

ISSN 2056-9890

Received 12 June 2017 Accepted 19 June 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; redetermination; mercury; thiocyanate.

CCDC reference: 1556957

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Jascha Bandemehr, Matthias Conrad and Florian Kraus*

Anorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg. *Correspondence e-mail: florian.kraus@chemie.uni-marburg.de

Single crystals of $K_2Hg(SCN)_4$ [dipotassium tetrathiocyanatomercurate(II)] were grown from aqueous solutions of potassium thiocyanate and mercury(II) thiocyanate and studied by single-crystal X-ray diffraction. In comparison with the previously reported structure model [Zvonkova (1952). *Zh. Fiz. Khim.* **26**, 1798–1803], all atoms in the crystal structure were located, with lattice parameters and fractional coordinates determined to a much higher precision. In the (crystal) structure, the Hg^{II} atom is located on a twofold rotation axis and is coordinated in the form of a distorted tetrahedron by four S atoms of the thiocyanate anions. The K⁺ cation shows a coordination number of eight.

1. Chemical context

In search for suitable educts for fluorination we thought that $K_2Hg(SCN)_4$ would be a well-suited candidate. Once we had obtained the compound, we noticed that the original structure determination (Zvonkova, 1952) was of low precision with the light atoms (C and N) not determined, so we redetermined the crystal structure to much higher precision and accuracy.

K₂Hg(SCN)₄ was first synthesized in 1901 (Rosenheim & Cohn, 1901) by adding an aqueous solution of potassium thiocyanate to a boiling solution of mercury(II) thiocyanate and crystallization upon cooling to room temperature. The crystal structure has been known since 1952 (Zvonkova, 1952) and IR spectra were first measured in 1962 (Tramer, 1962). Related compounds of the type A_2 Hg(SCN)₄ with A = Rb, Cs, NH_4 , NMe_4 are also known (Larbot & Beauchamp, 1973; Tramer, 1962). The Hg^{II} atom in K₂Hg(SCN)₄ is coordinated in the form of a distorted tetrahedron by four S atoms in a fashion similar to the Hg^{II} atom in the structure of CoHg(SCN)₄ (Jefferey & Rose, 1968). Such tetrahedrally coordinated Hg^{II} atoms are also known, for example, for the halide and pseudo-halide compounds A_2 Hg X_4 , viz. Cs₂HgBr₄ (Pakhomov et al., 1978; Altermatt et al., 1984; Pinheiro et al., 1998), Cs₂HgCl₄ (Linde *et al.*, 1983; Pakhomov *et al.* 1992*a*,*b*; Bagautdinov & Brown, 2000), Cs₂HgI₄ (Zandbergen et al., 1979; Pakhomov & Fedorov, 1973), K₂Hg(CN)₄ (Gerlach & Powell, 1986; Dickinson, 1922) and Rb₂Hg(CN)₄ (Klüfers et al., 1981).

2. Structural commentary

The lattice parameters obtained by our room-temperature single-crystal structure determination (Table 1) agree with those obtained previously (a = 11.04, b = 9.22, c = 13.18 Å, $\beta = 106.30^{\circ}$, Z = 4; Zvonkova, 1952). K₂Hg(SCN)₄ crystallizes in

Figure 1

A section of the crystal structure of K₂Hg(SCN)₄, showing the $[Hg(SCN)_4]^{2-}$ anion and the K⁺ cation. Displacement ellipsoids are shown at the 70% probability level at 293 K. [Symmetry code: (i) -x, y, $\frac{1}{2} - z$].

crystal the monoclinic in system space group C2/c (No. 15). The Hg^{II} atom is located on a twofold rotation axis (Wyckoff position 4e) and is coordinated in the form of a distorted tetrahedron by four S atoms of the thiocyanate anions (Fig. 1). The S-Hg-S angles are in the range 105.02 (2)–114.67 (3) $^{\circ}$ and the Hg–S distances are 2.5380 (8) and 2.5550 (7) Å, both in good agreement with the previously reported data (S-Hg-S angle: 102-118°, Hg-S distance: 2.54 (2); Zvonkova, 1952). The Hg-S distance is slightly longer than those of the sixfold-coordinated Hg^{II} atom in $Hg(SCN)_2$ [2.381 (6) Å] (Beauchamp & Goutier, 1972) and lies within the range of Hg-S distances [2.3954 (11)-2.7653 (6) Å] for the threefold coordinated Hg^{II} atom in KHg(SCN)₃ (Weil & Häusler, 2014).

As may be expected, the two unique SCN⁻ anions are almost linear $[178.0(3), 178.2(3)^{\circ}]$, and the angles are comparable with those reported for $Hg(SCN)_2$ [177.5 (13)°; Beauchamp & Goutier, 1972] or KHg(SCN)₃ [176.41 (4)-179.8 (3)°; Weil & Häusler, 2014]. The S-C [1.656 (3), 1.665 (3) Å] and C-N [1.153 (5), 1.152 (4) Å] distances are comparable as well [S-C: 1.62 (2), C-N: 1.18 (3) Å] (Beauchamp & Goutier, 1972) [S-C: 1.657 (4)-1.675 (3) Å, C-N: 1.140 (4)–1.145 (5) Å] (Weil & Häusler, 2014). The Hg–S–C angles in the title salt are 98.59 (10) and 97.06 (10)°, respectively. In comparison with the coordination polyhedron of the Hg^{II} atom and the structural feature of the SCN⁻ anions in CoHg(SCN)₄ [Hg-S: 2.558-2.614 Å, S-C: 1.635-1.720 Å, C−N: 1.200–1.322 Å, S−Hg−S angles: 105.1 (1), 108.7 (1)°, Hg-S-C angle: $97.3 (5)^{\circ}$] (Jefferey & Rose, 1968), the respective angles and distances of the complex $[Hg(SCN)_4]^{2-1}$ anion presented here agree well. In total, a $[Hg(SCN)_4]^{2-}$ anion is surrounded by twelve potassium atoms.

The K^+ cation shows a coordination number of eight, with disparate bond lengths that can be associated with a [4 + 3 + 1]

coordination. Four K-N distances are in the range 2.816 (4)– 3.031 (5) Å, three K-S distances are in the range 3.4466 (11)– 3.5315 (12) Å and there is one very long K-N distance of 3.793 (5) Å. Therefore, the resulting coordination polyhedron is of an odd shape. The K⁺ cation is coordinated in total by five $[Hg(SCN)_4]^{2-}$ units, three of these in a monodentate manner (two *via* N atoms and one *via* the S atom of the thiocyanate anions) and the other two in a bidentate mode (*via* the N and S atoms of neighboring thiocyanate anions). Overall, a complex three-dimensional framework results. The crystal structure of the title compound is shown in Fig. 2.

3. Synthesis and crystallization

Potassium tetrathiocyanatomercurate(II) was synthesized by slowly adding a potassium thiocyanate solution (2.076 g, 21.36 mmol in 10 ml H₂O) to a boiling solution of mercury(II) thiocyanate (3.176 g, 10.03 mmol in 10 ml H₂O). After the formed mercury sulfide had been filtered off through a Büchner funnel, the solution was concentrated on a hot plate until crystallization set in. The crystallized product was collected on a Büchner funnel and the filtrate was allowed to stand at room temperature until crystals of much better quality were obtained. A selected colorless single crystal was investigated by X-ray diffraction. Mercury(II) thiocyanate was prepared as reported previously (Hermes, 1866) using mercury(II) nitrate and potasium thiocyanate and was recrystallized out of ethanol.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. As a starting model for the structure refinement, the atomic coordinates of the previously reported $K_2Hg(SCN)_4$ structure model were used (Zvonkova,

Figure 2

The crystal structure of K_2 Hg(SCN)₄ viewed along [110]. Displacement ellipsoids are shown at the 70% probability level at 293 K. Bonds involving the K⁺ cation are omitted for clarity.

Table 1Experimental details.

Crystal data Chemical formula K₂Hg(SCN)₄ М., 511.11 Crystal system, space group Monoclinic, C2/c Temperature (K) 293 10.8154 (9), 9.3243 (7), *a*, *b*, *c* (Å) 13.3313 (11) 106.648 (6) β (°) $V(Å^3)$ 1288.05 (18) Ζ Μο Κα Radiation type $\mu \,({\rm mm}^{-1})$ 13.21 $0.24 \times 0.15 \times 0.12$ Crystal size (mm) Data collection Diffractometer Stoe IPDS 2T Absorption correction Integration (X-RED32 and X-SHAPE; Stoe & Cie, 2009) T_{\min}, T_{\max} 0.103, 0.344 No. of measured, independent and 14009, 2710, 2298 observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.043 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.798 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.024, 0.053, 1.08 No. of reflections 2710 No. of parameters 70 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 1.15, -0.75

Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2009), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg, 2015) and publCIF (Westrip, 2010).

1952). The positions of the C and N atoms were located from a difference-Fourier map.

Acknowledgements

FK thanks the DFG for his Heisenberg professorship, Dr Harms for X-ray measurement time and Julia Hassler for the sample preparation.

research	communications

References

- Altermatt, D., Arend, H., Gramlich, V., Niggli, A. & Petter, W. (1984). Acta Cryst. B40, 347–350.
- Bagautdinov, B. S. & Brown, I. D. (2000). J. Phys. Condens. Matter, 12, 8111–8125.
- Beauchamp, A. L. & Goutier, D. (1972). Can. J. Chem. 50, 977-981.
- Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn,
- Germany. Dickinson, R. G. (1922). J. Am. Chem. Soc. 44, 744–786.
- Dickinson, R. G. (1922). J. Am. Chem. Soc. 44, 744-780.
- Gerlach, P. N. & Powell, B. M. (1986). J. Chem. Phys. 85, 6004–6009. Hermes, O. (1866). J. Prakt. Chem. 97, 465–482.
- Jeffery, J. W. & Rose, K. M. (1968). Acta Cryst. B24, 653-662.
- Klüfers, P., Fuess, H. & Haussühl, S. (1981). Z. Kristallogr. 156, 255–263.
- Larbot, A. & Beauchamp, A. L. (1973). *Rev. Chim. Miner.* **10**, 465–472.
- Linde, S. A., Mikhailova, A. Y., Pakhomov, V. I., Kirilenko, V. V. & Shulga, V. G. (1983). *Koord. Khim.* 9, 998–999.
- Pakhomov, V. I. & Fedorov, P. M. (1973). Sov. Phys. Crystallogr. 17, 833-836.
- Pakhomov, V. I., Fedorova, N. M. & Ivanova Korfini, I. N. (1978). Sov. J. Coord. Chem. 4, 1356–1357.
- Pakhomov, V. I., Goryunov, A. V., Gladkii, V. V., Ivanova Korfini, I. N. & Kallaev, S. N. (1992b). *Russ. J. Inorg. Chem.* 37, 731–734.
- Pakhomov, V. I., Goryunov, A. V., Ivanova Korfini, I. N., Boguslavskii, A. A. & Lotfullin, R. S. (1992a). Russ. J. Inorg. Chem. 37, 259–261.
- Pinheiro, C. B., Jório, A., Pimenta, M. A. & Speziali, N. L. (1998). Acta Cryst. B54, 197–203.
- Rosenheim, A. & Cohn, R. (1901). Z. Anorg. Allg. Chem. 27, 270–303.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stoe & Cie (2009). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
- Stoe & Cie (2011). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.
- Tramer, A. (1962). J. Chem. Phys. 59, 637-654.
- Weil, M. & Häusler, T. (2014). Acta Cryst. E70, i46.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zandbergen, H. W., Verschoor, G. C. & IJdo, D. J. W. (1979). Acta Cryst. B35, 1425–1427.
- Zvonkova, Z. V. (1952). Zh. Fiz. Khim. 26, 1798-1803.

supporting information

Acta Cryst. (2017). E73, 1073-1075 [https://doi.org/10.1107/S2056989017009148]

Redetermination of the crystal structure of K₂Hg(SCN)₄

Jascha Bandemehr, Matthias Conrad and Florian Kraus

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2011); cell refinement: *X-AREA* (Stoe & Cie, 2011); data reduction: *X-RED* (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg, 2015); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Dipotassium tetrathiocyanatomercurate(II)

Crystal data

K₂Hg(SCN)₄ $M_r = 511.11$ Monoclinic, C2/c a = 10.8154 (9) Å b = 9.3243 (7) Å c = 13.3313 (11) Å $\beta = 106.648$ (6)° V = 1288.05 (18) Å³ Z = 4

Data collection

```
Stoe IPDS 2T
diffractometer
Radiation source: sealed X-ray tube, 12 x 0.4
mm long-fine focus
Plane graphite monochromator
Detector resolution: 6.67 pixels mm<sup>-1</sup>
rotation method scans
Absorption correction: integration
(X-RED32 and X-SHAPE; Stoe & Cie, 2009)
```

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.053$ S = 1.082710 reflections 70 parameters 0 restraints Primary atom site location: other Secondary atom site location: other F(000) = 936 $D_x = 2.636 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25154 reflections $\theta = 2.9-35.0^{\circ}$ $\mu = 13.21 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.24 \times 0.15 \times 0.12 \text{ mm}$

 $T_{\min} = 0.103, T_{\max} = 0.344$ 14009 measured reflections
2710 independent reflections
2298 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.043$ $\theta_{\text{max}} = 34.6^{\circ}, \theta_{\text{min}} = 2.9^{\circ}$ $h = -17 \rightarrow 17$ $k = -14 \rightarrow 14$ $l = -21 \rightarrow 21$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.022P)^{2} + 1.7P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.15$ e Å⁻³ $\Delta\rho_{min} = -0.75$ e Å⁻³ Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0086 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Hg	0.0000	0.52099 (2)	0.2500	0.03803 (7)	
Κ	0.16185 (7)	1.04695 (8)	0.43195 (7)	0.04817 (17)	
S1	0.10639 (7)	0.68302 (8)	0.40531 (6)	0.03720 (14)	
S2	0.18135 (7)	0.36527 (10)	0.22498 (7)	0.04701 (18)	
C1	-0.0130 (3)	0.6793 (3)	0.4611 (2)	0.0332 (5)	
C2	0.3046 (3)	0.4505 (3)	0.3055 (3)	0.0387 (6)	
N1	-0.0940 (3)	0.6801 (3)	0.5013 (3)	0.0462 (6)	
N2	0.3926 (3)	0.5077 (4)	0.3607 (4)	0.0615 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg	0.02612 (7)	0.05275 (11)	0.03471 (8)	0.000	0.00789 (5)	0.000
Κ	0.0336 (3)	0.0491 (4)	0.0637 (4)	-0.0053 (3)	0.0169 (3)	-0.0164 (3)
S1	0.0294 (3)	0.0399 (3)	0.0426 (3)	-0.0077 (2)	0.0107 (2)	-0.0070 (3)
S2	0.0350 (3)	0.0567 (5)	0.0486 (4)	0.0053 (3)	0.0108 (3)	-0.0162 (3)
C1	0.0307 (11)	0.0271 (11)	0.0399 (12)	-0.0003 (9)	0.0070 (9)	-0.0026 (9)
C2	0.0304 (12)	0.0385 (15)	0.0475 (14)	0.0066 (10)	0.0115 (10)	0.0066 (11)
N1	0.0408 (13)	0.0437 (14)	0.0586 (17)	-0.0011 (11)	0.0215 (12)	-0.0039 (12)
N2	0.0346 (14)	0.0530 (19)	0.087 (3)	0.0011 (12)	0.0023 (14)	0.0011 (16)

Geometric parameters (Å, °)

Hg—S2	2.5380 (8)	K—K ^{iv}	4.4669 (15)
Hg—S2 ⁱ	2.5380 (8)	S1—C1	1.665 (3)
Hg—S1 ⁱ	2.5550 (7)	S1—K ^v	3.5316 (12)
Hg—S1	2.5551 (7)	S2—C2	1.656 (3)
K—N2 ⁱⁱ	2.816 (4)	S2—K ^{viii}	3.4865 (12)
K—N1 ⁱⁱⁱ	2.823 (3)	C1—N1	1.152 (4)
K—N1 ^{iv}	2.860 (3)	C1—K ^{iv}	3.529 (3)
K—N2 ^v	3.031 (5)	C2—N2	1.153 (5)
K—C2 ^{vi}	3.408 (3)	C2—K ^{viiii}	3.408 (3)
K—C2 ^v	3.414 (3)	С2—К ^v	3.414 (3)
K—S1	3.4466 (11)	N1—K ^{ix}	2.823 (3)
K—S2 ^{vi}	3.4865 (12)	N1—K ^{iv}	2.860 (3)
K—S1 ^v	3.5315 (12)	N2—K ^x	2.816 (4)
K—C1 ^{iv}	3.529 (3)	N2—K ^v	3.031 (5)
K—K ^{vii}	4.3913 (14)		

	110 21 (4)	C1 K C1iv	121.00 (5)
S2 - Hg - S2	110.21(4) 114.67(2)	SI - K - CI''	131.89 (5)
$S_2 - ng - S_1^{i}$	114.07(3) 105.02(2)	$S_2 - K - C_1$	101.09(0) 121.11(5)
$S_2 - ng - S_1$	105.02(2) 105.02(2)	SI - K - CI	121.11(3) 122.42(8)
$S_2 - ng - S_1$	105.02(2)		122.43(8)
S2 - Hg - S1	114.07 (3)		39.71 (6)
SI'—Hg—SI	107.50 (4)	$N I^{\prime\prime} - K - K^{\prime\prime}$	39.09 (6)
$N2^{m} - K - N1^{m}$	161.33 (10)	$N2^{\prime}-K-K^{\prime m}$	86.73(7)
$N2^{n}$ K N1 ⁿ	83.58 (10)	$C2^{n}$ K K	117.52 (6)
	78.80 (9)	$C2^{v}$ —K—K ^{vn}	70.39 (6)
$N2^{n}$ —K— $N2^{v}$	80.42 (13)	S1—K—K ^{vn}	159.02 (4)
N1 ^{III} —K—N2 ^v	100.55 (9)	$S2^{v_1}$ K K v_1	116.01 (3)
$N1^{iv}$ K $N2^{v}$	74.44 (9)	$S1^v - K - K^{vn}$	97.01 (3)
$N2^{ii}$ —K— $C2^{vi}$	91.55 (12)	$C1^{iv}-K-K^{vii}$	53.40 (5)
$N1^{iii}$ —K—C2 ^{vi}	94.70 (8)	$N2^{ii}-K-K^{iv}$	41.99 (10)
$N1^{iv}$ —K—C2 ^{vi}	128.94 (9)	$N1^{iii}$ —K—K ^{iv}	136.17 (7)
$N2^{v}$ —K— $C2^{vi}$	154.57 (9)	N1 ^{iv} —K—K ^{iv}	75.38 (6)
$N2^{ii}$ —K— $C2^{v}$	98.21 (12)	$N2^{v}$ —K—K ^{iv}	38.43 (7)
$N1^{iii}$ —K— $C2^{v}$	81.16 (8)	C2 ^{vi} —K—K ^{iv}	129.03 (5)
$N1^{iv}$ —K— $C2^{v}$	68.68 (8)	$C2^v$ —K—K ^{iv}	56.66 (5)
$N2^v$ —K— $C2^v$	19.47 (8)	S1—K—K ^{iv}	73.46 (2)
$C2^{vi}$ — K — $C2^{v}$	161.02 (7)	S2 ^{vi} —K—K ^{iv}	136.14 (3)
N2 ⁱⁱ —K—S1	72.82 (7)	S1 ^v —K—K ^{iv}	97.61 (3)
N1 ⁱⁱⁱ —K—S1	125.84 (7)	C1 ^{iv} —K—K ^{iv}	58.43 (5)
N1 ^{iv} —K—S1	148.83 (6)	K ^{vii} —K—K ^{iv}	107.42 (3)
N2 ^v —K—S1	81.66 (7)	C1—S1—Hg	97.06 (10)
C2 ^{vi} —K—S1	72.91 (5)	C1—S1—K	96.25 (9)
C2 ^v —K—S1	94.40 (6)	Hg—S1—K	133.66 (3)
N2 ⁱⁱ —K—S2 ^{vi}	111.59 (10)	$C1$ — $S1$ — K^{v}	102.56 (10)
$N1^{iii}$ —K— $S2^{vi}$	80.81 (6)	Hg—S1—K ^v	102.38 (3)
$N1^{iv}$ —K—S 2^{vi}	146.21 (6)	K—S1—K ^v	117.55 (2)
$N2^{v}$ —K— $S2^{vi}$	136.13 (7)	C2—S2—Hg	98.59 (10)
C2 ^{vi} —K—S2 ^{vi}	27.76 (5)	C2—S2—K ^{viii}	73.50 (11)
C2 ^v —K—S2 ^{vi}	133.75 (5)	Hg—S2—K ^{viii}	109.15 (3)
S1—K—S2 ^{vi}	63.89 (2)	N1-C1-S1	178.0 (3)
$N2^{ii}-K-S1^{v}$	127.71 (8)	N1—C1—K ^{iv}	46.43 (18)
N1 ⁱⁱⁱ —K—S1 ^v	68.47 (7)	S1—C1—K ^{iv}	131.85 (12)
$N1^{iv}$ K $S1^{v}$	123.33(7)	N2-C2-S2	178.2 (3)
$N2^{v}-K-S1^{v}$	68 09 (7)	$N2-C2-K^{viii}$	100.5(3)
$C^{2^{vi}} K = S^{1^{v}}$	99.48 (6)	$S_2 = C_2 = K^{\text{viii}}$	78 74 (12)
$C2^{v} - K - S1^{v}$	61 72 (5)	$N2 C2 K^{v}$	61.1(3)
S1_K_S1	62 45 (2)	$S_{2} = C_{2} = K^{v}$	119 82 (14)
$S^{vi} K = S^{1v}$	72.06(2)	K^{viii}	160.38(10)
$N2^{ii}$ K $C1^{iv}$	71.53 (0)	K = 0.2 - K C1 N1 K^{ix}	100.50(10) 107.6(2)
$\frac{1}{1} \frac{1}{2} - \frac{1}{1} $	(1.33(7))	$C_1 = K_1 = K_1$	127.0(2)
$\frac{1}{1} - K - C I$	52.57(7)	\mathbf{V}_{1} \mathbf{V}_{1} \mathbf{V}_{1} \mathbf{V}_{1}	10.0(2)
$\frac{1}{1} - K - C $	10.90(7)	$\mathbf{x} = \mathbf{y} \mathbf{x}$	101.20(9) 140.2(2)
NZ - K - UI''	01.48 (8)	U_2 —IN2—K [*]	149.3 (3)

supporting information

C2 ^{vi} —K—C1 ^{iv}	138.43 (8)	C2—N2—K ^v	99.4 (3)
$C2^v$ — K — $C1^{iv}$	60.50 (7)	K^x — $N2$ — K^v	99.58 (13)

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) *x*-1/2, *y*+1/2, *z*; (iii) *x*+1/2, *y*+1/2, *z*; (iv) -*x*, -*y*+2, -*z*+1; (v) -*x*+1/2, -*y*+3/2, -*z*+1; (vi) -*x*+1/2, *y*+1/2, -*z*+1/2; (vii) -*x*+1/2, -*y*+1/2, -*z*+1/2; (ix) *x*-1/2, *y*-1/2, *z*; (x) *x*+1/2, *y*-1/2, *z*.