

Received 27 June 2017 Accepted 13 July 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; pyrazole-quinoline; Schiff base ligands; zinc complex; synchrotron radiation.

CCDC reference: 1562057

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis{1-phenyl-3-methyl-4-[(quinolin-3-yl)iminomethyl- κN]-1*H*-pyrazol-5olato- κO }zinc methanol 2.5-solvate from synchrotron X-ray diffraction

Anatoliy S. Burlov,^a Valery G. Vlasenko,^b Pavel V. Dorovatovskii,^c Yan V. Zubavichus^c and Victor N. Khrustalev^d*

^aInstitute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachki Ave., Rostov-on-Don 344090, Russian Federation, ^bInstitute of Physics, Southern Federal University, 194 Stachki Ave., Rostov-on-Don 344090, Russian Federation, ^cNational Research Centre 'Kurchatov Institute', 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, and ^dInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation. *Correspondence e-mail: vnkhrustalev@gmail.com

The title compound, $[Zn(C_{20}H_{15}N_4O)_2] \cdot 2.5 CH_3 OH$, I, was synthesized via the reaction of zinc acetate with the respective ligand and isolated as a methanol solvate, *i.e.*, as **I**-2.5CH₃OH. The crystal structure is triclinic (space group *P*1), with two complex molecules (A and B) and five methanol solvent molecules in the asymmetric unit. One of the five methanol solvent molecules is disordered over two sets of sites, with an occupancy ratio of 0.75:0.25. Molecules A and B are conformers and distinguished by the conformations of the bidentate 1-phenyl-3-methyl-4-[(quinolin-3-yl)iminomethyl]-1*H*-pyrazol-5-olate ligands. In both molecules, the zinc cations have distorted tetrahedral coordination spheres, binding the monoanionic ligands through the pyrazololate O and imine N atoms. The two ligands adopt slightly different conformations in terms of the orientation of the terminal phenyl and quinoline substituents with respect to the central pyrazololate moiety. The molecular geometries of A and B are supported by intramolecular $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds. In the crystal of I, molecules form dimers both by secondary intermolecular Zn···O [3.140 (2)-3.553 (3) Å] and $\pi - \pi$ stacking interactions. The dimers are linked by intermolecular hydrogen bonds through the solvent methanol molecules into a three-dimensional network.

1. Chemical context

Zinc complexes of azomethine ligands with heterocyclic derivatives are the subject of significant interest owing to their

photo- (PL) and electro-luminescent (EL) properties (Burlov, Chesnokov et al., 2014; Burlov, Koshchienko et al., 2014;

OPEN 3 ACCESS

The structures of the molecular entities in 1.2.5CH₃OH. Molecules A and B are shown. Displacement ellipsoids are depicted at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed lines indicate intermolecular O-H···N hydrogen bonds.

Burlov *et al.*, 2015, 2016; Nikolaevskii *et al.*, 2014). The thermal stability, high vitrification temperatures, easy sublimation during deposition of thin amorphous films, variability of structures, relative synthetic affordability and electron-transfer characteristics of such zinc complexes make them good candidates for application as active layers for organic light-emitting diode (OLED) devices.

Comparison of the geometries of conformers A (magenta) and B (green dashed lines).

We report here a synthetic approach for the preparation of a new zinc complex based on an aminomethylene derivative of 1-phenyl-3-methyl-4-[(quinolin-3-yl)iminomethyl]-1H-pyrazol-5(4H)-one and 3-aminoquinoline, and its structural characterization by synchrotron single-crystal X-ray diffraction.

2. Structural commentary

Compound I, $[Zn(C_{20}H_{15}N_4O)_2]$, crystallizes in the triclinic space group $P\overline{1}$ with two complex molecules (*A* and *B*) and five methanol solvent molecules in the asymmetric unit, *i.e.*, as I-2.5CH₃OH, with one of the five methanol solvent molecules being disordered over two positions in a 0.75:0.25 ratio (Fig. 1). Complex molecules *A* and *B* are conformers and distinguished by the conformations of the bidentate 1-phenyl-3-methyl-4-[(quinolin-3-yl)iminomethyl]-1*H*-pyrazol-5-olate ligands.

The zinc cations of A and B in I are four-coordinated by two monoanionic O,N-chelating ligands, which bind to the cation through pyrazololate O and imine N atoms. The coordination sphere around each zinc cation can be described as distorted tetrahedral [the bond-angle ranges are 94.83 (8)–121.00 (8) and 95.73 (8)–118.36 (10)° for molecules A and B, respectively], with dihedral angles between the planar six-membered chelating rings (r.m.s. deviations are 0.031/0.021 and 0.017/ 0.033 Å for molecules A and B, respectively) of 82.97 (7) and 84.52 (7)° for molecules A and B, respectively.

The four pyrazololate ligands in molecules A and B of I adopt different conformations. The main difference pertains to the twist angles of the terminal phenyl and quinoline

research communications

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C5 115 4 05 ¹	0.09	2.42	2,212,(4)	140
$C_3 = H_3 A \cdots O_3$	0.98	2.45	5.512 (4)	149
$C6-H6\cdots O2$	0.95	2.25	3.148 (4)	157
$C23-H23\cdots O6^{ii}$	0.95	2.31	3.260 (3)	179
C46-H46···N13	0.95	2.56	3.368 (3)	144
C66-H66···O3	0.95	2.46	3.344 (4)	155
$C68-H68O9^{iii}$	0.95	2.40	3.334 (4)	170
$O5-H5O\cdots N3^{iv}$	0.91	2.10	2.977 (4)	164
$O6-H6O\cdots N4$	0.91	1.92	2.830 (3)	175
O7−H7O···N8	0.91	2.10	2.993 (4)	168
O7′−H7 <i>OA</i> ···N8	0.90	1.89	2.794 (10)	179
$O8-H8O\cdots N12^{v}$	0.91	1.91	2.816 (3)	173
O9−H9O···O8	0.90	1.73	2.622 (3)	170
$C85-H85C\cdots O9^{vi}$	0.98	2.46	3.340 (4)	150

Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z; (iv) x, y, z - 1; (v) x + 1, y, z; (vi) -x + 2, -y, -z.

substituents relative to the central iminomethyl-1*H*-pyrazol-5olate fragment. In molecule *A* (Fig. 2), the corresponding angles are 20.40 (13) and 25.34 (8)° for the phenyl groups, and 37.02 (5) and 52.57 (7)° for the quinoline substituents, whereas in molecule *B*, these angles are 15.03 (13) and 8.24 (11)° for the phenyl groups, and 27.47 (10) and 26.08 (6)° for the quinoline substituents. Thus, one of the two 1-phenyl-3-methyl-4-[(quinolin-3-yl)iminomethyl]-1*H*-pyrazol-5-olate ligands in molecule *B* is flattened, while one of the two pyrazololate ligands in molecule *A* is substantially twisted (Fig. 3). The molecular conformation observed for **I** is supported by weak intramolecular hydrogen bonds: C6–H6···O2 in molecule *A* and C66–H66···O3 and C46–H46···N13 in molecule *B* (Table 1).

3. Supramolecular features

In the crystal of I, molecules form robust dimers both by intermolecular secondary $Zn \cdots O$ interactions $[Zn1 \cdots O3 =$

Synthesis scheme to obtain zinc complex **I**.

3.386(2) Å, $Zn1 \cdots O4 = 3.279(3)$ Å, $Zn2 \cdots O1 = 3.553(3)$ Å and $Zn2\cdots O2 = 3.140$ (2) Å] and $\pi - \pi$ stacking interactions between the O2/N5/N6/N7/C21-C24 and O4/N13/N14/N15/ C61-C64 imino-methyl-pyrazolonate fragments {the shortest distances are N6···C63 [3.083 (3) Å], C21···C62 [3.210 (4) Å], C24···C64 [3.216 (4) Å], C21···C61 [3.261 (3) Å], N14···C23 [3.293 (4) Å], C22···C61 [3.297 (4) Å], N6···C62 [3.319 (3) Å] and N14···C22 [3.362 (3) Å]}, as well as phenyl and pyridine rings [the $Cg1 \cdots Cg2$ distance is 3.330 (6) Å, where Cg1 is the centroid of the C35-C40 phenyl ring and Cg2 is the centroid of the N16/C66-C69/C74 pyridine ring] (Fig. 4). The dimers are bound to each other by intermolecular $C-H\cdots\pi$ hydrogen bonds [the strongest is $C17 - H17 \cdots Cg3^{vii}$ ($H \cdots Cg3^{vii}$ = 2.48 Å and C-H···Cg3^{vii} = 169°), where Cg3^{vii} is the centroid of the C69^{vii}–C74^{vii} benzene ring; symmetry code: (vii) -x, -y, -z + 1] and $\pi - \pi$ stacking interactions {the shortest distances are between the C75-C80 and C75^{viii}-C80^{viii} phenyl rings $[C75 \cdots C79^{viii} = 3.196 (4) \text{ Å and } C80 \cdots C80^{viii} = 3.279 (4) \text{ Å}];$ symmetry code: (viii) -x, -y + 1, -z + 1}, as well as C-H···O and N···H-O hydrogen bonds involving the solvent methanol molecules (Table 1), forming a three-dimensional network.

Figure 4 The crystal packing of the dimers present in **I**. Dashed lines indicate intermolecular secondary $Zn \cdots O$ interactions.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$[Zn(C_{20}H_{15}N_4O)_2] \cdot 2.5CH_4O$
$M_{ m r}$	800.20
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	15.569 (3), 16.994 (3), 17.035 (3)
α, β, γ (°)	111.56 (3), 114.71 (3), 96.30 (3)
$V(\dot{A}^3)$	3618.1 (16)
Z	4
Radiation type	Synchrotron, $\lambda = 0.96990$ Å
$\mu (\text{mm}^{-1})$	1.68
Crystal size (mm)	$0.20 \times 0.12 \times 0.07$
Data collection	
Diffractometer	Rayonix SX165 CCD
Absorption correction	Multi-scan (SCALA; Evans, 2006)
T_{\min}, T_{\max}	0.730, 0.880
No. of measured, independent and	48608, 15616, 12285
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.055
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.682
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.152, 1.10
No. of reflections	15616
No. of parameters	1020
No. of restraints	9
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	1.03, -1.00

Computer programs: *Marced* (Doyle, 2011), *iMosflm* (Battye et al., 2011), *SHELXT* (Sheldrick, 2015a), *SHELXL2014* (Sheldrick, 2015b) and *SHELXTL* (Sheldrick, 2008).

4. Synthesis and crystallization

4.1. 1-Phenyl-3-methyl-4-[(quinolin-3-imino)methyl]-1*H*-pyrazol-5(4*H*)-one

A solution containing 1.44 g (0.01 mol) of 3-aminoquinoline in 10 ml of toluene was added to a solution of 2.02 g (0.01 mol) of 1-phenyl-3-methyl-4-formylpyrazol-5-one in 20 ml of toluene. The mixture was refluxed for 3 h with a Dean-Stark trap until water stripping was completed. Subsequently, twothirds of the total volume was distilled off on a rotary evaporator. The precipitate which formed was filtered off and recrystallized from ethanol to give light-yellow crystals (m.p. 473–474 K; yield 84%). FT–IR in KBr (ν_{max} , cm⁻¹): 1664 ν (C=O), 1627 δ (NH). ¹H NMR (600 MHz, DMSO- d_6 , 300 K): δ 2.31 (3H, s, CH₃), 7.08-8.03 (9H, m, C_{Ar-H}), 8.52 (1H, s, H^{4}_{quin}), 8.89 (1H, d, J^{3} = 2.7 Hz, CH–NH), 11.46 (1H, br d, J^{3} = 2.7 Hz, CH-NH). UV-vis spectrum (nm): 232, 254, 358. PL spectrum (nm): $\lambda_{PL} = 454, 534, \lambda_{ex} = 450$ nm. Quantum yield of PL φ = 0.002. Analysis calculated for C₂₀H₁₆N₄O: C 73.15, H 4.91, N 17.06%; found: C 73.25, H 5.10, N 17.18%.

4.2. Bis{1-phenyl-3-methyl-4-[(quinolin-3-yl)iminomethyl]-1*H*-pyrazol-5-olato}zinc, (I)

A hot solution of 0.22 g of zinc acetate dihydrate (1 mmol) in 20 ml of methanol was added to hot solutions of I (0.66 g, 2 mmol) in 20 ml of the same solvent (Fig. 5). The reaction mixture was refluxed for 2 h. The precipitates of complexes were filtered off, washed three times with 10 ml of hot

methanol and dried *in vacuo*. All products were crystallized from a chloroform–methanol (1:2 ν/ν) mixture and dried at 423 K, resulting in a yellow crystalline powder (m.p. 483– 484 K, yield 45%). FT–IR (ν_{max} , cm⁻¹): 1608 ν (C=N). ¹H NMR (600 MHz, DMSO- d_6 , 300 K): δ 2.25 (6H, *s*, CH₃), 6.99– 8.92 (22H, *m*, CH), 8.46 (2H, *s*, HC=N). UV–vis (nm): 360, 340, 304. PL (nm): λ_{PL} = 478, λ_{ex} = 450 nm. Analysis calculated for C₄₀H₃₀N₈O₂Zn: C 66.72, H 4.20, N 15.56%; found: C 66.78, H 4.25, N 15.64, Zn 9.11%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

The X-ray diffraction study was carried out on the 'Belok' beamline of the National Research Center 'Kurchatov Institute' (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. A total of 360 images were collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the *Scala* program (Evans, 2006). The data were indexed, integrated and scaled using the utility *iMOSFLM* in the CCP4 program (Battye *et al.*, 2011).

The data completeness of 97.8% is caused by the low (triclinic) crystal symmetry. It is very difficult to get a high data completeness for this symmetry using the φ scan mode only ('Belok' beamline limitation), even though we have run two different crystal orientations.

A rather large number of reflections have been omitted from refinement due to the following reasons. (i) In order to achieve better I/σ statistics for high-angle reflections, we selected an exposure time so as to admit a minor fraction of intensity overloads in the low-angle part of the detector. These low-angle reflections have imprecisely measured intensities and thus were excluded from the final steps of refinement. (ii) In the present set-up of the synchrotron diffractometer, the low-temperature device eclipses a small region of the 2D detector near the high-angle limit. This small shadowed region has not been masked during integration of the diffraction frames, which erroneously resulted in zero intensity of some reflections. (iii) The quality of the single crystal chosen for the diffraction experiment was not perfect. Some systematic differences between the calculated and observed intensities are probably caused by extinction and defects present in the crystal specimen.

The H atoms of the hydroxy groups were localized from difference Fourier maps and included in a riding mode, with fixed displacement parameters $[U_{iso}(H) = 1.5U_{eq}(O)]$. All other H atoms were placed in calculated positions, with C-H = 0.95-0.98 Å, and refined in a riding mode, with fixed isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C)$ for the CH₃ groups and $1.2U_{eq}(C)$ for the other groups]. Disorder over two sets of sites was observed for one methanol solvent molecule (atoms O7–C83). In the last cycles of refinement, the occupancy ratio was fixed at 0.75:0.25 and each of the non-H atoms was modelled with a common displacement ellipsoid.

Funding information

Funding for this research was provided by: Ministry of Education and Science of the Russian Federation (Base state program No. 4.5388.2017/8.9). This work was supported financially in part by the Ministry of Education and Science of the Russian Federation (the Agreement number 02.a03.21.0008).

References

- Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). *Acta Cryst.* D67, 271–281.
- Burlov, A. S., Chesnokov, V. V., Vlasenko, V. G., Garnovskii, D. A., Mal'Tsev, E. I., Dmitriev, A. V., Lypenko, D. A., Borodkin, G. S. & Revinskii, Y. V. (2014). *Russ. Chem. Bull.* 63, 1753–1758.

- Burlov, A. S., Koshchienko, Y. V., Kiskin, M. A., Nikolaevskii, S. A., Garnovskii, D. A., Lermontov, A. S., Makarova, N. I., Metelitsa, A. V. & Eremenko, I. L. (2016). J. Mol. Struct. 1104, 7–13.
- Burlov, A. S., Koshchienko, Yu. V., Vlasenko, V. G., Zubenko, A. A., Kiskin, M. A., Dmitriev, A. V., Mal'tsev, E. I., Lypenko, D. A., Nikolaevskii, S. A. & Garnovskii, D. A. (2014). *Russ. J. Coord. Chem.* 40, 531–538.
- Burlov, A. S., Vlasenko, V. G., Dmitriev, A. V., Chesnokov, V. V., Uraev, A. I., Garnovskii, D. A., Zubavichus, Y. V., Trigub, A. L., Vasilchenko, I. S., Lypenko, D. A., Mal'Tsev, E. I., Lifintseva, T. V. & Borodkin, G. S. (2015). *Synth. Met.* **203**, 156–163.
- Doyle, R. A. (2011). Marccd. Rayonix LLC, Evanston, IL 60201, USA.
- Evans, P. (2006). Acta Cryst. D62, 72-82.
- Nikolaevskii, S. A., Koshchienko, Y. V., Chernyshev, A. V., Burlov, A. S., Cheprasov, A. S., Aleksandrov, G. G., Kiskin, M. A. & Metelitsa, A. V. (2014). *Russ. J. Coord. Chem.* **40**, 468–472.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Acta Cryst. (2017). E73, 1208-1212 [https://doi.org/10.1107/S2056989017010441]

Crystal structure of bis{1-phenyl-3-methyl-4-[(quinolin-3-yl)iminomethyl- κN]-1*H*-pyrazol-5-olato- κO }zinc methanol 2.5-solvate from synchrotron X-ray diffraction

Anatoliy S. Burlov, Valery G. Vlasenko, Pavel V. Dorovatovskii, Yan V. Zubavichus and Victor N. Khrustalev

Computing details

Data collection: Marced (Doyle, 2011); cell refinement: iMosflm (Battye *et al.*, 2011); data reduction: iMosflm (Battye *et al.*, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Bis{1-phenyl-3-methyl-4-[(quinolin-3-yl)iminomethyl-ĸN]-1H-pyrazol-5-olato-ĸO}zinc methanol 2.5-solvate

Crystal data $[Zn(C_{20}H_{15}N_4O)_2] \cdot 2.5CH_4O$ $M_r = 800.20$ Triclinic, $P\overline{1}$ a = 15.569 (3) Å b = 16.994 (3) Å c = 17.035 (3) Å a = 111.56 (3)° $\beta = 114.71$ (3)° $\gamma = 96.30$ (3)° V = 3618.1 (16) Å³ Data collection Rayonix SX165 CCD

diffractometer /f scan Absorption correction: multi-scan (SCALA; Evans, 2006) $T_{min} = 0.730, T_{max} = 0.880$ 48608 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.152$ S = 1.1015616 reflections Z = 4 F(000) = 1668 $D_x = 1.469 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.96990 \text{ Å}$ Cell parameters from 600 reflections $\theta = 3.3-33.0^{\circ}$ $\mu = 1.68 \text{ mm}^{-1}$ T = 100 KPrism, yellow $0.20 \times 0.12 \times 0.07 \text{ mm}$

15616 independent reflections 12285 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 41.5^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -19 \rightarrow 21$ $k = -21 \rightarrow 21$ $l = -20 \rightarrow 20$

1020 parameters
9 restraints
Primary atom site location: difference Fourier map
Secondary atom site location: difference Fourier map

Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0757P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.03$ e Å⁻³

Special details

$$\begin{split} &\Delta \rho_{\min} = -1.00 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL2014} \\ &\text{(Sheldrick, 2015b),} \\ &\text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ &\text{Extinction coefficient: } 0.0043 \text{ (4)} \end{split}$$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	0.37780 (2)	0.39436 (2)	0.67054 (2)	0.02024 (11)	
01	0.29175 (13)	0.38716 (12)	0.72004 (13)	0.0238 (4)	
02	0.35484 (12)	0.29575 (11)	0.54978 (13)	0.0209 (4)	
N1	0.49660 (15)	0.40526 (14)	0.78587 (16)	0.0205 (5)	
N2	0.26374 (15)	0.36528 (14)	0.83484 (16)	0.0214 (5)	
N3	0.31383 (16)	0.36130 (14)	0.92341 (16)	0.0218 (5)	
N4	0.66016 (16)	0.38308 (14)	0.69054 (17)	0.0243 (5)	
N5	0.37862 (15)	0.49341 (13)	0.63202 (16)	0.0206 (5)	
N6	0.34901 (15)	0.25383 (13)	0.39951 (16)	0.0207 (5)	
N7	0.34356 (16)	0.29006 (14)	0.33570 (16)	0.0231 (5)	
N8	0.36736 (15)	0.67970 (14)	0.82180 (16)	0.0232 (5)	
C1	0.32160 (18)	0.38125 (16)	0.80065 (19)	0.0192 (5)	
C2	0.41154 (18)	0.38661 (16)	0.86662 (19)	0.0194 (5)	
C3	0.49342 (18)	0.39740 (15)	0.85906 (19)	0.0207 (5)	
H3	0.5531	0.3996	0.9094	0.025*	
C4	0.40116 (19)	0.37385 (16)	0.94125 (19)	0.0215 (5)	
C5	0.4747 (2)	0.37338 (18)	1.0299 (2)	0.0272 (6)	
H5A	0.4439	0.3699	1.0688	0.041*	
H5B	0.5311	0.4282	1.0679	0.041*	
H5C	0.4981	0.3218	1.0123	0.041*	
C6	0.58466 (19)	0.37789 (17)	0.6995 (2)	0.0229 (6)	
H6	0.5220	0.3447	0.6420	0.028*	
C7	0.58503 (18)	0.41789 (16)	0.7891 (2)	0.0208 (5)	
C8	0.66931 (19)	0.46668 (17)	0.8722 (2)	0.0242 (6)	
H8	0.6705	0.4938	0.9325	0.029*	
C9	0.75239 (19)	0.47558 (16)	0.8663 (2)	0.0253 (6)	
C10	0.8428 (2)	0.52813 (18)	0.9490 (2)	0.0320 (7)	
H10	0.8479	0.5562	1.0110	0.038*	
C11	0.9204 (2)	0.53763 (19)	0.9387 (3)	0.0361 (7)	
H11	0.9835	0.5743	0.9942	0.043*	
C12	0.9134 (2)	0.4946 (2)	0.8465 (3)	0.0356 (7)	
H12	0.9724	0.5032	0.8423	0.043*	
C13	0.8272 (2)	0.44248 (19)	0.7652 (2)	0.0296 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H13	0.8239	0.4137	0.7040	0.036*
C14	0.74590 (18)	0.43292 (16)	0.7742 (2)	0.0229 (6)
C15	0.16479 (18)	0.34483 (16)	0.7905 (2)	0.0219 (5)
C16	0.1179 (2)	0.30312 (17)	0.8231 (2)	0.0267 (6)
H16	0.1545	0.2903	0.8750	0.032*
C17	0.0215 (2)	0.28156 (18)	0.7807 (2)	0.0302 (6)
H17	-0.0139	0.2528	0.8016	0.036*
C18	-0.0290(2)	0.30057 (19)	0.7053 (2)	0.0326(7)
H18	-0.0996	0.2835	0.6744	0.039*
C19	0.0175 (2)	0.3428 (2)	0.6730 (2)	0.0368 (7)
H19	-0.0196	0.3552	0.6208	0.044*
C20	0.1150 (2)	0.3659(2)	0.7157(2)	0.0325(7)
H20	0 1504	0 3962	0.6960	0.039*
C21	0.35394(17)	0.31461(16)	0.48261(19)	0.0199(5)
C22	0.35634(18)	0.39531(16)	0.4747(2)	0.0199(5)
C23	0.36918 (18)	0.57551(10) 0.47910(16)	0.4747(2) 0.5466(2)	0.0208(5)
H23	0.3711	0.5281	0.5324	0.025*
C24	0.34803 (19)	0.37380(17)	0.3524 0.3816 (2)	0.023
C25	0.34803(19)	0.37300(17) 0.43470(18)	0.3360(2)	0.0223(5)
U25 A	0.3440(2)	0.452	0.3300 (2)	0.0293 (0)
H25R	0.4054	0.4652	0.3772	0.044
H25C	0.2309	0.4505	0.3294	0.044
C26	0.3371 0.34080 (18)	0.4022 0.60058 (17)	0.2717 0.75200 (10)	0.044
U20	0.34380 (18)	0.00038 (17)	0.73209 (19)	0.0221(3)
H20	0.2977	0.5524	0.7550 0.70177(10)	0.020°
C27	0.40120(18) 0.47248(10)	0.58290(10)	0.70177(19)	0.0198(5)
C28	0.47548 (19)	0.03111(10)	0.7238 (2)	0.0252 (0)
H28	0.5102	0.0431 0.72(72)(17)	0.0924	0.028^{*}
C29	0.49628 (19)	0.73073(17)	0.8020(2)	0.0243 (6)
C30	0.5750(2)	0.80897 (18)	0.8300 (2)	0.0309 (6)
H30	0.0145	0.8038	0.8039	0.037^{*}
C31	0.5984 (2)	0.88879(19)	0.9149 (2)	0.0339(7)
H31	0.6544	0.9367	0.9376	0.041*
C32	0.5434 (2)	0.90042 (18)	0.9601 (2)	0.0300 (6)
H32	0.5604	0.9556	1.0141	0.036*
C33	0.4658 (2)	0.83314 (18)	0.9272 (2)	0.0266 (6)
H33	0.4254	0.8410	0.9568	0.032*
C34	0.44091 (18)	0.74835 (17)	0.84777 (19)	0.0219 (5)
C35	0.35835 (18)	0.16739 (16)	0.3774 (2)	0.0236 (6)
C36	0.3223 (2)	0.10542 (17)	0.2805 (2)	0.0287 (6)
H36	0.2895	0.1205	0.2295	0.034*
C37	0.3349 (2)	0.02128 (19)	0.2594 (3)	0.0363 (7)
H37	0.3116	-0.0207	0.1940	0.044*
C38	0.3812 (2)	-0.00050 (19)	0.3338 (3)	0.0392 (8)
H38	0.3894	-0.0578	0.3194	0.047*
C39	0.4160 (2)	0.06077 (19)	0.4293 (3)	0.0366 (7)
H39	0.4474	0.0446	0.4797	0.044*
C40	0.4059 (2)	0.14537 (18)	0.4529 (2)	0.0297 (6)
H40	0.4306	0.1872	0.5187	0.036*

Zn2	0.14334 (2)	0.19055 (2)	0.49603 (2)	0.02038 (11)
03	0.25041 (12)	0.18339 (12)	0.59848 (13)	0.0232 (4)
O4	0.14119 (13)	0.30882 (11)	0.50551 (13)	0.0220 (4)
N9	0.03944 (15)	0.14139 (13)	0.51630 (16)	0.0200 (4)
N10	0.30601 (15)	0.14766 (13)	0.72752 (16)	0.0199 (4)
N11	0.27194 (15)	0.11814 (14)	0.77823 (16)	0.0216 (5)
N12	-0.16119(16)	0.13409 (14)	0.30661 (17)	0.0251 (5)
N13	0.13225 (15)	0.12821 (14)	0.36285 (16)	0.0209 (5)
N14	0.12460(15)	0.39837(14)	0.42710 (16)	0.0223(5)
N15	0 11355 (16)	0.39342(15)	0.33822(17)	0.0227(5)
N16	0.20286 (16)	-0.07021(15)	0.36424(18)	0.0273(5)
C41	0.23629(18)	0.15527(15)	0.65373(19)	0.0273(5)
C42	0.15239(18)	0.12527(15) 0.12730(16)	0.65418(19)	0.0202(5)
C43	0.06198(18)	0.12112 (16)	0.05110(19) 0.58986(19)	0.0193(5)
е 13 H43	0.00190 (10)	0.1001	0.5972	0.0213 (5)
C44	0.18157(18)	0.10603 (16)	0.33460(19)	0.020
C45	0.10137(10) 0.1212(2)	0.07455(18)	0.75400(1))	0.0202(5)
H45A	0.1212 (2)	0.07455 (18)	0.8194	0.0298 (0)
H45R	0.0654	0.0219	0.7147	0.039*
H45C	0.0054	0.1215	0.7960	0.039*
C46	-0.07672(19)	0.1213 0.14521(17)	0.7700	0.037 (6)
H46	-0.0211	0.1649	0.3674	0.0237 (0)
C47	-0.05610(18)	0.13132 (16)	0.3074 0.45597 (19)	0.020
C48	-0.12988(18)	0.10132(10) 0.10836(16)	0.4694(2)	0.0202(5)
H48	-0.1192	0.10050 (10)	0.5254	0.0221 (3)
C49	-0.22218(18)	0.09481 (16)	0.3234	0.027 0.0217(5)
C50	-0.30175(10)	0.05401(10) 0.06775(17)	0.37702(17)	0.0217(5)
H50	-0.2944	0.0598	0.4623	0.0208 (0)
C51	-0.38957(19)	0.0590	0.3365(2)	0.032
H51	-0.4469	0.0330	0.3396	0.0289 (0)
C52	-0.4029(2)	0.06606 (18)	0.2548(2)	0.0301 (6)
U52 Н52	-0.4683	0.0544	0.2040 (2)	0.036*
C53	-0.32737(19)	0.09351 (18)	0.2054 0.2461 (2)	0.030
U53	-0.3362	0.1030	0.1920	0.0209 (0)
C54	-0.23574(19)	0.1030	0.1920 0.3178 (2)	0.032
C55	0.23574(17) 0.40251(16)	0.16565 (15)	0.5170(2) 0.75695(15)	0.0230(0) 0.0203(5)
C56	0.46266(15)	0.10303(13) 0.17187(18)	0.75075(17) 0.84735(17)	0.0205 (5)
U50 H56	0.4358	0.1625	0.8852	0.0270(0)
C57	0.56265 (16)	0.1025	0.8092 0.8796 (2)	0.033 0.0332(7)
H57	0.50205 (10)	0.1922 (2)	0.9418	0.0332 (7)
C58	0.59480 (18)	0.1990	0.81881 (16)	0.040
H58	0.6642	0.20233 (18)	0.8411	0.0254 (0)
C59	0.53357(15)	0.19451 (16)	0.72805(17)	0.035
H59	0.55557 (15)	0.2021	0.6894	0.0271(0)
C60	0.3374(15)	0.2021 0.17540 (17)	0.69502 (18)	0.022
H60	0 3883	0.1692	0.6331	0.0299(0)
C61	0 12851 (17)	0.1092	0.0331	0.02°
C62	$0.12001(17) \\ 0.11800(18)$	0.26028 (16)	0.34075 (10)	0.0210(3)
002	0.11070(10)	0.20020(10)	0.34073(17)	0.0209(3)

C63	0.12335 (18)	0.17260 (17)	0.3114 (2)	0.0224 (5)
H63	0.1197	0.1429	0.2502	0.027*
C64	0.11014 (19)	0.31161 (17)	0.2881 (2)	0.0245 (6)
C65	0.0995 (2)	0.28071 (19)	0.1886 (2)	0.0313 (6)
H65A	0.0934	0.3288	0.1700	0.047*
H65B	0.0399	0.2288	0.1414	0.047*
H65C	0.1583	0.2644	0.1897	0.047*
C66	0.18713 (19)	0.00784(17)	0.3892(2)	0.0245 (6)
H66	0.2111	0.0450	0.4562	0.029*
C67	0.13683 (18)	0.03949 (16)	0.3224(2)	0.0215 (5)
C68	0.09663 (19)	-0.01641(17)	0.2251(2)	0.0243(6)
H68	0.0575	0.0010	0.1782	0.029*
C69	0.0375 0.11342(18)	-0.10023(17)	0.1943(2)	0.0233 (6)
C70	0.0797(2)	-0.15916(18)	0.0951(2)	0.0297 (6)
H70	0.0413	-0.1440	0.0458	0.036*
C71	0.0119 0.1020(2)	-0.23704(19)	0.0701(2)	0.0313 (6)
U71 Н71	0.0797	-0.2756	0.0039	0.038*
C72	0.0797 0.1582 (2)	-0.25962(17)	0.0039 0.1430 (2)	0.0299 (7)
С72 H72	0.1737	-0.3138	0.1456 (2)	0.0255 (7)
C73	0.19092 (19)	-0.20465(17)	0.1230 0.2388(2)	0.0271 (6)
U73	0.12022 (12)	-0.2213	0.2366 (2)	0.0271 (0)
C74	0.16926 (18)	-0.12328(17)	0.2609	0.032
C75	0.10920(18) 0.13075(18)	0.12526(17) 0.47956(17)	0.2071(2) 0.4985(2)	0.0239(0) 0.0238(6)
C76	0.16578 (10)	0.47930(17) 0.55007(17)	0.4903(2)	0.0258(0) 0.0273(6)
U70 H76	0.1882	0.55997 (17)	0.3011 (2)	0.0273 (0)
C77	0.1678(2)	0.5010 0.63034 (18)	0.4574	0.033
U77	0.1078 (2)	0.6940	0.5607	0.0327 (7)
C78	0.1373(2)	0.63923 (19)	0.5077	0.0323(7)
U78	0.1396	0.6934	0.6787	0.0323 (7)
C79	0.1029(2)	0.55904 (18)	0.6798(2)	0.0283 (6)
U79	0.0813	0.5585	0.6741	0.0205 (0)
C80	0.0015	0.3383	0.5630(2)	0.0249 (6)
U80	0.03331 (18)	0.47912 (18)	0.5620	0.0249 (0)
05	0.0758 0.2041 (2)	0.33101 (18)	0.3020	0.050
UJ H50	0.2941(2) 0.2883	0.3/31	0.0777 (2)	0.0021(7)
C81	0.2308(3)	0.3431 0.2405 (3)	0.0200	0.095 0.0624(11)
H81A	0.2412	0.2455 (5)	-0.0061	0.0024 (11)
H81R	0.1618	0.2000	0.0001	0.004*
H81C	0.2439	0.2346	0.0958	0.094*
06	0.2459 0.6250 (2)	0.2540 0.35347 (13)	0.0930 0.50351(17)	0.024
U0 H6O	0.6256 (2)	0.3638	0.5651	0.0479(0)
C82	0.0400	0.26479 (19)	0.3031 0.4497(3)	0.072
U02	0.6318	0.26475(15)	0.3063	0.0420 (0)
H82R	0.5541	0.2009	0.3903	0.003
H82C	0.5541	0.22+3	0.4025	0.003
07	0.0703	0.2400 0.5071 (2)	0.4923	0.003
U70	0.3030 (2)	0.3711(2) 0.6205	0.9244 (3)	0.0312 (7)
11/U C92	0.3224	0.0293	0.0700	0.077°
000	0.213/(3)	0.0052 (4)	0.9191 (4)	0.0312(7)

0.75 0.75 0.75

H83A	0.1836	0.5579	0.9282	0.077*	0.75
H83B	0.1687	0.6000	0.8552	0.077*	0.75
H83C	0.2255	0.6633	0.9700	0.077*	0.75
O7′	0.2416 (7)	0.6655 (6)	0.8977 (7)	0.0512 (7)	0.25
H7OA	0.2827	0.6710	0.8741	0.077*	0.25
C83′	0.2430 (14)	0.5920 (9)	0.9165 (14)	0.0512 (7)	0.25
H83D	0.2104	0.5936	0.9552	0.077*	0.25
H83E	0.3120	0.5938	0.9526	0.077*	0.25
H83F	0.2075	0.5370	0.8550	0.077*	0.25
08	0.8195 (2)	0.1154 (2)	0.1282 (2)	0.0642 (8)	
H8O	0.8273	0.1264	0.1876	0.096*	
C84	0.8099 (4)	0.1902 (3)	0.1137 (4)	0.0820 (16)	
H84A	0.7969	0.1768	0.0479	0.123*	
H84B	0.8715	0.2398	0.1614	0.123*	
H84C	0.7544	0.2065	0.1215	0.123*	
O9	0.94341 (16)	0.05123 (15)	0.07636 (16)	0.0444 (6)	
H9O	0.9059	0.0749	0.1013	0.067*	
C85	0.8816 (3)	-0.0250 (2)	-0.0130 (3)	0.0488 (9)	
H85A	0.8393	-0.0075	-0.0609	0.073*	
H85B	0.8397	-0.0651	-0.0047	0.073*	
H85C	0.9227	-0.0556	-0.0357	0.073*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01949 (16)	0.02475 (17)	0.0224 (2)	0.00955 (13)	0.01238 (15)	0.01354 (15)
O1	0.0200 (9)	0.0322 (10)	0.0250 (11)	0.0102 (7)	0.0123 (8)	0.0169 (9)
O2	0.0211 (9)	0.0222 (8)	0.0222 (10)	0.0074 (7)	0.0113 (8)	0.0122 (8)
N1	0.0168 (10)	0.0236 (10)	0.0230 (13)	0.0090 (8)	0.0105 (9)	0.0110 (10)
N2	0.0171 (10)	0.0266 (11)	0.0236 (13)	0.0076 (8)	0.0102 (9)	0.0143 (10)
N3	0.0231 (11)	0.0263 (11)	0.0208 (12)	0.0092 (9)	0.0126 (10)	0.0129 (10)
N4	0.0206 (11)	0.0297 (11)	0.0298 (14)	0.0109 (9)	0.0149 (10)	0.0167 (11)
N5	0.0184 (10)	0.0235 (10)	0.0231 (13)	0.0090 (8)	0.0116 (10)	0.0116 (10)
N6	0.0198 (10)	0.0222 (10)	0.0233 (13)	0.0087 (8)	0.0120 (10)	0.0114 (10)
N7	0.0229 (11)	0.0278 (11)	0.0232 (13)	0.0095 (9)	0.0130 (10)	0.0140 (10)
N8	0.0180 (10)	0.0300 (11)	0.0212 (13)	0.0102 (9)	0.0096 (10)	0.0108 (10)
C1	0.0216 (12)	0.0201 (11)	0.0207 (14)	0.0077 (10)	0.0139 (11)	0.0099 (11)
C2	0.0203 (12)	0.0213 (12)	0.0193 (14)	0.0090 (10)	0.0108 (11)	0.0101 (11)
C3	0.0198 (12)	0.0201 (12)	0.0221 (15)	0.0086 (10)	0.0101 (11)	0.0093 (11)
C4	0.0235 (12)	0.0229 (12)	0.0209 (15)	0.0099 (10)	0.0117 (11)	0.0111 (11)
C5	0.0288 (14)	0.0333 (14)	0.0261 (16)	0.0140 (12)	0.0146 (13)	0.0175 (13)
C6	0.0192 (12)	0.0264 (13)	0.0278 (16)	0.0092 (10)	0.0133 (12)	0.0145 (12)
C7	0.0182 (12)	0.0233 (12)	0.0283 (16)	0.0112 (10)	0.0133 (12)	0.0158 (12)
C8	0.0230 (13)	0.0257 (13)	0.0197 (15)	0.0072 (11)	0.0094 (12)	0.0078 (12)
C9	0.0201 (12)	0.0225 (12)	0.0305 (17)	0.0077 (10)	0.0104 (12)	0.0117 (12)
C10	0.0208 (13)	0.0301 (14)	0.0351 (18)	0.0066 (11)	0.0099 (13)	0.0103 (13)
C11	0.0202 (13)	0.0312 (15)	0.051 (2)	0.0069 (12)	0.0127 (14)	0.0190 (15)
C12	0.0189 (13)	0.0429 (17)	0.053 (2)	0.0122 (12)	0.0180 (14)	0.0290 (16)

C13	0.0243 (13)	0.0368 (15)	0.0407 (18)	0.0158 (12)	0.0204 (14)	0.0238 (14)
C14	0.0196 (12)	0.0251 (12)	0.0291 (16)	0.0104 (10)	0.0127 (12)	0.0157 (12)
C15	0.0169 (12)	0.0235 (12)	0.0249 (15)	0.0076 (10)	0.0111 (11)	0.0095 (11)
C16	0.0249 (13)	0.0268 (13)	0.0327 (17)	0.0076 (11)	0.0169 (13)	0.0149 (13)
C17	0.0238 (13)	0.0313 (14)	0.0359 (18)	0.0052 (11)	0.0170 (13)	0.0141 (14)
C18	0.0214 (13)	0.0364 (15)	0.0381 (19)	0.0092 (12)	0.0167 (13)	0.0129 (14)
C19	0.0232 (14)	0.0553 (19)	0.042 (2)	0.0165 (13)	0.0174 (14)	0.0300 (17)
C20	0.0206 (13)	0.0479 (17)	0.0380 (19)	0.0122 (12)	0.0165 (13)	0.0257 (15)
C21	0.0131 (11)	0.0232 (12)	0.0233 (15)	0.0062 (9)	0.0078 (11)	0.0119 (11)
C22	0.0205 (12)	0.0225 (12)	0.0237 (15)	0.0087 (10)	0.0125 (11)	0.0125 (11)
C23	0.0188 (12)	0.0217 (12)	0.0268 (16)	0.0080 (10)	0.0120 (11)	0.0143 (11)
C24	0.0211 (12)	0.0252 (12)	0.0233 (15)	0.0089 (10)	0.0126 (12)	0.0117 (12)
C25	0.0379 (16)	0.0318 (14)	0.0298 (17)	0.0156 (12)	0.0215 (14)	0.0184 (13)
C26	0.0176 (12)	0.0287 (13)	0.0200 (15)	0.0094 (10)	0.0091 (11)	0.0108 (12)
C27	0.0185 (11)	0.0228(12)	0.0203(14)	0.0110 (10)	0.0088 (11)	0.0118 (11)
C28	0.0227(12)	0.0261 (13)	0.0257(15)	0.0097 (10)	0.0141 (12)	0.0136 (12)
C29	0.0226(13)	0.0254(13)	0.0264 (16)	0.0088 (10)	0.0117(12)	0.0136 (12)
C30	0.0270(14)	0.0298(14)	0.0377(18)	0.0082(12)	0.0172(14)	0.0158 (14)
C31	0.0307(15)	0.0266(14)	0.0384(19)	0.0069(12)	0.0149(14)	0.0120 (14)
C32	0.0312(15)	0.0244(13)	0.0243 (16)	0.0100(12)	0.00189(13)	0.0067(12)
C33	0.0276(14)	0.0326(14)	0.0213(15)	0.0165(12)	0.0116(12)	0.0126(12)
C34	0.0196 (12)	0.0274 (13)	0.0180 (14)	0.0114 (10)	0.0061 (11)	0.0124 (11)
C35	0.0178 (12)	0.0210(12)	0.0335(17)	0.0065 (10)	0.0153(12)	0.0108(12)
C36	0.0249(13)	0.0252(13)	0.0361 (18)	0.0060 (11)	0.0198(13)	0.0094 (13)
C37	0.0275(15)	0.0264(14)	0.044(2)	0.0028(12)	0.0224(15)	0.0020 (14)
C38	0.0328 (16)	0.0260 (14)	0.072(3)	0.0150 (13)	0.0360 (18)	0.0219 (17)
C39	0.0353 (16)	0.0323 (15)	0.057(2)	0.0195 (13)	0.0282 (16)	0.0259 (16)
C40	0.0268 (14)	0.0285 (14)	0.0421 (19)	0.0142 (11)	0.0209 (14)	0.0182 (14)
Zn2	0.01867 (16)	0.02417 (17)	0.0226 (2)	0.00916 (12)	0.01069 (14)	0.01370 (15)
O3	0.0187 (9)	0.0312 (10)	0.0266 (11)	0.0098 (7)	0.0114 (8)	0.0192 (9)
O4	0.0226 (9)	0.0248 (9)	0.0225 (10)	0.0102 (7)	0.0112 (8)	0.0136 (8)
N9	0.0171 (10)	0.0232 (10)	0.0222 (12)	0.0097 (8)	0.0107 (9)	0.0107 (10)
N10	0.0167 (10)	0.0232 (10)	0.0222 (12)	0.0078 (8)	0.0094 (9)	0.0126 (10)
N11	0.0200 (10)	0.0242 (11)	0.0241 (13)	0.0079 (9)	0.0115 (10)	0.0135 (10)
N12	0.0214 (11)	0.0266 (11)	0.0274 (14)	0.0101 (9)	0.0114 (10)	0.0124 (10)
N13	0.0159 (10)	0.0235 (10)	0.0246 (13)	0.0076 (8)	0.0092 (9)	0.0128 (10)
N14	0.0206 (10)	0.0244 (11)	0.0249 (13)	0.0101 (9)	0.0107 (10)	0.0138 (10)
N15	0.0266 (11)	0.0311 (12)	0.0220 (13)	0.0117 (10)	0.0125 (10)	0.0161 (10)
N16	0.0248 (11)	0.0294 (12)	0.0309 (15)	0.0114 (10)	0.0141 (11)	0.0159 (11)
C41	0.0215 (12)	0.0182 (11)	0.0198 (14)	0.0077 (10)	0.0092 (11)	0.0084 (11)
C42	0.0182 (11)	0.0193 (11)	0.0210 (14)	0.0063 (9)	0.0096 (11)	0.0098 (11)
C43	0.0214 (12)	0.0204 (12)	0.0252 (15)	0.0091 (10)	0.0135 (12)	0.0103 (11)
C44	0.0208 (12)	0.0190 (11)	0.0211 (14)	0.0076 (10)	0.0098 (11)	0.0099 (11)
C45	0.0248 (13)	0.0312 (14)	0.0276 (16)	0.0118 (11)	0.0142 (12)	0.0171 (13)
C46	0.0199 (12)	0.0290 (13)	0.0240 (16)	0.0104 (10)	0.0108 (12)	0.0134 (12)
C47	0.0172 (11)	0.0200 (12)	0.0215 (15)	0.0080 (10)	0.0081 (11)	0.0088 (11)
C48	0.0225 (12)	0.0249 (12)	0.0214 (15)	0.0096 (10)	0.0110 (11)	0.0124 (11)
C49	0.0185 (12)	0.0192 (11)	0.0251 (15)	0.0079 (10)	0.0097 (11)	0.0087 (11)
				()		()

C50	0.0211 (13)	0.0281 (13)	0.0309 (17)	0.0081 (11)	0.0112 (12)	0.0151 (13)
C51	0.0189 (13)	0.0307 (14)	0.0350 (18)	0.0083 (11)	0.0122 (13)	0.0141 (13)
C52	0.0212 (13)	0.0291 (14)	0.0327 (18)	0.0111 (11)	0.0084 (13)	0.0120 (13)
C53	0.0222 (13)	0.0308 (14)	0.0232 (16)	0.0121 (11)	0.0069 (12)	0.0119 (12)
C54	0.0223 (12)	0.0198 (12)	0.0244 (15)	0.0089 (10)	0.0114 (12)	0.0072 (11)
C55	0.0173 (11)	0.0172 (11)	0.0245 (15)	0.0059 (9)	0.0090 (11)	0.0090 (11)
C56	0.0214 (13)	0.0324 (14)	0.0249 (16)	0.0077 (11)	0.0094 (12)	0.0117 (13)
C57	0.0225 (14)	0.0435 (17)	0.0304 (18)	0.0116 (12)	0.0117 (13)	0.0151 (14)
C58	0.0180 (12)	0.0324 (14)	0.0330 (17)	0.0085 (11)	0.0094 (12)	0.0138 (13)
C59	0.0257 (13)	0.0245 (13)	0.0385 (18)	0.0120 (11)	0.0197 (13)	0.0160 (13)
C60	0.0222 (13)	0.0268 (13)	0.0287 (16)	0.0114 (11)	0.0131 (12)	0.0167 (12)
C61	0.0134 (11)	0.0247 (12)	0.0244 (15)	0.0075 (10)	0.0064 (11)	0.0138 (12)
C62	0.0191 (12)	0.0242 (12)	0.0204 (14)	0.0082 (10)	0.0087 (11)	0.0122 (11)
C63	0.0156 (11)	0.0241 (12)	0.0245 (15)	0.0045 (10)	0.0097 (11)	0.0090 (11)
C64	0.0214 (12)	0.0282 (13)	0.0254 (16)	0.0083 (10)	0.0106 (12)	0.0146 (12)
C65	0.0397 (16)	0.0351 (15)	0.0269 (17)	0.0149 (13)	0.0183 (14)	0.0188 (14)
C66	0.0237 (13)	0.0268 (13)	0.0241 (15)	0.0104 (11)	0.0115 (12)	0.0123 (12)
C67	0.0165 (11)	0.0219 (12)	0.0257 (15)	0.0044 (10)	0.0115 (11)	0.0098 (11)
C68	0.0213 (12)	0.0257 (13)	0.0272 (16)	0.0070 (10)	0.0125 (12)	0.0128 (12)
C69	0.0150 (11)	0.0247 (13)	0.0264 (16)	0.0023 (10)	0.0090 (11)	0.0106 (12)
C70	0.0305 (14)	0.0275 (14)	0.0266 (17)	0.0075 (12)	0.0121 (13)	0.0108 (13)
C71	0.0294 (14)	0.0286 (14)	0.0324 (18)	0.0076 (12)	0.0160 (14)	0.0102 (13)
C72	0.0234 (13)	0.0215 (13)	0.0457 (19)	0.0063 (11)	0.0214 (14)	0.0114 (13)
C73	0.0198 (12)	0.0253 (13)	0.0367 (18)	0.0066 (10)	0.0145 (12)	0.0142 (13)
C74	0.0171 (12)	0.0267 (13)	0.0296 (16)	0.0054 (10)	0.0127 (12)	0.0138 (12)
C75	0.0150 (11)	0.0261 (13)	0.0300 (16)	0.0112 (10)	0.0079 (11)	0.0149 (12)
C76	0.0219 (13)	0.0273 (13)	0.0334 (17)	0.0089 (11)	0.0123 (12)	0.0161 (13)
C77	0.0269 (14)	0.0251 (13)	0.0376 (18)	0.0093 (11)	0.0090 (14)	0.0141 (13)
C78	0.0289 (14)	0.0297 (14)	0.0288 (17)	0.0146 (12)	0.0092 (13)	0.0086 (13)
C79	0.0248 (13)	0.0344 (15)	0.0262 (16)	0.0164 (12)	0.0108 (13)	0.0145 (13)
C80	0.0192 (12)	0.0294 (13)	0.0263 (16)	0.0115 (11)	0.0081 (12)	0.0156 (12)
05	0.0685 (18)	0.0618 (16)	0.0607 (19)	0.0147 (14)	0.0344 (15)	0.0314 (15)
C81	0.052 (2)	0.063 (2)	0.072 (3)	0.0076 (19)	0.024 (2)	0.041 (2)
O6	0.0923 (19)	0.0298 (11)	0.0359 (14)	0.0267 (12)	0.0391 (14)	0.0182 (10)
C82	0.057 (2)	0.0298 (15)	0.042 (2)	0.0132 (15)	0.0303 (18)	0.0127 (15)
O7	0.0479 (17)	0.0638 (16)	0.0593 (17)	0.0222 (14)	0.0350 (15)	0.0340 (14)
C83	0.0479 (17)	0.0638 (16)	0.0593 (17)	0.0222 (14)	0.0350 (15)	0.0340 (14)
O7′	0.0479 (17)	0.0638 (16)	0.0593 (17)	0.0222 (14)	0.0350 (15)	0.0340 (14)
C83′	0.0479 (17)	0.0638 (16)	0.0593 (17)	0.0222 (14)	0.0350 (15)	0.0340 (14)
08	0.0617 (17)	0.109 (2)	0.0485 (17)	0.0452 (17)	0.0387 (15)	0.0440 (17)
C84	0.092 (4)	0.142 (5)	0.079 (3)	0.077 (4)	0.063 (3)	0.081 (4)
09	0.0315 (11)	0.0557 (14)	0.0372 (14)	0.0163 (10)	0.0146 (11)	0.0148 (12)
C85	0.0362 (18)	0.050 (2)	0.049 (2)	0.0066 (15)	0.0205 (17)	0.0140 (18)

Geometric parameters (Å, °)

Zn1—O1	1.8721 (18)	N13—C67	1.433 (3)
Zn1—02	1.972 (2)	N14—C61	1.368 (3)

Zn1—N1	1.983 (2)	N14—N15	1.419 (3)
Zn1—N5	2.019 (2)	N14—C75	1.426 (3)
01—C1	1.300 (3)	N15—C64	1.319 (3)
O2—C21	1.292 (3)	N16—C66	1.321 (3)
N1—C3	1.322 (3)	N16—C74	1.379 (4)
N1—C7	1.344 (3)	C41—C42	1.344 (3)
N2—C1	1.314 (3)	C42—C43	1.337 (4)
N2—C15	1.335 (3)	C42—C44	1.447 (4)
N2—N3	1.411 (3)	C43—H43	0.9500
$N_3 - C_4$	1.717(3)	C44-C45	1 446 (4)
N4-C6	1.237(3) 1.245(3)	C45—H45A	0.9800
N4 C14	1.243(3) 1.343(4)	C45—H45B	0.9800
N5 C23	1.343(4) 1.323(3)	C45 H45C	0.9800
N5 C27	1.323(3)	C_{45}	0.9800
$N_{5} = C_{21}$	1.435(3) 1.276(2)	C46 H46	0.0500
N0	1.370(3)	C40 - H40	0.9300
NO	1.412(3)	C47 - C48	1.308 (3)
N6-C35	1.41/(3)	C48—C49	1.352 (4)
N/	1.325 (3)	C48—H48	0.9500
N8—C26	1.329 (3)	C49—C50	1.353 (4)
N8—C34	1.331 (3)	C49—C54	1.424 (4)
C1—C2	1.346 (4)	C50—C51	1.312 (4)
C2—C3	1.334 (3)	C50—H50	0.9500
C2—C4	1.434 (4)	C51—C52	1.422 (4)
С3—Н3	0.9500	C51—H51	0.9500
C4—C5	1.469 (4)	C52—C53	1.303 (4)
C5—H5A	0.9800	C52—H52	0.9500
C5—H5B	0.9800	C53—C54	1.355 (4)
C5—H5C	0.9800	С53—Н53	0.9500
С6—С7	1.422 (4)	C55—C56	1.3828 (19)
С6—Н6	0.9500	C55—C60	1.3845 (18)
С7—С8	1.326 (4)	C56—C57	1.3682 (19)
C8—C9	1.335 (4)	C56—H56	0.9500
C8—H8	0.9500	C57—C58	1.3795 (19)
C9—C10	1.380 (4)	C57—H57	0.9500
C9—C14	1.418 (4)	C58—C59	1.3789 (19)
C10-C11	1.292 (4)	C58—H58	0.9500
C10—H10	0.9500	C59—C60	1.3642 (18)
C11—C12	1.418 (5)	С59—Н59	0.9500
C11—H11	0.9500	C60—H60	0.9500
C12—C13	1.337 (4)	C61—C62	1.425 (4)
C12—H12	0.9500	C62 - C63	1 407 (3)
C13—C14	1 338 (4)	C62 - C64	1.107(3) 1 444(3)
C13—H13	0.9500	C63—H63	0.9500
C15—C16	1 363 (4)	C64—C65	1 506 (4)
C_{15} C_{10} C_{10}	1 386 (1)	C65H65 A	1.500 (F) 0.0800
$C_{15} = C_{20}$	1.300 (4)	C65_H65B	0.2000
С16—U16	0.0500	C65 H65C	0.2000
C_{10} $-\Pi_{10}$ C_{17} C_{19}	0.9300		0.9000
U1/U10	1.3/4 (4)	00-00/	1.412 (4)

С17—Н17	0.9500	С66—Н66	0.9500
C18—C19	1.361 (4)	C67—C68	1.374 (4)
C18—H18	0.9500	C68—C69	1.421 (4)
C19—C20	1.312 (4)	С68—Н68	0.9500
С19—Н19	0.9500	C69—C74	1.406 (4)
С20—Н20	0.9500	C69—C70	1.426 (4)
C21—C22	1.425 (3)	C70—C71	1.365 (4)
C22—C23	1.421 (4)	C70—H70	0.9500
C22—C24	1.434 (4)	C71—C72	1.403 (4)
C23_H23	0.9500	C71 - H71	0.9500
C_{24} C_{25}	1 497 (4)	C72-C73	1 369 (4)
C25_H25A	0.9800	C72_H72	0.9500
C25 H25R	0.9800	C73 C74	1,417(4)
C25_H25C	0.9800	$C_{73} = C_{74}$	1.417(4)
C25—H25C	1.280(4)	C75 C80	1.277(4)
C_{20}	1.580 (4)	$C_{13} = C_{80}$	1.377(4)
C20—H20	0.9500	C/3 - C/6	1.392 (4)
C27—C28	1.325 (3)	C/6-C//	1.401 (4)
C28—C29	1.429 (4)	C/6—H/6	0.9500
C28—H28	0.9500	C//C/8	1.360 (4)
C29—C34	1.369 (4)	С77—Н77	0.9500
C29—C30	1.375 (4)	C78—C79	1.384 (4)
C30—C31	1.381 (4)	С78—Н78	0.9500
C30—H30	0.9500	C79—C80	1.393 (4)
C31—C32	1.357 (4)	С79—Н79	0.9500
C31—H31	0.9500	C80—H80	0.9500
C32—C33	1.320 (4)	O5—C81	1.370 (4)
С32—Н32	0.9500	O5—H5O	0.9055
C33—C34	1.437 (4)	C81—H81A	0.9800
С33—Н33	0.9500	C81—H81B	0.9800
C35—C40	1.401 (4)	C81—H81C	0.9800
C35—C36	1.402 (4)	O6—C82	1.420 (3)
C36—C37	1.399 (4)	O6—H6O	0.9121
С36—Н36	0.9500	C82—H82A	0.9800
C37—C38	1,379 (5)	C82—H82B	0.9800
C37—H37	0.9500	C82—H82C	0.9800
C_{38} C_{39}	1 385 (5)	07-083	1390(3)
C38—H38	0.9500	07—H70	0.9094
C_{39} C_{40}	1 390 (4)	C83_H83A	0.9094
C30_H30	0.9500	C83_H83B	0.9800
C40 H40	0.9500	C^{82} H ⁸² C	0.9800
2 + 0 - 11 + 0	1,8002 (10)	07' $02'$	1,400(2)
ZH2	1.6992 (19)	07 - 083	1.400(3)
Z:12	1.934(2)	$O_1 - \Pi_1 OA$	0.0999
2n2-04	1.9010(1/)		0.9800
2n2-N13	2.041 (2)		0.9800
03-041	1.282 (3)	C83'—H83F	0.9800
O4—C61	1.290 (3)	08—C84	1.392 (3)
N9—C43	1.337 (3)	O8—H8O	0.9090
N9—C47	1.354 (3)	C84—H84A	0.9800

N10—C55	1.326 (3)	C84—H84B	0.9800
N10—C41	1.336 (3)	C84—H84C	0.9800
N10—N11	1.387 (3)	O9—C85	1.405 (4)
N11—C44	1.234 (3)	О9—Н9О	0.9038
N12—C46	1.261 (3)	С85—Н85А	0.9800
N12—C54	1.310 (3)	С85—Н85В	0.9800
N13—C63	1.328 (3)	C85—H85C	0.9800
O1—Zn1—O2	121.00 (8)	N15—N14—C75	119.40 (19)
O1—Zn1—N1	94.83 (8)	C64—N15—N14	105.4 (2)
O2—Zn1—N1	111.47 (9)	C66—N16—C74	117.8 (2)
O1—Zn1—N5	112.58 (8)	O3—C41—N10	126.3 (2)
O2—Zn1—N5	99.04 (8)	O3—C41—C42	130.6 (2)
N1—Zn1—N5	119.45 (9)	N10-C41-C42	103.1 (2)
C1—O1—Zn1	120.56 (15)	C43—C42—C41	124.1 (2)
C21—O2—Zn1	117.75 (15)	C43—C42—C44	129.6 (2)
C3—N1—C7	117.4 (2)	C41—C42—C44	106.4 (2)
C3—N1—Zn1	123.56 (17)	C42—C43—N9	126.9 (2)
C7—N1—Zn1	118.95 (18)	C42—C43—H43	116.6
C1—N2—C15	126.9 (2)	N9—C43—H43	116.6
C1—N2—N3	114.0 (2)	N11—C44—C45	118.2 (2)
C15—N2—N3	118.8 (2)	N11—C44—C42	112.3 (2)
C4—N3—N2	104.2 (2)	C45—C44—C42	129.5 (2)
C6—N4—C14	114.4 (2)	C44—C45—H45A	109.5
C23—N5—C27	118.7 (2)	C44—C45—H45B	109.5
C23—N5—Zn1	121.08 (17)	H45A—C45—H45B	109.5
C27—N5—Zn1	119.84 (16)	C44—C45—H45C	109.5
C21—N6—N7	111.97 (19)	H45A—C45—H45C	109.5
C21—N6—C35	128.4 (2)	H45B—C45—H45C	109.5
N7—N6—C35	119.3 (2)	N12—C46—C47	126.7 (2)
C24—N7—N6	104.9 (2)	N12—C46—H46	116.6
C26—N8—C34	118.9 (2)	C47—C46—H46	116.6
01—C1—N2	124.8 (2)	C48—C47—N9	123.2 (2)
01—C1—C2	131.9 (2)	C48—C47—C46	118.8 (2)
N2—C1—C2	103.3 (2)	N9—C47—C46	117.9 (2)
C3—C2—C1	124.7 (3)	C47—C48—C49	116.6 (3)
C3—C2—C4	127.3 (2)	C47—C48—H48	121.7
C1—C2—C4	108.0 (2)	C49—C48—H48	121.7
N1—C3—C2	124.0 (2)	C48—C49—C50	119.3 (3)
N1—C3—H3	118.0	C48—C49—C54	120.4 (2)
С2—С3—Н3	118.0	C50—C49—C54	120.3 (2)
N3—C4—C2	110.5 (2)	C51—C50—C49	116.6 (3)
N3—C4—C5	118.5 (2)	С51—С50—Н50	121.7
C2—C4—C5	131.0 (2)	С49—С50—Н50	121.7
С4—С5—Н5А	109.5	C50—C51—C52	123.0 (3)
C4—C5—H5B	109.5	C50—C51—H51	118.5
H5A—C5—H5B	109.5	С52—С51—Н51	118.5
C4—C5—H5C	109.5	C53—C52—C51	121.6 (3)

H5A—C5—H5C	109.5	С53—С52—Н52	119.2
H5B—C5—H5C	109.5	С51—С52—Н52	119.2
N4—C6—C7	125.0 (3)	C52—C53—C54	116.8 (3)
N4—C6—H6	117.5	C52—C53—H53	121.6
C7—C6—H6	117.5	$C_{54} - C_{53} - H_{53}$	121.6
C_{8} C_{7} N1	121.6 (3)	N12 C54 C53	121.0 115.7(3)
C^{8} C^{7} C^{6}	121.0(3)	N12 - C54 - C40	113.7(3)
$C_{0} - C_{1} - C_{0}$	121.1(2)	N12 - C34 - C49	122.0(2)
$NI = C / = C \delta$	117.3 (2)	C53—C54—C49	121.8 (2)
C/C8C9	116.3 (3)	N10-C55-C56	116.09 (19)
С7—С8—Н8	121.9	N10-C55-C60	117.83 (19)
С9—С8—Н8	121.9	C56—C55—C60	126.1 (2)
C8—C9—C10	119.9 (3)	C57—C56—C55	116.8 (2)
C8—C9—C14	119.3 (2)	С57—С56—Н56	121.6
C10—C9—C14	120.8 (3)	С55—С56—Н56	121.6
C11—C10—C9	117.4 (3)	C56—C57—C58	117.7 (2)
C11—C10—H10	121.3	С56—С57—Н57	121.2
С9—С10—Н10	121.3	C58—C57—H57	121.2
C10—C11—C12	121.5 (3)	C59—C58—C57	124.8 (2)
C10-C11-H11	1193	C59—C58—H58	117.6
C_{12} C_{11} H_{11}	119.3	C57—C58—H58	117.6
$C_{12} = C_{11} = C_{11}$	122.7(3)	C60-C59-C58	117.0 118.5(2)
$C_{12}^{12} = C_{12}^{12} = C_{11}^{12}$	112.7 (5)	$C_{00} = C_{00} = C_{00} = C_{00}$	110.5 (2)
C11 C12 H12	110./	$C_{00} = C_{59} = H_{59}$	120.8
	116.7	C38—C39—H39	120.8
C12 - C13 - C14	116.7 (3)	C59—C60—C55	116.2 (2)
C12—C13—H13	121.7	С59—С60—Н60	121.9
C14—C13—H13	121.7	С55—С60—Н60	121.9
C13—C14—N4	115.0 (3)	O4—C61—N14	123.0 (2)
C13—C14—C9	120.9 (3)	O4—C61—C62	130.8 (2)
N4—C14—C9	124.0 (2)	N14—C61—C62	106.2 (2)
N2-C15-C16	116.3 (2)	C63—C62—C61	127.9 (2)
N2-C15-C20	120.4 (2)	C63—C62—C64	127.0 (3)
C16—C15—C20	123.4 (2)	C61—C62—C64	104.9 (2)
C17—C16—C15	117.7 (3)	N13—C63—C62	124.9 (3)
C17—C16—H16	121.2	N13—C63—H63	117.5
C15—C16—H16	121.2	С62—С63—Н63	117.5
C_{16} $-C_{17}$ $-C_{18}$	1196(3)	N15-C64-C62	111.8(2)
C_{16} C_{17} H_{17}	120.2	N15-C64-C65	121.3(2)
$C_{10} = C_{17} = H_{17}$	120.2	C_{62} C_{64} C_{65}	121.3(2) 126.0(2)
$C_{10} = C_{17} = C_{17}$	120.2	$C_{02} = C_{04} = C_{05}$	120.9 (2)
C19 - C18 - C17	122.9 (5)	C(4 - C(5 - H(5)))	109.5
	118.5	С64—С65—Н65В	109.5
C17—C18—H18	118.5	H65A—C65—H65B	109.5
C20—C19—C18	118.2 (3)	C64—C65—H65C	109.5
C20—C19—H19	120.9	H65A—C65—H65C	109.5
C18—C19—H19	120.9	H65B—C65—H65C	109.5
C19—C20—C15	118.2 (3)	N16—C66—C67	124.0 (3)
С19—С20—Н20	120.9	N16—C66—H66	118.0
С15—С20—Н20	120.9	С67—С66—Н66	118.0
O2—C21—N6	123.4 (2)	C68—C67—C66	118.0 (2)

O2—C21—C22	130.9 (2)	C68—C67—N13	125.5 (2)
N6-C21-C22	105.8 (2)	C66—C67—N13	116.5 (2)
C23—C22—C21	126.5 (2)	C67—C68—C69	120.2 (2)
C23—C22—C24	128.5 (2)	С67—С68—Н68	119.9
C21—C22—C24	105.0 (2)	С69—С68—Н68	119.9
N5—C23—C22	124.4 (2)	C74—C69—C68	117.2 (3)
N5—C23—H23	117.8	C74—C69—C70	119.5 (2)
С22—С23—Н23	117.8	C68—C69—C70	123.3 (2)
N7—C24—C22	112.4 (2)	C71—C70—C69	120.9 (3)
N7—C24—C25	120.8 (2)	С71—С70—Н70	119.6
C22—C24—C25	126.8 (2)	С69—С70—Н70	119.6
С24—С25—Н25А	109.5	C70—C71—C72	119.5 (3)
C24—C25—H25B	109.5	С70—С71—Н71	120.3
H25A—C25—H25B	109.5	С72—С71—Н71	120.3
C24—C25—H25C	109.5	C73—C72—C71	120.9 (3)
H25A—C25—H25C	109.5	С73—С72—Н72	119.5
H25B—C25—H25C	109.5	С71—С72—Н72	119.5
N8—C26—C27	125.2 (2)	C72—C73—C74	120.9 (3)
N8—C26—H26	117.4	С72—С73—Н73	119.5
C27—C26—H26	117.4	С74—С73—Н73	119.5
C28—C27—C26	116.4 (3)	N16—C74—C69	122.6 (2)
C28—C27—N5	123.9 (2)	N16—C74—C73	119.1 (2)
C26—C27—N5	119.6 (2)	C69—C74—C73	118.3 (3)
C27—C28—C29	120.1 (3)	C80—C75—C76	119.6 (3)
С27—С28—Н28	119.9	C80—C75—N14	120.7 (2)
С29—С28—Н28	119.9	C76—C75—N14	119.7 (2)
C34—C29—C30	116.7 (3)	C75—C76—C77	119.6 (3)
C34—C29—C28	119.5 (2)	С75—С76—Н76	120.2
C30—C29—C28	123.7 (3)	С77—С76—Н76	120.2
C29—C30—C31	121.7 (3)	C78—C77—C76	121.0 (3)
С29—С30—Н30	119.1	С78—С77—Н77	119.5
С31—С30—Н30	119.1	С76—С77—Н77	119.5
C32—C31—C30	121.6 (3)	C77—C78—C79	119.0 (3)
C32—C31—H31	119.2	С77—С78—Н78	120.5
C30—C31—H31	119.2	С79—С78—Н78	120.5
C33—C32—C31	118.3 (3)	C78—C79—C80	121.2 (3)
С33—С32—Н32	120.9	С78—С79—Н79	119.4
С31—С32—Н32	120.9	С80—С79—Н79	119.4
C32—C33—C34	121.7 (3)	C75—C80—C79	119.6 (2)
С32—С33—Н33	119.2	С75—С80—Н80	120.2
С34—С33—Н33	119.2	С79—С80—Н80	120.2
N8—C34—C29	119.8 (2)	C81—O5—H5O	110.1
N8—C34—C33	120.1 (2)	O5—C81—H81A	109.5
C29—C34—C33	120.0 (2)	O5—C81—H81B	109.5
C40—C35—C36	120.6 (2)	H81A—C81—H81B	109.5
C40—C35—N6	119.6 (3)	O5—C81—H81C	109.5
C36—C35—N6	119.8 (2)	H81A—C81—H81C	109.5
C37—C36—C35	119.6 (3)	H81B—C81—H81C	109.5
	the second se		

С37—С36—Н36	120.2	С82—О6—Н6О	109.7
С35—С36—Н36	120.2	O6—C82—H82A	109.5
C38—C37—C36	119.8 (3)	O6—C82—H82B	109.5
С38—С37—Н37	120.1	H82A—C82—H82B	109.5
С36—С37—Н37	120.1	O6—C82—H82C	109.5
C37—C38—C39	120.3 (3)	H82A—C82—H82C	109.5
С37—С38—Н38	119.8	H82B—C82—H82C	109.5
С39—С38—Н38	119.8	С83—07—Н7О	109.4
C38—C39—C40	121.4 (3)	O7—C83—H83A	109.5
С38—С39—Н39	119.3	O7—C83—H83B	109.5
С40—С39—Н39	119.3	H83A—C83—H83B	109.5
C39—C40—C35	118.3 (3)	O7—C83—H83C	109.5
C39—C40—H40	120.8	H83A—C83—H83C	109.5
C35—C40—H40	120.8	H83B—C83—H83C	109.5
O3—Zn2—N9	95.73 (8)	С83'—О7'—Н7ОА	109.6
O3—Zn2—O4	118.13 (9)	O7'—C83'—H83D	109.5
N9—Zn2—O4	109.94 (8)	O7'—C83'—H83E	109.5
O3—Zn2—N13	115.06 (8)	H83D—C83′—H83E	109.5
N9—Zn2—N13	118.36 (10)	O7'—C83'—H83F	109.5
O4—Zn2—N13	100.62 (8)	H83D—C83′—H83F	109.5
C41—O3—Zn2	121.49 (16)	H83E—C83'—H83F	109.5
C61—O4—Zn2	116.80 (16)	C84—O8—H8O	109.7
C43—N9—C47	120.6 (2)	O8—C84—H84A	109.5
C43—N9—Zn2	121.09 (17)	O8—C84—H84B	109.5
C47—N9—Zn2	118.28 (17)	H84A—C84—H84B	109.5
C55—N10—C41	127.2 (2)	O8—C84—H84C	109.5
C55—N10—N11	117.63 (19)	H84A—C84—H84C	109.5
C41—N10—N11	115.1 (2)	H84B—C84—H84C	109.5
C44—N11—N10	103.2 (2)	С85—О9—Н9О	109.3
C46—N12—C54	114.7 (2)	O9—C85—H85A	109.5
C63—N13—C67	117.6 (2)	O9—C85—H85B	109.5
C63—N13—Zn2	118.75 (18)	H85A—C85—H85B	109.5
C67—N13—Zn2	123.63 (17)	O9—C85—H85C	109.5
C61—N14—N15	111.7 (2)	H85A—C85—H85C	109.5
C61—N14—C75	128.9 (2)	H85B—C85—H85C	109.5
O2—Zn1—O1—C1	111.56 (19)	N9—Zn2—O3—C41	-2.09 (19)
N1—Zn1—O1—C1	-7.08 (19)	O4—Zn2—O3—C41	114.16 (19)
N5—Zn1—O1—C1	-131.79 (18)	N13—Zn2—O3—C41	-127.12 (19)
C1—N2—N3—C4	-0.8 (3)	C55—N10—N11—C44	-179.1 (2)
C15—N2—N3—C4	173.0 (2)	C41—N10—N11—C44	1.3 (3)
C21—N6—N7—C24	1.7 (3)	C61—N14—N15—C64	0.4 (3)
C35—N6—N7—C24	-172.4 (2)	C75—N14—N15—C64	180.0 (2)
Zn1—O1—C1—N2	-171.44 (18)	Zn2—O3—C41—N10	-179.97 (19)
Zn1—O1—C1—C2	6.6 (4)	Zn2—O3—C41—C42	-0.4 (4)
C15—N2—C1—O1	6.3 (4)	C55—N10—C41—O3	-1.5 (4)
N3—N2—C1—O1	179.5 (2)	N11—N10—C41—O3	178.0 (2)
C15—N2—C1—C2	-172.3 (2)	C55—N10—C41—C42	178.8 (2)

N3—N2—C1—C2	1.0 (3)	N11—N10—C41—C42	-1.7 (3)
O1—C1—C2—C3	-2.3 (5)	O3—C41—C42—C43	2.3 (4)
N2—C1—C2—C3	176.1 (2)	N10-C41-C42-C43	-178.0 (2)
O1—C1—C2—C4	-179.2 (3)	O3—C41—C42—C44	-178.3 (3)
N2—C1—C2—C4	-0.8 (3)	N10-C41-C42-C44	1.3 (3)
C7—N1—C3—C2	178.5 (2)	C41—C42—C43—N9	-0.4 (4)
Zn1—N1—C3—C2	-4.2 (3)	C44—C42—C43—N9	-179.6(2)
C1-C2-C3-N1	0.8 (4)	C47—N9—C43—C42	179.6 (2)
C4—C2—C3—N1	177.1 (2)	Zn2—N9—C43—C42	-2.9(4)
N2—N3—C4—C2	0.2 (3)	N10—N11—C44—C45	-179.9(2)
N2—N3—C4—C5	-179.7(2)	N10-N11-C44-C42	-0.3(3)
C3—C2—C4—N3	-176.4(2)	C43—C42—C44—N11	178.6 (3)
C1-C2-C4-N3	0.4 (3)	C41—C42—C44—N11	-0.7(3)
C3-C2-C4-C5	3.4 (4)	C43—C42—C44—C45	-1.9(5)
C1-C2-C4-C5	-179.8(3)	C41-C42-C44-C45	178.8 (3)
C14 - N4 - C6 - C7	-1.7(4)	C54 - N12 - C46 - C47	0.7 (4)
$C_{3}-N_{1}-C_{7}-C_{8}$	-362(3)	C43 - N9 - C47 - C48	5 3 (4)
$Z_n 1 - N 1 - C 7 - C 8$	1464(2)	Zn2—N9—C47—C48	-172.3(2)
$C_{3}-N_{1}-C_{7}-C_{6}$	144 8 (2)	C43 - N9 - C47 - C46	-173.6(2)
$Z_{n1} = N_{1} = C_{7} = C_{6}$	-32.7(3)	Zn2-N9-C47-C46	87(3)
N4—C6—C7—C8	13(4)	N12-C46-C47-C48	-32(4)
N4-C6-C7-N1	-1796(2)	N12 - C46 - C47 - N9	175.8(2)
N1-C7-C8-C9	-1791(2)	N9-C47-C48-C49	-1755(2)
C6-C7-C8-C9	-0.1(4)	C46-C47-C48-C49	3 4 (4)
C7-C8-C9-C10	1775(2)	C47 - C48 - C49 - C50	177.6(2)
C7-C8-C9-C14	-0.5(4)	C47 - C48 - C49 - C54	-1.7(4)
C8-C9-C10-C11	-1770(3)	$C_{48} - C_{49} - C_{50} - C_{51}$	-1780(2)
C14-C9-C10-C11	0.9(4)	C_{54} C_{49} C_{50} C_{51}	13(4)
C9-C10-C11-C12	-11(4)	C49 - C50 - C51 - C52	-12(4)
C10-C11-C12-C13	0.4(5)	$C_{50} - C_{51} - C_{52} - C_{53}$	0.1(4)
$C_{11} - C_{12} - C_{13} - C_{14}$	0.6(4)	$C_{51} - C_{52} - C_{53} - C_{54}$	0.1(1)
C12 - C13 - C14 - N4	1774(2)	$C_{46} N_{12} C_{54} C_{53}$	-1785(2)
C12 - C13 - C14 - C9	-0.8(4)	C46 - N12 - C54 - C49	170.5(2)
C6-N4-C14-C13	-1771(2)	C_{52} C_{53} C_{54} N_{12}	1.2(1) 1790(2)
C6-N4-C14-C9	10(4)	$C_{52} = C_{53} = C_{54} = C_{49}$	-0.8(4)
C8-C9-C14-C13	1.0(1) 1780(2)	$C_{48} - C_{49} - C_{54} - N_{12}$	-0.7(4)
C10-C9-C14-C13	0.1(4)	C_{50} C_{49} C_{54} N_{12}	1799(2)
C8-C9-C14-N4	0.1(1)	$C_{48} - C_{49} - C_{54} - C_{53}$	179.0(2)
C10-C9-C14-N4	-1779(2)	C_{50} C_{49} C_{54} C_{53}	-0.4(4)
C1-N2-C15-C16	1591(2)	$C_{41} = N_{10} = C_{55} = C_{56}$	165.9(2)
N_{3} N_{2} C_{15} C_{16}	-139(3)	N11_N10_C55_C56	-13.6(3)
C1 - N2 - C15 - C20	-209(4)	$C_{41} N_{10} C_{55} C_{60}$	-14.8(4)
N_{3} N_{2} C_{15} C_{20}	1661(2)	N11_N10_C55_C60	1657(2)
N_{2} C_{15} C_{16} C_{17}	-1793(3)	N10-C55-C56-C57	-1787(2)
C_{20} C_{15} C_{16} C_{17}	07(4)	C60-C55-C56-C57	2.1(4)
C15 - C16 - C17 - C18	0.5 (4)	$C_{55} = C_{56} = C_{57} = C_{58}$	-1.6(4)
C16-C17-C18-C19	-10(5)	$C_{56} - C_{57} - C_{58} - C_{59}$	05(4)
C17 - C18 - C19 - C20	0.2(5)	C_{57} C_{58} C_{59} C_{60}	0.3(4)
01, 010 017 020	··- (·)		5.5 (I)

C18—C19—C20—C15	0.9 (5)	C58—C59—C60—C55	0.0 (4)
N2-C15-C20-C19	178.6 (3)	N10-C55-C60-C59	179.5 (2)
C16—C15—C20—C19	-1.4 (5)	C56—C55—C60—C59	-1.3 (4)
Zn1—O2—C21—N6	173.05 (17)	Zn2—O4—C61—N14	179.41 (17)
Zn1—O2—C21—C22	-7.7 (3)	Zn2—O4—C61—C62	-2.6(3)
N7—N6—C21—O2	176.7 (2)	N15—N14—C61—O4	178.0 (2)
C35—N6—C21—O2	-9.9 (4)	C75—N14—C61—O4	-1.6 (4)
N7—N6—C21—C22	-2.7(3)	N15—N14—C61—C62	-0.5(3)
C35—N6—C21—C22	170.7 (2)	C75—N14—C61—C62	-180.0(2)
O2—C21—C22—C23	5.9 (4)	O4—C61—C62—C63	-1.6 (4)
N6-C21-C22-C23	-174.8 (2)	N14—C61—C62—C63	176.6 (2)
O2—C21—C22—C24	-176.9 (2)	O4—C61—C62—C64	-177.9(2)
N6-C21-C22-C24	2.5 (3)	N14—C61—C62—C64	0.3 (3)
C27—N5—C23—C22	173.7 (2)	C67—N13—C63—C62	-179.3 (2)
Zn1—N5—C23—C22	1.0 (3)	Zn2—N13—C63—C62	-1.3 (3)
C21—C22—C23—N5	-1.7 (4)	C61—C62—C63—N13	3.9 (4)
C24—C22—C23—N5	-178.3 (2)	C64—C62—C63—N13	179.4 (2)
N6—N7—C24—C22	0.0 (3)	N14—N15—C64—C62	-0.2(3)
N6—N7—C24—C25	-179.8(2)	N14—N15—C64—C65	-179.5(2)
C23—C22—C24—N7	175.6 (2)	C63—C62—C64—N15	-176.4(2)
C21—C22—C24—N7	-1.6(3)	C61—C62—C64—N15	-0.1(3)
C23—C22—C24—C25	-4.6 (4)	C63—C62—C64—C65	2.8 (4)
C_{21} C_{22} C_{24} C_{25}	178.2 (2)	C61—C62—C64—C65	179.2 (2)
C34—N8—C26—C27	-1.1(4)	C74—N16—C66—C67	1.0 (4)
N8-C26-C27-C28	-0.1 (4)	N16—C66—C67—C68	4.0 (4)
N8-C26-C27-N5	176.4 (2)	N16—C66—C67—N13	-176.0(2)
C23—N5—C27—C28	-48.8 (3)	C63—N13—C67—C68	-26.4(3)
Zn1-N5-C27-C28	124.0 (2)	Zn2—N13—C67—C68	155.7(2)
C_{23} N5 C_{27} C_{26}	134.9 (2)	C63—N13—C67—C66	153.6 (2)
Zn1-N5-C27-C26	-52.3(3)	Zn2-N13-C67-C66	-24.2(3)
C_{26} C_{27} C_{28} C_{29}	1.6 (4)	C66—C67—C68—C69	-5.4(4)
N5-C27-C28-C29	-174.7(2)	N13—C67—C68—C69	174.6 (2)
C_{27} C_{28} C_{29} C_{34}	-2.1(4)	C67 - C68 - C69 - C74	2.0(3)
C_{27} C_{28} C_{29} C_{30}	174.6 (3)	C67—C68—C69—C70	-175.7(2)
C_{34} C_{29} C_{30} C_{31}	1.3 (4)	C74—C69—C70—C71	-0.8(4)
C_{28} C_{29} C_{30} C_{31}	-175.4(3)	C68 - C69 - C70 - C71	176.9 (2)
C_{29} C_{30} C_{31} C_{32}	-1.5(5)	C69-C70-C71-C72	0.5(4)
C_{30} C_{31} C_{32} C_{33}	-0.3(4)	C70-C71-C72-C73	0.0(4)
$C_{31} - C_{32} - C_{33} - C_{34}$	2.1(4)	C71 - C72 - C73 - C74	-0.1(4)
$C_{26} N_{8} C_{34} C_{29}$	0.6(4)	C_{66} N16 C_{74} C69	-4.7(4)
$C_{26} N_{8} C_{34} C_{33}$	-175.8(2)	$C_{66} N_{16} C_{74} C_{73}$	1757(2)
C_{30} C_{29} C_{34} N8	-176.0(2)	C68 - C69 - C74 - N16	33(4)
C_{28} C_{29} C_{34} N_8	0.9 (4)	C70—C69—C74—N16	-179.0(2)
C_{30} C_{29} C_{34} C_{33}	0.5 (4)	C68 - C69 - C74 - C73	-177.2(2)
C_{28} C_{29} C_{34} C_{33}	177.3 (2)	C70—C69—C74—C73	0.6 (3)
C32—C33—C34—N8	174.2 (2)	C72—C73—C74—N16	179.4 (2)
C32—C33—C34—C29	-2.2 (4)	C72—C73—C74—C69	-0.1(4)
C21—N6—C35—C40	-20.8 (4)	C61—N14—C75—C80	-28.5(4)
			(• /

N7—N6—C35—C40	152.1 (2)	N15—N14—C75—C80	152.0 (2)
C21—N6—C35—C36	160.8 (2)	C61—N14—C75—C76	153.6 (2)
N7—N6—C35—C36	-26.2 (3)	N15—N14—C75—C76	-25.9 (3)
C40—C35—C36—C37	-0.7 (4)	C80—C75—C76—C77	-0.7 (4)
N6-C35-C36-C37	177.7 (2)	N14—C75—C76—C77	177.3 (2)
C35—C36—C37—C38	1.0 (4)	C75—C76—C77—C78	0.9 (4)
C36—C37—C38—C39	-0.5 (4)	C76—C77—C78—C79	-0.7 (4)
C37—C38—C39—C40	-0.3 (4)	C77—C78—C79—C80	0.3 (4)
C38—C39—C40—C35	0.7 (4)	C76—C75—C80—C79	0.3 (4)
C36—C35—C40—C39	-0.2 (4)	N14—C75—C80—C79	-177.7 (2)
N6-C35-C40-C39	-178.6 (2)	C78—C79—C80—C75	-0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D…A	D—H··· A
C5—H5A····O5 ⁱ	0.98	2.43	3.312 (4)	149
С6—Н6…О2	0.95	2.25	3.148 (4)	157
C23—H23…O6 ⁱⁱ	0.95	2.31	3.260 (3)	179
C46—H46…N13	0.95	2.56	3.368 (3)	144
С66—Н66…ОЗ	0.95	2.46	3.344 (4)	155
C68—H68…O9 ⁱⁱⁱ	0.95	2.40	3.334 (4)	170
O5—H5 <i>O</i> ····N3 ^{iv}	0.91	2.10	2.977 (4)	164
O6—H6 <i>O</i> …N4	0.91	1.92	2.830 (3)	175
07—H7 <i>O</i> …N8	0.91	2.10	2.993 (4)	168
07′—H7 <i>OA</i> …N8	0.90	1.89	2.794 (10)	179
O8—H8 <i>O</i> …N12 ^v	0.91	1.91	2.816 (3)	173
О9—H9 <i>O</i> …О8	0.90	1.73	2.622 (3)	170
C85—H85 <i>C</i> ···O9 ^{vi}	0.98	2.46	3.340 (4)	150

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1, *y*, *z*; (iv) *x*, *y*, *z*-1; (v) *x*+1, *y*, *z*; (vi) -*x*+2, -*y*, -*z*.