178 81 (11)
$C_{4} = C_{3} = 113$	117.2(3)	$F_{2} = F_{1} = F_{2}$	170.01(11)
C_{5}	117.2(3)	$\Gamma_2 = \Gamma_1 = \Gamma_3$	90.38 (11) 170.12 (12)
$C_3 = C_4 = C_9$	117.5 (5)	$\Gamma I \longrightarrow \Gamma I \longrightarrow \Gamma 4$	1/9.13(12)
C3-C4-C9	125.3 (3)	$F_3 \longrightarrow F_4$	89.57 (11)
NIC5C4	121.9 (3)	F2—P1—F4	90.02 (11)
N1C5C6	117.3 (2)	F5—P1—F4	89.88 (11)
C4—C5—C6	120.8 (3)	F1—P1—F6	90.90 (11)
N2—C6—C7	121.9 (3)	F3—P1—F6	89.82 (10)
N2—C6—C5	117.0 (3)	F2—P1—F6	179.04 (12)
C7—C6—C5	121.0 (3)	F5—P1—F6	89.13 (10)
C6—C7—C10	117.4 (3)	F4—P1—F6	89.06 (12)
C6—C7—C8	117.8 (3)		
C5—N1—C1—C2	-1.0(4)	C4—C5—C6—N2	178.2 (2)
Au1—N1—C1—C2	174.1 (2)	N1—C5—C6—C7	178.8 (2)
N1—C1—C2—C3	0.2 (5)	C4—C5—C6—C7	-1.4(4)
C1—C2—C3—C4	1.0 (5)	N2-C6-C7-C10	2.1 (4)
$C_{2}-C_{3}-C_{4}-C_{5}$	-14(4)	C5-C6-C7-C10	-1784(2)
$C_2 - C_3 - C_4 - C_9$	178 5 (3)	N_{2} C_{6} C_{7} C_{8}	-1789(2)
$C_1 = C_2 = C_3 = C_4 = C_3$	170.5(3)	C_{5} C_{6} C_{7} C_{8}	0.7(4)
$\begin{array}{c} C_1 \\ \hline \\ M_1 \\ M_1 \\ \hline \\ M_1 \\ \hline \\ M_1 \\ \hline \\ M_1 \\ \hline \\ C_2 \\ \hline \\ C_4 \\ \hline \\ C_4$	-175.2(2)	$C_{5} - C_{6} - C_{7} - C_{8} - C_{9}$	0.7(4)
Au1 - N1 - C5 - C4	173.2(2)	$C_{0} - C_{7} - C_{8} - C_{9}$	0.4(4)
CI = NI = C5 = C6	-1/9.7(2)	C10 - C7 - C8 - C9	1/9.4 (3)
Au1 - N1 - C5 - C6	4.5 (3)	C/-C8-C9-C4	-0.8(4)
C3—C4—C5—N1	0.6 (4)	C5—C4—C9—C8	0.1 (4)
C9—C4—C5—N1	-179.3 (3)	C3—C4—C9—C8	-179.8 (3)
C3—C4—C5—C6	-179.1 (2)	C6—C7—C10—C11	-0.7 (4)
C9—C4—C5—C6	1.0 (4)	C8—C7—C10—C11	-179.7 (3)
C12—N2—C6—C7	-2.3 (4)	C7—C10—C11—C12	-0.5 (4)
Au1—N2—C6—C7	177.4 (2)	C6—N2—C12—C11	1.0 (4)
C12—N2—C6—C5	178.2 (2)	Au1—N2—C12—C11	-178.6 (2)
Au1—N2—C6—C5	-2.2 (3)	C10-C11-C12-N2	0.4 (4)
N1C5	-1.6 (3)		