

Received 6 June 2017 Accepted 28 June 2017

Edited by G. S. Nichol, University of Edinburgh, Scotland

Keywords: crystal structure; α-diimines; 1,4-diaza-1,3-butadienes (DAD); palladium(II) complex; polymerization catalyst; unsymmetrical ligand; ligand synthesis.

CCDC reference: 1559154

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of unsymmetrical α-diimine palladium(II) complex cis-[{ArN=C(Me)-(Et)C=NAr}PdCl₂] [Ar = 2,6-(iPr)₂C₆H₃]

Shravan Kumar Ellandula,^a Cosmos Opoku Amoako,^a Joel T. Mague^b and Perumalreddy Chandrasekaran^a*

^aDepartment of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA, and ^bDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, LA 70118, USA. *Correspondence e-mail: chandru@lamar.edu

The unsymmetrical α -diimine ligand N-{2-[2,6-bis(propan-2-yl)phenylimino]-pentan-3-ylidene}-2,6-bis(propan-2-yl)aniline, [ArN=C(Me)-(Et)C=NAr] [Ar = 2,6-(iPr)₂C₆H₃], (I), and the corresponding palladium complex, *cis*-(N-{2-[2,6-bis(propan-2-yl)phenylimino]pentan-3-ylidene}-2,6-bis(propan-2-yl)aniline)-dichloridopalladium(II) 1,2-dichloroethane monosolvate, [PdCl₂(C₂₉H₄- N_2)]·C₂H₄Cl₂ or *cis*[PdCl₂[I]], (II), have been synthesized and characterized. The crystal and molecular structure of the palladium(II) complex have been established by single-crystal X-ray diffraction. The compound crystallized along with a 1,2-dichloroethane solvent of crystallization. The coordination plane of the Pd^{II} atom shows a slight tetrahedral distortion from square-planar, as indicated by the dihedral angle between the PdCl₂ and PdN₂ planes of 4.19 (8)°. The chelate ring is folded along the N···N vector by 7.1 (1)°.

1. Chemical context

 α -Diimines (or) 1,4-diaza-1,3-butadienes (DAD) are one of the most versatile classes of chelating nitrogen-donor ligands, and are well known to stabilize several transition metal complexes at various oxidation levels (Bart et al., 2005; Greene et al., 2014). Nickel and palladium complexes of α -diimines are reported to be effective catalysts for various olefin polymerization and co-polymerization reactions (Ittel et al., 2000). Furthermore, the polymer properties, topology and stability of these catalysts can be tuned by altering the steric and electronic properties of the α -diimine ligands (Gates *et al.*, 2000). These observations have motivated the synthesis of several nickel and palladium complexes with α -diimine ligands containing various substituents at the imine nitrogen atom (Nakamura et al., 2009). a-Diimine ligands may be conveniently prepared by condensation reactions between alkyl or aryl amine with 1,2-diketones. Most of the reported α -diimine ligands possess molecular C2 symmetry, while very few unsymmetrical α -diimine ligands, obtained by varying the substituents on the nitrogen atom, have been reported (Jeon & Kim, 2008). We report herein the synthesis and spectroscopic characterization of the unsymmetrical α -diimine ligand $[ArN=C(Et)-(Me)C=NAr], (I), [Ar = 2,6-i(Pr)_2C_6H_3]$ and the corresponding palladium complex cis-[PdCl₂{I}] (II), where the α -diimine ligand backbone contains methyl and ethyl substituents. The crystal structure of compound (II) has been established using single-crystal X-ray diffraction.

2. Structural commentary

The molecular structure of Pd^{II} complex (II), is presented in Fig. 1. Compound (II) crystallized along with a solvent molecule of 1,2-dichloroethane, which is disordered over the two crystallographic positions. The molecular structure of (II) revels the chelation of the α -diimine ligand to the palladium(II) atom. The Pd1-N1 and Pd1-N2 distances are 2.0280 (19) and 2.0200 (18) Å, respectively, and are in the typical range for palladium α -diimine complexes (Zou & Chen, 2016). The C1–C2 bond length is 1.492 (3) Å, which is slightly shorter than a standard C–C bond length (1.54 Å; Chandrasekaran et al., 2014), and similarly minimal elongation of the C1-N1 and C2-N2 bonds confirms the slight delocalization of the double bonds. As expected, the palladium(II) atom is in a distorted square-planar geometry, with an N2-Pd1-N1 angle of 79.01 (8) $^{\circ}$. The coordination plane shows a slight tetrahedral distortion from square-planar, as indicated by the dihedral angle between the Cl1-Pd1-Cl2 and N1-Pd1-N2 planes of $4.19 (8)^{\circ}$. The chelate ring is folded along the $N1 \cdots N2$ vector by 7.1 (1)°. The aryl substituents at N1 and N2 are nearly perpendicular to the metal-ligand plane, subtending dihedral angles of 81.82 (2)° (C6–C11 aryl ring) and 86.74 (2)° (C18-C23 aryl ring). The aryl substituents in square-planar α -diimine complexes are anticipated to lie perpendicular to the metal-ligand plane due to steric repulsion.

Figure 1

Perspective view of palladium complex (II) with displacement ellipsoids drawn at the 50% probability level. All H atoms and solvent molecule have been omitted for clarity.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3B\cdots Cl1^{i}$	0.98	2.67	3.604 (3)	160
$C4-H4A\cdots Cl1^{i}$	0.99	2.79	3.763 (3)	166
$C15-H15\cdots Cl4^{i}$	1.00	2.80	3.586 (3)	136
$C21 - H21 \cdots Cl1^{ii}$	0.95	2.74	3.633 (3)	156

Symmetry codes: (i) x + 1, y, z; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

3. Supramolecular features

In the crystal lattice, the components are linked through weak $C-H\cdots Cl$ hydrogen-bonding interactions between the complex and solvent molecule 1,2-dichloroethane (Table 1, Fig. 2).

4. Database survey

A search of the Cambridge Structure Database (Version 5.38 with updates Nov 2016; Groom *et al.*, 2016) confirmed that the Pd^{II} complex *cis*-[{ArN=C(Me)-(Et)C=NAr}PdCl₂] (Ar = 2,6-(iPr)₂C₆H₃) containing unsymmetrical α -diimine ligands has not previously been structurally characterized. However, the crystal structures of several Pd^{II} complexes containing symmetrical α -diimine ligands (IJONIE, Cope-Eatough *et al.*, 2003; FEGVOD, Coventry *et al.*, 2004; EBEXAK, Tempel *et al.*, 2006; APOFOC, Tian *et al.*, 2016; TABSOH, Chang *et al.*, 2016) have been reported. In all of these complexes, the Pd^{II} atom exhibits a slightly distorted square-planar geometry.

5. Synthesis and crystallization

Synthesis of [ArN=C(Me)-(Et)C=NAr] $[Ar = 2,6-(iPr)_2-C_6H_3]$ (I). A 100 mL round-bottom flask containing a magnetic bar was charged with 2,3-pentanedione (1 mL, 0.96 g, 9.6 mmol) and 2,6-disopropylaniline (4.0 mL, 3.76 g, 21.2 mmol). Over this, 50 mL of MeOH was added followed by a few drops of formic acid. The reaction mixture was heated to 343 K for 12 h. It was then cooled to room temperature and the solvent removed under reduced pressure. The resulting yellow pasty solid was dissolved in 15 mL of pentane and

Figure 2 Hydrogen-bonding interactions in the crystal lattice.

research communications

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$[PdCl_2(C_{29}H_{42}N_2)]\cdot C_2H_4Cl_2$
$M_{\rm r}$	694.90
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	8.7203 (12), 20.124 (3), 19.526 (3)
β (°)	100.405 (2)
$V(\dot{A}^3)$	3370.2 (8)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.89
Crystal size (mm)	$0.12\times0.07\times0.06$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2013)
T_{\min}, T_{\max}	0.75, 0.95
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	61138, 8905, 7064
$R_{\rm c}$	0.066
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.684
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.084, 1.02
No. of reflections	8905
No. of parameters	366
No. of restraints	3
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	1.05, -0.72

Computer programs: *APEX2* and *SAINT* (Bruker, 2013), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2013* (Sheldrick, 2015*b*), *Mercury* (Macrae *et al.*, 2006) and *SHELXTL* (Sheldrick, 2008).

stored at 248 K for 3 d, forming a yellow precipitate, which was isolated by filtration and then dried under vacuum, to afford the product as a yellow solid. Yield: 90% (3.63 g). ¹H NMR (CDCl₃): 1.08 (t, J = 7.8 Hz, 3H, CH₂CH₃), 1.15 (d, J = 6.8 Hz, 6H, iPr-CH₃), 1.20 (d, J = 6.8 Hz, 6H, iPr-CH₃), 1.30 (d, J = 6.7 Hz, 6H, iPr-CH₃), 1.46 (d, J = 6.7 Hz, 6H, iPr-CH₃), 2.05 (s, 3H, CH₃), 2.43 (q, J = 7.6 Hz, 2H, CH₂CH₃), 2.93 (sep, J = 6.7 Hz, 2H, iPr-CH), 3.05 (*sep*, J = 6.8 Hz, 2H, iPr-CH), 7.08–7.26 (m, 6H, Ar-H). IR (cm⁻¹): 2957 (m), 2926 (w), 2868 (w), 1631 (m), 1458 (w), 1433 (w), 1362 (m), 1323 (w), 1254 (w), 1183 (m), 1123 (m), 1056 (w), 934 (w), 792 (m), 761 (s), 688 (w). Analysis calculated for C₂₉H₄₂N₂; C, 83.20; H, 10.11; N, 6.69. Found: C, 83.35; H, 10.07; N, 6.72.

Growing X-ray quality crystals of thw ligand by slow evaporation from various solvents such as hexane, diethyl ether, dicholoromethane and toluene was unsuccessful.

Synthesis of *cis*[**PdCl**₂[**I**]] (**II**). A dichloromethane (10 mL) solution of [Pd(COD)Cl₂] (0.10 g, 0.35 mmol) was added dropwise to 5 mL dichloromethane solution of (I) (0.15 g, 0.35 mmol) at room temperature. The reaction mixture was stirred for 4 h to give a clear yellow solution. The solvent was removed under reduced pressure, and the resulting yellow solid was washed with 3×5 mL of pentane and dried *in vacuo*, affording a yellow powder as the product. Yield: 85% (0.17 g). ¹H NMR (CDCl₃): 1.08 (*t*, *J* = 7.8 Hz, 3H, CH₂CH₃), 1.20 (*d*, *J* = 6.7 Hz, 12H, iPr-CH₃), 1.52 (*d*, *J* = 6.7 Hz, 12H, iPr-CH₃), 2.05 (*s*, 3H, CH₃), 2.43 (*q*, *J* = 7.8 Hz, CH₂CH₃), 2.75 (*sep*, *J* = 6.8 Hz, 2H, iPr-CH), 2.93 (*sep*, *J* = 6.6 Hz, 2H, iPr-CH), 7.08–

7.24 (*m*, 6H, Ar-H). IR (cm⁻¹): 3031 (*w*), 2989 (*w*), 1523 (*m*), 1478 (*m*), 1448 (*w*), 1419 (*m*), 1341 (*s*), 1310 (*w*), 1247 (*w*), 1177 (*w*), 1088 (*m*), 994 (*s*), 906 (*m*), 865 (*s*), 823 (*m*), 791 (*s*), 767 (*m*). Analysis calculated for $C_{29}H_{42}N_2PdCl_2$; C, 58.44; H, 7.10; N, 4.70. Found: C, 58.86; H, 7.02; N, 4.94.

X-ray quality crystals of compound (II) were obtained by vapor diffusion of pentane over 1,2-dichloroethane solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H-atoms attached to carbon were placed in calculated positions (C–H = 0.95–1.00 Å). All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the parent atoms. The 1,2dichloroethane solvent molecule is disordered over two resolved sites in an 0.8596 (15):0.1404 (15) ratio. The minor component was refined with restraints that its geometry approximate that of the major component.

Acknowledgements

This work is funded in part by the Welch Foundation (V-0004). We thank Tulane University for support of the Tulane Crystallography Laboratory.

References

- Bart, S. C., Hawrelak, E. J., Lobkovsky, E. & Chirik, P. J. (2005). Organometallics, 24, 5518–5527.
- Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). *Inorg. Chem.* **53**, 9192–9205.
- Chang, Y.-C., Lee, Y.-C., Chang, M.-F. & Hong, F.-E. (2016). J. Organomet. Chem. 808, 23–33.
- Cope-Eatough, E. K., Mair, F. S., Pritchard, R. G., Warren, J. E. & Woods, R. J. (2003). *Polyhedron*, 22, 1447–1454.
- Coventry, D. N., Batsanov, A. S., Goeta, A. E., Howard, J. A. K. & Marder, T. B. (2004). *Polyhedron*, 23, 2789–2795.
- Gates, D. P., Svejda, S. A., Onate, E., Killian, C. M., Johnson, L. K., White, P. S. & Brookhart, M. (2000). *Macromolecules*, **33**, 2320– 2334.
- Greene, A. F., Chandrasekaran, P., Yan, Y., Mague, J. T. & Donahue, J. P. (2014). *Inorg. Chem.* **53**, 308–317.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Ittel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169–1204.
- Jeon, M. & Kim, S. Y. (2008). Polym. J. 40, 409-413.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Nakamura, A., Ito, S. & Nozaki, K. (2009). Chem. Rev. 109, 5215– 5244.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tempel, D. J., Johnson, L. K., Huff, R. L., White, P. S. & Brookhart, M. (2000). J. Am. Chem. Soc. 122, 6686–6700.
- Tian, J., He, X., Liu, J., Deng, X. & Chen, D. (2016). *RSC Adv.* 6, 22908–22916.
- Zou, W. & Chen, C. (2016). Organometallics, 35, 1794-1801.

supporting information

Acta Cryst. (2017). E73, 1148-1150 [https://doi.org/10.1107/S2056989017009616]

Crystal structure of unsymmetrical α -diimine palladium(II) complex cis-[{ArN&z-dbnd;C(Me)-(Et)C&z-dbnd;NAr}PdCl₂] [Ar = 2,6-(iPr)₂C₆H₃]

Shravan Kumar Ellandula, Cosmos Opoku Amoako, Joel T. Mague and Perumalreddy Chandrasekaran

Computing details

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

cis-(*N*-{2-[2,6-bis(propan-2-yl)phenylimino]pentan-3-ylidene}-2,6-bis(propan-2-yl)aniline)dichloridopalladium(II) 1,2-dichloroethane monosolvate

Crystal data [PdCl₂(C₂₉H₄₂N₂)]·C₂H₄Cl₂ $M_r = 694.90$ Monoclinic, $P2_1/c$ a = 8.7203 (12) Å b = 20.124 (3) Å c = 19.526 (3) Å $\beta = 100.405$ (2)° V = 3370.2 (8) Å³ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3660 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2013) $T_{\min} = 0.75, T_{\max} = 0.95$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.084$ S = 1.028905 reflections F(000) = 1440 $D_x = 1.370 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9868 reflections $\theta = 2.3-29.0^{\circ}$ $\mu = 0.89 \text{ mm}^{-1}$ T = 150 KBlock, orange $0.12 \times 0.07 \times 0.06 \text{ mm}$

61138 measured reflections 8905 independent reflections 7064 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{max} = 29.1^\circ, \ \theta_{min} = 2.0^\circ$ $h = -11 \rightarrow 11$ $k = -27 \rightarrow 27$ $l = -26 \rightarrow 26$

366 parameters3 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0262P)^2 + 4.3833P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta ho_{ m max} = 1.05 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω , collected at $\varphi = 0.00$, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ , collected at $\omega = -30.00$ and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The dichloroethane solvent molecule is disordered over two resolved sites in an 86:14 ratio. The minor component was refined with restraints that its geometry appoximate that of the major component.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Pd1	0.58521 (2)	0.59694 (2)	0.75141 (2)	0.01564 (5)	
C11	0.37729 (6)	0.66529 (3)	0.75421 (4)	0.02564 (14)	
C12	0.41985 (7)	0.51846 (3)	0.69488 (4)	0.03261 (16)	
N1	0.7481 (2)	0.66321 (9)	0.79623 (10)	0.0149 (4)	
N2	0.7819 (2)	0.54249 (9)	0.75778 (10)	0.0161 (4)	
C1	0.8916 (3)	0.64435 (11)	0.79990 (12)	0.0169 (4)	
C2	0.9110 (3)	0.57412 (11)	0.77849 (12)	0.0164 (4)	
C3	1.0301 (3)	0.68623 (12)	0.82792 (15)	0.0255 (5)	
H3A	0.9973	0.7326	0.8309	0.038*	
H3B	1.1064	0.6832	0.7969	0.038*	
H3C	1.0774	0.6704	0.8744	0.038*	
C4	1.0697 (3)	0.54369 (12)	0.78581 (13)	0.0219 (5)	
H4A	1.1408	0.5757	0.7690	0.026*	
H4B	1.0635	0.5036	0.7560	0.026*	
C5	1.1381 (4)	0.52428 (17)	0.86098 (18)	0.0447 (8)	
H5A	1.1389	0.5632	0.8912	0.067*	
H5B	1.2449	0.5081	0.8634	0.067*	
H5C	1.0742	0.4892	0.8764	0.067*	
C6	0.7112 (2)	0.72682 (11)	0.82331 (13)	0.0185 (5)	
C7	0.6592 (3)	0.72574 (13)	0.88714 (14)	0.0244 (5)	
C8	0.6266 (3)	0.78723 (15)	0.91504 (16)	0.0360 (7)	
H8	0.5945	0.7887	0.9590	0.043*	
C9	0.6403 (3)	0.84530 (15)	0.87975 (18)	0.0406 (8)	
H9	0.6177	0.8865	0.8995	0.049*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C10	0.6868 (3)	0.84447 (13)	0.81571 (17)	0.0341 (7)
H10	0.6935	0.8851	0.7917	0.041*
C11	0.7240 (3)	0.78526 (12)	0.78559 (14)	0.0228(5)
C12	0.6414 (3)	0.66100 (14)	0.92528 (14)	0.0305 (6)
H12	0.6311	0.6245	0.8900	0.037*
C13	0.7856 (4)	0.6460(2)	0.97959 (19)	0.0546 (9)
H13A	0.8762	0.6414	0.9567	0.082*
H13B	0.7698	0.6046	1.0037	0.082*
H13C	0.8037	0.6825	1.0134	0.082*
C14	0.4941 (4)	0.6598(2)	0.95766 (19)	0.0508 (9)
H14A	0.5043	0.6923	0.9956	0.076*
H14B	0.4802	0.6153	0.9760	0.076*
H14C	0.4034	0.6711	0.9221	0.076*
C15	0.7721(3)	0.78374(13)	0.71450(14)	0.0273 (6)
H15	0.8556	0 7494	0.7165	0.033*
C16	0.8396 (4)	0.84954 (16)	0.69451 (19)	0.033 0.0442(8)
H16A	0.7579	0.8836	0.6881	0.066*
H16R	0.8794	0.8439	0.6510	0.066*
H16C	0.9249	0.8634	0.7316	0.066*
C17	0.5219 0.6363(4)	0.76249 (16)	0.65765 (16)	0.0384(7)
H17A	0.5981	0.7189	0.6693	0.058*
H17B	0.6720	0.7598	0.6129	0.058*
H17C	0.5520	0.7952	0.6544	0.058*
C18	0.3320 0.7773(3)	0.7752 0.47125(11)	0.0511 0.74689(13)	0.038
C19	0.7886(3)	0.17129(11) 0.44508(12)	0.68145(14)	0.0137(5)
C20	0.7600(3) 0.7675(3)	0.37677(13)	0.60149(14) 0.67250(16)	0.0237(5) 0.0322(6)
H20	0.7749	0.3574	0.6289	0.039*
C21	0.7763(3)	0.33683(14)	0.0203 0.72531(18)	0.039
H21	0.7187	0.2906	0.7175	0.046*
C22	0.7304(3)	0.36388 (13)	0.78997(17)	0.0338(7)
H22	0.7125	0.3354	0.8266	0.041*
C23	0.7499(3)	0.3351 0.43164(12)	0.80260(14)	0.0233(5)
C24	0.8220(3)	0.48775(14)	0.60203(11) 0.62187(14)	0.0233(5) 0.0321(6)
Н24	0.8367	0.5346	0.6389	0.0321 (0)
C25	0.6367 0.6858 (4)	0.3310 0.4866 (2)	0.56041(18)	0.0575(10)
H25A	0.6683	0.4410	0.5433	0.086*
H25R	0.7103	0.5150	0.5230	0.086*
H25C	0.5916	0.5032	0.5250	0.086*
C26	0.9710	0.3052 0.46537(18)	0.57885(17)	0.000 0.0437(8)
H26A	1.0602	0.4699	0.6379	0.066*
H26R	0.9916	0.4931	0.5599	0.066*
H26C	0.9627	0.4188	0.5840	0.066*
C27	0.7369(3)	0 46004 (14)	0.87351 (15)	0.0303 (6)
H27	0.7809	0.5061	0.8761	0.036*
C28	0.8298(5)	0.4201(2)	0.93406 (19)	0.0575 (10)
H28A	0.7837	0.3757	0.9352	0.086*
H28B	0.8267	0.4430	0.9780	0.086*
H28C	0.9382	0.4159	0.9276	0.086*
	· · · · · · · · · · · · · · · · · · ·			

C29	0.5665 (4)	0.46518 (17)	0.88211 (18)	0.0448 (8)	
H29A	0.5082	0.4916	0.8439	0.067*	
H29B	0.5608	0.4867	0.9266	0.067*	
H29C	0.5212	0.4206	0.8813	0.067*	
C30	0.2422 (5)	0.6816 (2)	0.5728 (2)	0.0542 (11)	0.8596 (15)
H30A	0.3380	0.6585	0.5652	0.065*	0.8596 (15)
H30B	0.2716	0.7124	0.6126	0.065*	0.8596 (15)
C31	0.1302 (4)	0.63193 (19)	0.5906 (2)	0.0400 (8)	0.8596 (15)
H31A	0.1851	0.6022	0.6274	0.048*	0.8596 (15)
H31B	0.0916	0.6044	0.5490	0.048*	0.8596 (15)
C13	0.1657 (2)	0.72810(7)	0.49755 (7)	0.0786 (4)	0.8596 (15)
Cl4	-0.03082 (14)	0.66888 (7)	0.61983 (7)	0.0674 (4)	0.8596 (15)
C30A	0.221 (3)	0.6435 (9)	0.5775 (14)	0.0542 (11)	0.1404 (15)
H30C	0.1800	0.6054	0.5478	0.065*	0.1404 (15)
H30D	0.3091	0.6269	0.6127	0.065*	0.1404 (15)
C31A	0.0988 (15)	0.6665 (12)	0.6140 (9)	0.0400 (8)	0.1404 (15)
H31C	0.1251	0.7116	0.6330	0.048*	0.1404 (15)
H31D	0.0927	0.6364	0.6535	0.048*	0.1404 (15)
Cl3A	0.2944 (13)	0.7025 (4)	0.5251 (4)	0.0786 (4)	0.1404 (15)
Cl4A	-0.0833 (8)	0.6687 (4)	0.5576 (4)	0.0674 (4)	0.1404 (15)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	U ²³
Pd1	0.01196 (8)	0.01091 (8)	0.02380 (10)	-0.00011 (6)	0.00254 (6)	-0.00023 (7)
C11	0.0149 (2)	0.0192 (3)	0.0426 (4)	0.0026 (2)	0.0049 (2)	-0.0047 (3)
C12	0.0189 (3)	0.0178 (3)	0.0571 (5)	-0.0020(2)	-0.0040(3)	-0.0095 (3)
N1	0.0152 (8)	0.0123 (9)	0.0173 (9)	0.0000 (7)	0.0029 (7)	0.0009 (7)
N2	0.0143 (8)	0.0135 (9)	0.0212 (10)	0.0008 (7)	0.0046 (8)	0.0024 (8)
C1	0.0158 (10)	0.0155 (11)	0.0197 (11)	-0.0001 (8)	0.0038 (9)	0.0003 (9)
C2	0.0173 (10)	0.0144 (11)	0.0183 (11)	0.0005 (8)	0.0051 (9)	0.0013 (9)
C3	0.0163 (11)	0.0200 (12)	0.0392 (15)	-0.0007 (9)	0.0023 (11)	-0.0067 (11)
C4	0.0132 (10)	0.0201 (12)	0.0326 (14)	0.0021 (9)	0.0050 (10)	-0.0045 (10)
C5	0.0336 (16)	0.0442 (19)	0.053 (2)	0.0115 (14)	0.0008 (15)	0.0008 (16)
C6	0.0129 (10)	0.0150 (11)	0.0268 (13)	0.0009 (8)	0.0017 (9)	-0.0033 (9)
C7	0.0209 (11)	0.0260 (13)	0.0254 (13)	0.0028 (10)	0.0015 (10)	-0.0062 (10)
C8	0.0333 (14)	0.0381 (17)	0.0370 (16)	0.0069 (12)	0.0075 (13)	-0.0174 (13)
C9	0.0378 (16)	0.0240 (15)	0.059 (2)	0.0068 (12)	0.0051 (15)	-0.0209 (14)
C10	0.0300 (14)	0.0151 (13)	0.0554 (19)	0.0022 (10)	0.0026 (13)	-0.0025 (12)
C11	0.0172 (11)	0.0149 (11)	0.0347 (14)	0.0003 (9)	0.0003 (10)	0.0010 (10)
C12	0.0357 (14)	0.0342 (15)	0.0235 (13)	0.0018 (12)	0.0101 (12)	-0.0009 (11)
C13	0.049 (2)	0.068 (3)	0.045 (2)	0.0088 (18)	0.0030 (16)	0.0187 (18)
C14	0.0477 (19)	0.064 (2)	0.047 (2)	-0.0008 (17)	0.0233 (17)	0.0024 (17)
C15	0.0246 (12)	0.0206 (13)	0.0367 (15)	0.0009 (10)	0.0061 (11)	0.0094 (11)
C16	0.0363 (16)	0.0362 (18)	0.057 (2)	-0.0141 (13)	-0.0009 (15)	0.0167 (15)
C17	0.0381 (16)	0.0409 (18)	0.0355 (16)	-0.0128 (13)	0.0043 (13)	0.0061 (14)
C18	0.0136 (10)	0.0115 (10)	0.0310 (13)	0.0004 (8)	0.0026 (9)	-0.0005 (9)
C19	0.0219 (11)	0.0187 (12)	0.0298 (14)	0.0000 (9)	0.0026 (10)	-0.0052 (10)

supporting information

C20	0.0293 (13)	0.0214 (13)	0.0458 (18)	-0.0015 (11)	0.0062 (13)	-0.0126 (12)
C21	0.0302 (14)	0.0146 (13)	0.071 (2)	-0.0030 (11)	0.0135 (15)	-0.0070 (13)
C22	0.0282 (13)	0.0176 (13)	0.059 (2)	0.0010 (10)	0.0180 (13)	0.0119 (13)
C23	0.0165 (11)	0.0199 (12)	0.0344 (14)	0.0043 (9)	0.0069 (10)	0.0068 (10)
C24	0.0440 (16)	0.0282 (15)	0.0230 (13)	-0.0005 (12)	0.0034 (12)	-0.0029 (11)
C25	0.059 (2)	0.074 (3)	0.0342 (18)	0.009 (2)	-0.0053 (17)	0.0033 (18)
C26	0.0471 (18)	0.055 (2)	0.0325 (16)	-0.0054 (16)	0.0156 (15)	-0.0039 (15)
C27	0.0309 (14)	0.0307 (15)	0.0315 (15)	0.0014 (11)	0.0116 (12)	0.0090 (12)
C28	0.057 (2)	0.076 (3)	0.0402 (19)	0.017 (2)	0.0103 (17)	0.0219 (19)
C29	0.0393 (17)	0.047 (2)	0.054 (2)	0.0057 (14)	0.0258 (16)	0.0071 (16)
C30	0.048 (2)	0.069 (3)	0.045 (2)	-0.008 (2)	0.0088 (19)	-0.006 (2)
C31	0.048 (2)	0.034 (2)	0.036 (2)	0.0034 (17)	0.0031 (17)	-0.0031 (16)
C13	0.1267 (13)	0.0573 (8)	0.0562 (7)	-0.0177 (8)	0.0283 (8)	0.0119 (6)
Cl4	0.0621 (7)	0.0740 (8)	0.0735 (8)	0.0170 (6)	0.0320 (6)	0.0125 (7)
C30A	0.048 (2)	0.069 (3)	0.045 (2)	-0.008 (2)	0.0088 (19)	-0.006 (2)
C31A	0.048 (2)	0.034 (2)	0.036 (2)	0.0034 (17)	0.0031 (17)	-0.0031 (16)
Cl3A	0.1267 (13)	0.0573 (8)	0.0562 (7)	-0.0177 (8)	0.0283 (8)	0.0119 (6)
Cl4A	0.0621 (7)	0.0740 (8)	0.0735 (8)	0.0170 (6)	0.0320 (6)	0.0125 (7)

Geometric parameters (Å, °)

Pd1—N2	2.0200 (18)	C17—H17A	0.9800
Pd1—N1	2.0280 (19)	C17—H17B	0.9800
Pd1—Cl2	2.2840 (7)	C17—H17C	0.9800
Pd1—Cl1	2.2843 (6)	C18—C19	1.402 (3)
N1-C1	1.297 (3)	C18—C23	1.405 (3)
N1—C6	1.443 (3)	C19—C20	1.394 (4)
N2—C2	1.293 (3)	C19—C24	1.516 (4)
N2-C18	1.449 (3)	C20—C21	1.373 (4)
C1—C2	1.492 (3)	C20—H20	0.9500
C1—C3	1.493 (3)	C21—C22	1.384 (4)
C2—C4	1.497 (3)	C21—H21	0.9500
С3—НЗА	0.9800	C22—C23	1.391 (4)
С3—Н3В	0.9800	C22—H22	0.9500
С3—НЗС	0.9800	C23—C27	1.519 (4)
C4—C5	1.532 (4)	C24—C25	1.528 (4)
C4—H4A	0.9900	C24—C26	1.531 (4)
C4—H4B	0.9900	C24—H24	1.0000
С5—Н5А	0.9800	C25—H25A	0.9800
С5—Н5В	0.9800	C25—H25B	0.9800
C5—H5C	0.9800	C25—H25C	0.9800
С6—С7	1.401 (3)	C26—H26A	0.9800
C6-C11	1.403 (3)	C26—H26B	0.9800
C7—C8	1.402 (4)	C26—H26C	0.9800
C7—C12	1.522 (4)	C27—C29	1.529 (4)
С8—С9	1.373 (5)	C27—C28	1.535 (4)
С8—Н8	0.9500	C27—H27	1.0000
C9—C10	1.383 (4)	C28—H28A	0.9800

С9—Н9	0.9500	C28—H28B	0.9800
C10—C11	1.393 (4)	C28—H28C	0.9800
C10—H10	0.9500	С29—Н29А	0.9800
C11—C15	1.521 (4)	C29—H29B	0.9800
C12—C13	1.521 (4)	С29—Н29С	0.9800
C12—C14	1.531 (4)	C30—C31	1.482 (6)
C12—H12	1.0000	C30—Cl3	1.768 (5)
С13—Н13А	0.9800	С30—Н30А	0.9900
C13—H13B	0.9800	С30—Н30В	0.9900
C13—H13C	0.9800	C31—Cl4	1.772 (4)
C14—H14A	0.9800	С31—Н31А	0.9900
C14—H14B	0.9800	C31—H31B	0.9900
C14—H14C	0.9800	C30A—C31A	1.460 (8)
C15—C16	1.528 (4)	C30A—Cl3A	1.761 (6)
C15—C17	1 530 (4)	C30A - H30C	0 9900
С15—Н15	1 0000	C30A - H30D	0.9900
C16—H16A	0.9800	$C_{31}A - C_{14}A$	1 762 (5)
C16—H16B	0.9800	$C_{31}A = H_{31}C$	0.9900
C16—H16C	0.9800	$C_{31}A = H_{31}D$	0.9900
	0.9000		0.9900
N2—Pd1—N1	79.01 (8)	C15—C17—H17A	109.5
N2—Pd1—Cl2	96.29 (6)	C15—C17—H17B	109.5
N1—Pd1—Cl2	174.30 (5)	H17A—C17—H17B	109.5
N2—Pd1—Cl1	173.66 (6)	C15—C17—H17C	109.5
N1—Pd1—Cl1	95.21 (5)	H17A—C17—H17C	109.5
Cl2—Pd1—Cl1	89.62 (2)	H17B—C17—H17C	109.5
C1—N1—C6	121.05 (19)	C19—C18—C23	122.9 (2)
C1—N1—Pd1	115.15 (15)	C19—C18—N2	120.0 (2)
C6—N1—Pd1	123.80 (14)	C23—C18—N2	116.9 (2)
C2—N2—C18	122.18 (19)	C20—C19—C18	117.1 (2)
C2—N2—Pd1	115.72 (15)	C20—C19—C24	120.1 (2)
C18—N2—Pd1	121.80 (14)	C18—C19—C24	122.8 (2)
N1—C1—C2	114.7 (2)	C21—C20—C19	121.5 (3)
N1—C1—C3	124.3 (2)	C21—C20—H20	119.2
C2—C1—C3	120.83 (19)	C19—C20—H20	119.2
N2—C2—C1	114.69 (19)	C20—C21—C22	120.0 (3)
N2—C2—C4	124.5 (2)	C20—C21—H21	120.0
C1—C2—C4	120.7 (2)	C22—C21—H21	120.0
C1—C3—H3A	109.5	C_{21} — C_{22} — C_{23}	121.7 (3)
C1—C3—H3B	109.5	C21—C22—H22	119.2
H3A-C3-H3B	109.5	C23—C22—H22	119.2
C1 - C3 - H3C	109.5	$C_{22} = C_{23} = C_{18}$	116.8 (3)
H_{3A} $-C_{3}$ $-H_{3C}$	109.5	$C^{22} = C^{23} = C^{27}$	120.3(2)
H3B-C3-H3C	109.5	C18 - C23 - C27	120.3(2) 122.9(2)
$C_2 - C_4 - C_5$	112.9 (2)	C19-C24-C25	111.4(3)
C2—C4—H4A	109.0	C19—C24—C26	110.6 (2)
C5—C4—H4A	109.0	C_{25} C_{24} C_{26}	110.6(3)
C2—C4—H4B	109.0	C19—C24—H24	108.0

C5—C4—H4B	109.0	C25—C24—H24	108.0
H4A—C4—H4B	107.8	C26—C24—H24	108.0
С4—С5—Н5А	109.5	C24—C25—H25A	109.5
C4—C5—H5B	109.5	C24—C25—H25B	109.5
H_{5A} C_{5} H_{5B}	109.5	H25A—C25—H25B	109.5
C4-C5-H5C	109.5	C_{24} C_{25} H_{25}	109.5
H_{5A} C_{5} H_{5C}	109.5	$H_{25}^{-} = H_{25}^{-} = H_{$	109.5
H5B_C5_H5C	109.5	$H_{25R} = C_{25} = H_{25C}$	109.5
C7-C6-C11	100.5 123.3(2)	C_{24} C_{26} H_{26A}	109.5
C7 C6 N1	125.5(2) 116.2(2)	$C_{24} = C_{20} = H_{20}R$	109.5
$C_1 = C_0 = N_1$	110.2(2) 120.5(2)	H_{26}^{-} $H_{$	109.5
C6 C7 C8	120.3(2) 116.0(3)	1120A - C20 - 1120B	109.5
$C_{0} - C_{1} - C_{0}$	110.9(3)	1264 - 220 - 1120C	109.5
$C_{0} - C_{1} - C_{12}$	121.0(2)	$H_{20}A - C_{20} - H_{20}C$	109.5
C_{0}	121.3(2)	$H_{20} = C_{20} = H_{20} C_{20}$	109.5
C_{2}	120.9 (5)	$C_{23} = C_{27} = C_{29}$	111.0(2)
C9—C8—H8	119.5	$C_{23} = C_{27} = C_{28}$	112.8 (3)
C/C8H8	119.5	C29—C27—C28	109.8 (2)
C8—C9—C10	120.7 (3)	С23—С27—Н27	107.6
С8—С9—Н9	119.7	С29—С27—Н27	107.6
С10—С9—Н9	119.7	С28—С27—Н27	107.6
C9—C10—C11	121.4 (3)	C27—C28—H28A	109.5
C9—C10—H10	119.3	C27—C28—H28B	109.5
C11—C10—H10	119.3	H28A—C28—H28B	109.5
C10—C11—C6	116.7 (2)	C27—C28—H28C	109.5
C10—C11—C15	121.7 (2)	H28A—C28—H28C	109.5
C6—C11—C15	121.6 (2)	H28B—C28—H28C	109.5
C13—C12—C7	111.5 (3)	С27—С29—Н29А	109.5
C13—C12—C14	111.0 (3)	С27—С29—Н29В	109.5
C7—C12—C14	112.5 (2)	H29A—C29—H29B	109.5
C13—C12—H12	107.2	С27—С29—Н29С	109.5
С7—С12—Н12	107.2	H29A—C29—H29C	109.5
C14—C12—H12	107.2	H29B—C29—H29C	109.5
С12—С13—Н13А	109.5	C31—C30—C13	112.7 (3)
C12—C13—H13B	109.5	C31—C30—H30A	109.1
H13A—C13—H13B	109.5	Cl3—C30—H30A	109.1
C12—C13—H13C	109.5	C31—C30—H30B	109.1
H13A—C13—H13C	109.5	Cl3—C30—H30B	109.1
H13B—C13—H13C	109.5	H30A—C30—H30B	107.8
C12—C14—H14A	109.5	C30—C31—C14	112.7 (3)
C12—C14—H14B	109.5	C30—C31—H31A	109.0
H14A—C14—H14B	109.5	Cl4—C31—H31A	109.0
C12—C14—H14C	109.5	C30—C31—H31B	109.0
H_{14A} $-C_{14}$ $-H_{14C}$	109.5	Cl4—C31—H31B	109.0
H_{14B} C_{14} H_{14C}	109.5	$H_{31}A = C_{31} = H_{31}B$	107.8
C11-C15-C16	113 5 (2)	$C_{31}A - C_{30}A - C_{13}A$	1163(16)
C11-C15-C17	111 3 (2)	$C_{31}A - C_{30}A - H_{30}C$	108.2
C16-C15-C17	109.9 (2)	$C_{13}A - C_{30}A - H_{30}C$	108.2
C11_C15_H15	107.3	$C_{31} = C_{30} = H_{30}$	108.2
	10/.5		100.2

supporting information

C16—C15—H15 C17—C15—H15 C15—C16—H16A C15—C16—H16B H16A—C16—H16B C15—C16—H16C H16A—C16—H16C	107.3 107.3 109.5 109.5 109.5 109.5 109.5	Cl3A—C30A—H30D H30C—C30A—H30D C30A—C31A—Cl4A C30A—C31A—H31C Cl4A—C31A—H31C C30A—C31A—H31D Cl4A—C31A—H31D H31C C31A—H31D	108.2 107.4 111.0 (17) 109.4 109.4 109.4 109.4
H16B—C16—H16C	109.5	H31C—C31A—H31D	108.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H…A
C3—H3 <i>B</i> ···Cl1 ⁱ	0.98	2.67	3.604 (3)	160
C4—H4A···Cl1 ⁱ	0.99	2.79	3.763 (3)	166
C15—H15····Cl4 ⁱ	1.00	2.80	3.586 (3)	136
C21—H21…C11 ⁱⁱ	0.95	2.74	3.633 (3)	156

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*+1, *y*–1/2, –*z*+3/2.