

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 30 June 2017 Accepted 6 July 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; nickel complex; pyridine diimine; redox non-innocent ligand; electron-donating groups.

CCDC reference: 1560729

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Synthesis and crystal structure of a disubstituted nickel(II) bis[(dimethylaminophenylimino)ethyl]pyridine chloride complex

Morgan Matthews,^a Madison Sendzik,^a Adrienne Bruggeman,^a Claire Kearns,^a Allen G. Oliver^b and Dominic C. Babbini^a*

^aDepartment of Chemistry and Physics, Saint Mary's College, Notre Dame, IN 46556, USA, and ^bDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA. *Correspondence e-mail: dbabbini@saintmarys.edu

The solvated title compound, bis[2,6-bis(1-{[4-(dimethylamino)phenyl]imino- κN }ethyl)pyridine- κN]nickel(II) dichloride-dichloromethane-water (1/2/2), [Ni(C₂₅H₂₉N₅)₂]Cl₂·2CH₂Cl₂·2H₂O, represents a nickel(II) bis(pyridine diimine) complex with electron-donating dimethylaminophenyl substituents. The complex crystallizes as a water/dichloromethane solvate with Z' = 2, thus the asymmetric unit consists of two Ni^{II} complex cations, four chloride anions, four adventitious water and four dichloromethane solvent molecules. Around each octahedrally coordinated Ni^{II} cation, one pendant phenyl group on each of the two ligands has an intramolecular π - π interaction with the pyridine ring of the other chelating ligand. In the crystal, pairs of water molecules are hydrogen bonded to pairs of chlorine atoms. The dichloromethane solvent molecules are likewise hydrogen bonded to the chloride anions.

1. Chemical context

Non-innocent ligand systems in organometallics can produce secondary reactivity and allow for unique mechanistic and redox properties (Babbini & Iluc, 2015; Praneeth et al., 2012). Redox non-innocence is usually observed with chelate ligands which possess low-lying π -systems that can allow for electron transfer (Lyaskovskyy & de Bruin, 2012). These ligand systems can also allow for multiple-electron redox events to take place on metal cations which are usually relegated to single-electron events (Haneline & Heyduk, 2006). This can allow for the utilization of benign and economically viable base metal catalysts in lieu of traditional noble-metal catalysts (Chirik & Wieghardt, 2010). The development of new and varied organometallic complexes is essential for understanding the structure-property relationships, which give rise to redox non-innocence properties. With expanding interest in redox-active organometallic systems, we report here the synthesis and structural determination of a potentially redoxactive nickel(II) complex possessing two pyridine diimine ligands containing electron-donating substituents.

2. Structural commentary

The title compounds crystallizes with two complex Ni^{II} cations, associated chloride anions, adventitious water and dichloromethane molecules of solvation in the asymmetric unit (Fig. 1). Although the two cations are crystallographically independent they are chemically identical and the general discussion for one, holds for the second molecule. We inspected the structure for higher and missed symmetry (Spek, 2009), but there is none.

Each nickel(II) cation is coordinated in a distorted octahedral geometry by the imine and pyridine nitrogen atoms of the two tridentate 2,6-bis[1-(4-dimethylaminophenylimino)ethyl]-

pyridine (PDI-DMA) ligands (Fig. 1, Table 1 for numerical details). The derived metrics for the molecules are as expected. It should be noted that the $Ni-N_{py}$ bond lengths are all considerably shorter than the $Ni-N_{imine}$ bond lengths. However, both interactions are typical for these types of bonds/moieties.

Table 1		
Selected geometric parameters (Å, '	°).

	•	,	
Ni1-N2	1.9694 (18)	Ni2-N12	1.9658 (18)
Ni1-N5	1.9725 (18)	Ni2-N15	1.9711 (18)
Ni1-N3	2.0844 (18)	Ni2-N14	2.0909 (19)
Ni1-N4	2.0948 (19)	Ni2-N11	2.0977 (19)
Ni1-N1	2.1243 (19)	Ni2-N13	2.1188 (19)
Ni1-N6	2.1354 (19)	Ni2-N16	2.141 (2)
N2-Ni1-N5	167.57 (8)	N12-Ni2-N15	167.94 (8)
N2-Ni1-N3	77.92 (7)	N12 - Ni2 - N14	110.67 (7)
N5-Ni1-N3	111.32 (7)	N15-Ni2-N14	78.01 (7)
N2-Ni1-N4	110.91 (7)	N12-Ni2-N11	77.79 (7)
N5-Ni1-N4	77.83 (8)	N15-Ni2-N11	111.03 (7)
N3-Ni1-N4	92.14 (7)	N14-Ni2-N11	91.70 (7)
N2-Ni1-N1	76.66 (7)	N12-Ni2-N13	76.89 (7)
N5-Ni1-N1	94.65 (7)	N15-Ni2-N13	94.86 (7)
N3-Ni1-N1	153.98 (7)	N14-Ni2-N13	91.88 (7)
N4-Ni1-N1	91.75 (7)	N11-Ni2-N13	154.04 (7)
N2-Ni1-N6	94.89 (7)	N12-Ni2-N16	94.74 (7)
N5-Ni1-N6	76.68 (8)	N15-Ni2-N16	76.75 (8)
N3-Ni1-N6	93.36 (7)	N14-Ni2-N16	154.58 (7)
N4-Ni1-N6	154.19 (7)	N11-Ni2-N16	94.50 (7)
N1-Ni1-N6	94.25 (7)	N13-Ni2-N16	93.21 (7)

An interesting feature of the cations is the orientation of the pendant dimethylaminophenyl rings with respect to the pyridine ring of each ligand. In all cases, one pendant phenyl group is oriented close to perpendicular to the plane of the parent pyridine ring while the other is canted at an angle of around 60° (Fig. 2); numerical details of these features are collated in Table 2. Inspection of the molecules shows that a combination of steric and π - π stacking interactions are the cause of these orientations. The phenyl rings that are close to perpendicular to the parent pyridine are sterically constrained by the pyridine rings of the second ligand and include weak intramolecular π - π interactions (Table 2). The second di-

Figure 1

Selective labelling scheme for $[Ni(C_{25}H_{29}N_5)_2]Cl_2 \cdot 2CH_2Cl_2 \cdot 2H_2O$. Atomic displacement ellipsoids are depicted at the 50% probability level and H atoms shown as spheres of arbitrary radius. Hydrogen-bonding interactions are denoted as blue, dashed lines.

Table 2Interplanar angles and close π - π interactions (Å, °).

Phenyl ring	Pyridine ring	Angle
C19-C24	N2-C7	87.58 (6)
C27-C28	N2-C7	64.85 (7)
C35-C40	N5-C16	54.42 (8)
C43-C48	N5-C16	83.76 (6)
C69-C74	N12-C57	63.47 (7)
C77-C82	N12-C57	87.83 (6)
C85-C90	N15-C66	53.63 (8)
C93–C98	N15-C66	81.53 (7)
Phenyl ring	Pyridine ring	$Cg1 \cdots Cg2$
C43–C48	N2-C7	3.487 (1)
C19-C24	N5-C46	3.675 (1)
C93-C98	N12-C57	3.520(1)
C85-C90	N15-C66	3.696 (1)

Cg1 and Cg2 are the centroids for the named phenyl and pyridine rings.

methylaminophenyl group is less hindered and adopts a typical tilted orientation.

3. Supramolecular features

Within the intermolecular packing of the cationic molecules pairs of solvent water molecules form a hydrogen-bonded dimer with pairs of chloride anions (Fig. 1, Table 3). Each dichloromethane solvent molecule also forms a weak, but directional, hydrogen bond with a chloride anion (Table 3). Surprisingly, the cation does not have any particular directional interactions with other species in the structure, aside

Figure 2

A single cationic unit (Ni1) displaying intramolecular π - π interactions between phenyl and pyridyl rings.

Table 3		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1 - H1OA \cdots Cl1$	0.91	2.33	3,2381 (19)	177
$O1 - H1OB \cdot \cdot \cdot Cl2$	0.88	2.31	3.188 (2)	177
$O2-H2OA\cdots Cl1$	1.01	2.18	3.192 (2)	175
$O2-H2OB\cdots Cl2$	0.95	2.32	3.2691 (19)	177
O3−H3OA···Cl4	0.90	2.30	3.198 (2)	178
O3−H3OB···Cl3	0.87	2.34	3.201 (2)	174
$O4-H4OB\cdots Cl3$	1.08	2.12	3.180 (2)	168
$O4-H4OA\cdots Cl4$	0.94	2.25	3.192 (2)	177
$C1S - H1SB \cdot \cdot \cdot Cl3$	0.99	2.47	3.422 (3)	162
$C2S-H2SA\cdots Cl4$	0.99	2.81	3.743 (4)	158
$C2S - H2SB \cdot \cdot \cdot Cl1^{i}$	0.99	2.66	3.642 (3)	169
C3S-H3SA···N17 ⁱⁱ	0.99	2.42	3.403 (4)	173
$C3S - H3SB \cdot \cdot \cdot Cl2$	0.99	2.49	3.447 (3)	163
$C4S-H4SA\cdots Cl4$	0.99	2.54	3.527 (3)	176

Symmetry codes: (i) x, y + 1, z; (ii) x - 1, y, z.

from a weak $C-H \cdots N$ interaction with one of the dichloromethane solvents (Table 3) and typical van der Waals contacts (Fig. 3).

4. Database survey

A search of the Cambridge Structure Database (Version 5.38 + three updates; Groom *et al.*, 2016) reveals 13 structures that incorporate Ni^{II} coordinated by two bis-iminoarylpyridyl ligands. Of these, there are only three related structures with the imine carbon atoms methylated (FADFUN, Patel *et al.*, 2010; MEGDUX, de Bruin *et al.*, 2000; QEZJOV, Trivedi *et al.*, 2007).

5. Synthesis and crystallization

The reagent 2,6-diacetylpyridine was synthesized according to a previously reported method (Su & Feng, 2010). The ligand was prepared by a modification of previously reported Schiffbase condensation methods (Small & Brookhart, 1999; Chen *et al.*, 2003). All other reagents and solvents were purchased commercially and used without further purification. ¹H NMR data were collected on a Varian 60 MHz NMR. Mass spectra were collected using direct injection on a ThermoScientific TSQ–ESI Mass spectrometer.

Synthesis of 2,6-bis(1-(4-dimethylaminophenylimino)ethyl)pyridine (PDI-DMA). A solution of 2,6-diacetylpyridine 4-(dimethylamino)aniline (1.0 g, 6.10 mmol), (1.7 g, 12.5 mmol) and formic acid (1 ml) was prepared in toluene (100 ml) under nitrogen atmosphere and then stirred for 12 h on molecular sieves. The reaction mixture was filtered and extracted with excess dichloromethane, then the amount of solvent was reduced in vacuo. The crude yellow product was then washed with cold methanol, followed by diethyl ether and filtered producing a pure bright-yellow solid (yield 1.8 g, 72.7% yield). ¹H NMR (60 MHz, CDCl₃, 293 K): δ 8.4–8.2 (*m*, 2H, Py-H), 7.9-7.8 (m, 1H, Py-H), 6.8 (m, 8H, Ar-H) 3.0 (s, 12H, N-CH₃), 2.5 (s, 6H, CH₃). MS (ESI): 400.4 m/z $[C_{25}H_{29}N_5]H^+$.

research communications

Table 4	
Experimental	details.

Crystal data	
Chemical formula	$[Ni(C_{25}H_{29}N_5)_2]Cl_2 \cdot 2CH_2Cl_2 \cdot 2H_2O$
$M_{\rm r}$	1134.55
Crystal system, space group	Triclinic, P1
Temperature (K)	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	13.2227 (5), 17.7311 (6), 24.0242 (9)
$lpha,eta,\gamma(^\circ)$	79.6276 (12), 81.2551 (12), 89.3481 (12)
$V(Å^3)$	5475.4 (3)
Z	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.70
Crystal size (mm)	$0.30 \times 0.22 \times 0.15$
Data collection	
Diffractometer	Bruker Kappa X8 APEXII
Absorption correction	Numerical (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.823, 0.917
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	69305, 24260, 17532
R _{int}	0.034
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.643
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.115, 1.04
No. of reflections	24260
No. of parameters	1315
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.19, -1.00

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2006), POV-RAY (Cason, 2003) and publCIF (Westrip, 2010).

Synthesis of [bis-(2,6-bis-(1-(4-dimethylaminophenylimino)ethyl)pyridine)nickel(II)] chloride. A solution of the PDI-DMA ligand (300 mg, 0.75 mmol) and nickel(II) chloride (48.7 mg, 0.38 mmol) was prepared in THF (15 ml) under nitrogen atmosphere, then stirred for 12 h. The solution was filtered and extracted with dichloromethane. The solvent was removed *in vacuo* yielding a dark reddish-brown solid (yield 220 mg, 67.5% yield). X-ray diffraction quality crystals were isolated as red–brown blocks by vapor diffusion of hexanes into a saturated solution of the product and dichloromethane. The complex was NMR silent (paramagnetic). MS (ESI): m/z855.5 [$C_{50}H_{57}N_{10}Ni$]⁺.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms bonded to carbon were placed in geometric positions with C-H = 0.95, 0.99 and 0.98 Å and $U_{iso}(H) = 1.2 \times$, $1.2 \times$ or $1.5 \times U_{eq}(C)$ for aromatic, methylene and methyl H atoms, successively. Water H atoms were initially located from a difference Fourier map and included in their initially observed positions and allowed to ride with the position of the parent oxygen atom. Displacement parameters of the hydrogen atom were freely refined. Two reflections ($\overline{3}41$ and 0,10,2) were omitted from the

Figure 3 Packing diagram of $[Ni(C_{25}H_{29}N_5)_2]Cl_2 \cdot 2CH_2Cl_2 \cdot 2H_2O$, viewed along the *a* axis.

refinement for poorly agreeing statistics. It is not clear from the diffraction data why these two reflections agree poorly.

Acknowledgements

The authors thank Professor Christopher Dunlap and all of the undergraduate students in the Advanced Lab at Saint Mary's College.

References

- Babbini, D. C. & Iluc, V. M. (2015). Organometallics, 34, 3141-3151.
- Bruin, B. de, Bill, E., Bothe, E., Weyhermüller, T. & Wieghardt, K. (2000). *Inorg. Chem.* **39**, 2936–2947.
- Bruker. (2016). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
- Cason, C. J. (2003). *POV-RAY*. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.
- Chen, Y., Chen, R., Qian, C., Dong, X. & Sun, J. (2003). Organometallics, 22, 4312–4321.
- Chirik, P. J. & Wieghardt, K. (2010). Science, 327, 794-795.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Haneline, M. R. & Heyduk, A. F. (2006). J. Am. Chem. Soc. 128, 8410–8411.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Lyaskovskyy, V. & de Bruin, B. (2012). ACS Catal. 2, 270-279.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Patel, R. N., Shukla, K. K., Singh, A., Choudhary, M., Patel, D. K., Niclós-Gutiérrez, J. & Choquesillo-Lazarte, D. (2010). J. Coord. Chem. 63, 3648–3661.
- Praneeth, V. K., Ringenberg, M. R. & Ward, T. R. (2012). Angew. Chem. Int. Ed. 51, 10228–10234.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Small, B. L. & Brookhart, M. (1999). *Macromolecules*, **32**, 2120–2130.
Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.
Su, B. & Feng, G. (2010). *Polym. Int.* **59**, 1058–1063.

Trivedi, M., Pandey, D. S. & Xu, Q. (2007). *Inorg. Chim. Acta*, 360, 2492–2498.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2017). E73, 1167-1171 [https://doi.org/10.1107/S2056989017010088]

Synthesis and crystal structure of a disubstituted nickel(II) bis[(dimethylaminophenylimino)ethyl]pyridine chloride complex

Morgan Matthews, Madison Sendzik, Adrienne Bruggeman, Claire Kearns, Allen G. Oliver and Dominic C. Babbini

Computing details

Crystal data

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2006) and *POV-RAY* (Cason, 2003); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Bis[2,6-bis(1-{[4-(dimethylamino)phenyl]imino- κN }ethyl)pyridine- κN]nickel dichloride-dichloromethane-water (1/2/2)

0 restraints

Primary atom site location: dual

5	
$[Ni(C_{25}H_{29}N_5)_2]Cl_2 \cdot 2CH_2Cl_2 \cdot 2H_2O$ $M_r = 1134.55$ Triclinic, $P\overline{1}$ a = 13.2227 (5) Å b = 17.7311 (6) Å c = 24.0242 (9) Å a = 79.6276 (12)° $\beta = 81.2551$ (12)° $\gamma = 89.3481$ (12)° V = 5475.4 (3) Å ³	Z = 4 F(000) = 2376 $D_x = 1.376 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9951 reflections $\theta = 2.3-27.1^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 120 K Block, red-brown $0.30 \times 0.22 \times 0.15 \text{ mm}$
Data collection	
Bruker Kappa X8 APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.33 pixels mm ⁻¹ combination of ω and φ -scans Absorption correction: numerical (SADABS; Krause <i>et al.</i> , 2015) $T_{\min} = 0.823$, $T_{\max} = 0.917$	69305 measured reflections 24260 independent reflections 17532 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 27.2^{\circ}, \theta_{min} = 0.9^{\circ}$ $h = -16 \rightarrow 17$ $k = -22 \rightarrow 17$ $l = -30 \rightarrow 30$
Refinement	
Refinement on F^2 Least-squares matrix: full	24260 reflections 1315 parameters

 $R[F^2 > 2\sigma(F^2)] = 0.045$

 $wR(F^2) = 0.115$

S = 1.04

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0506P)^2 + 2.6902P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} = 0.001$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm max} = 1.19 \text{ e} \text{ Å}^{-3}$
and constrained refinement	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	y	Z	$U_{\rm iso}^*/U_{\rm eq}$	
Nil	0.94318 (2)	0.75736 (2)	0.49692 (2)	0.01340 (7)	
N1	1.05673 (14)	0.67220 (11)	0.49125 (8)	0.0166 (4)	
N2	0.95646 (14)	0.71811 (10)	0.57750 (8)	0.0144 (4)	
N3	0.82707 (14)	0.81477 (10)	0.54041 (8)	0.0144 (4)	
N4	0.83769 (14)	0.69100 (11)	0.46895 (8)	0.0159 (4)	
N5	0.96256 (14)	0.79725 (11)	0.41383 (8)	0.0160 (4)	
N6	1.05128 (14)	0.84927 (11)	0.48658 (8)	0.0175 (4)	
N7	1.1429 (2)	0.59662 (16)	0.27296 (10)	0.0457 (7)	
N8	0.52711 (16)	0.97392 (12)	0.42701 (9)	0.0280 (5)	
N9	0.55000 (15)	0.49107 (12)	0.61881 (8)	0.0227 (5)	
N10	1.15686 (17)	0.90581 (13)	0.69285 (9)	0.0296 (5)	
C1	1.16227 (19)	0.57935 (14)	0.54579 (11)	0.0233 (5)	
H1A	1.136317	0.539445	0.578538	0.035*	
H1B	1.225916	0.601482	0.552529	0.035*	
H1C	1.175557	0.556835	0.511047	0.035*	
C2	1.08458 (17)	0.64073 (13)	0.53853 (10)	0.0168 (5)	
C3	1.03387 (17)	0.67150 (13)	0.58929 (10)	0.0167 (5)	
C4	1.06214 (18)	0.65800 (13)	0.64315 (10)	0.0194 (5)	
H4	1.116034	0.624052	0.651682	0.023*	
C5	1.00967 (19)	0.69538 (14)	0.68448 (10)	0.0228 (5)	
H5	1.028500	0.687638	0.721684	0.027*	
C6	0.93018 (18)	0.74383 (13)	0.67207 (9)	0.0194 (5)	
H6	0.893902	0.769471	0.700257	0.023*	
C7	0.90505 (17)	0.75385 (13)	0.61731 (9)	0.0161 (5)	
C8	0.82490 (17)	0.80492 (13)	0.59496 (9)	0.0173 (5)	
C9	0.7536 (2)	0.84156 (15)	0.63575 (10)	0.0260 (6)	
H9A	0.721265	0.885380	0.614604	0.039*	
H9B	0.791610	0.859229	0.663071	0.039*	
H9C	0.700707	0.804227	0.656481	0.039*	
C10	0.7904 (2)	0.65176 (15)	0.38197 (10)	0.0257 (6)	
H10A	0.841203	0.632636	0.353884	0.039*	
H10B	0.740456	0.682801	0.362100	0.039*	
H10C	0.755211	0.608311	0.408634	0.039*	
C11	0.84277 (17)	0.69971 (13)	0.41435 (9)	0.0168 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	0.91471 (18)	0.76121 (13)	0.38117 (9)	0.0186 (5)
C13	0.9351 (2)	0.78081 (15)	0.32215 (10)	0.0248 (6)
H13	0.900143	0.755688	0.298739	0.030*
C14	1.0075 (2)	0.83771 (15)	0.29787 (10)	0.0289 (6)
H14	1.021311	0.852980	0.257442	0.035*
C15	1.05953 (19)	0.87230 (14)	0.33243(10)	0.0238 (5)
H15	1.110914	0.910294	0.316229	0.029*
C16	1 03522 (18)	0.85042(13)	0.39117(10)	0.0185(5)
C17	1.03522(10) 1.08515(17)	0.87935(13)	0.33117(10) 0.43460(10)	0.0185(5)
C18	1.00010(17) 1.17011(19)	0.93686 (15)	0.41517(11)	0.0261 (6)
H18A	1 228120	0.013848	0.30/000	0.0201 (0)
HISR	1.228120	0.913040	0.394099	0.039
	1.191450	0.955200	0.440515	0.039
C10	1.140090	0.981332	0.390108	0.039°
C19	1.00903(17)	0.04009(13)	0.43820(10) 0.20(52(10))	0.0178(3)
C20	1.101/0 (18)	0.08909 (14)	0.39652 (10)	0.0230 (5)
H20	1.1980//	0.730099	0.405527	0.028*
C21	1.18083 (19)	0.67215 (15)	0.34221 (11)	0.0251 (6)
H21	1.230742	0.701307	0.314221	0.030*
C22	1.1274 (2)	0.61228 (15)	0.32767 (10)	0.0271 (6)
C23	1.05641 (19)	0.56951 (14)	0.37042 (10)	0.0225 (5)
H23	1.020520	0.527833	0.362044	0.027*
C24	1.03783 (18)	0.58720 (13)	0.42482 (10)	0.0193 (5)
H24	0.988637	0.557966	0.453214	0.023*
C25	1.0827 (3)	0.53817 (19)	0.25846 (13)	0.0521 (9)
H25A	1.094887	0.540549	0.216909	0.078*
H25B	1.009999	0.546380	0.270993	0.078*
H25C	1.102091	0.487698	0.277596	0.078*
C26	1.2234 (3)	0.6350(2)	0.23073 (12)	0.0498 (9)
H26A	1.220798	0.619096	0.193961	0.075*
H26B	1.289751	0.621567	0.242902	0.075*
H26C	1.214523	0.690610	0.226508	0.075*
C27	0.74965 (17)	0.85605 (13)	0.51336 (9)	0.0157 (5)
C28	0.64669 (18)	0.83715 (13)	0.53030 (10)	0.0187 (5)
H28	0.626768	0.797287	0.562145	0.022*
C29	0.57299 (18)	0.87494 (14)	0.50192 (10)	0.0203 (5)
H29	0.503067	0.860425	0.514036	0.024*
C30	0.59985 (18)	0.93470 (13)	0.45527 (10)	0.0196 (5)
C31	0.70425 (18)	0.95273 (14)	0.43811 (10)	0.0208 (5)
H31	0.724853	0.992756	0.406481	0.025*
C32	0.77730(18)	0.91340(13)	0 46633 (10)	0.0189(5)
H32	0.847651	0.925789	0.453346	0.023*
C33	0.42161(19)	0.923703 0.94824 (15)	0.139510 0.43961(12)	0.029
U33 Л	0.381030	0.082107	0.41/058	0.0300(0)
H33R	0.305252	0.982107	0.414938	0.045*
H33C	0.393232	0.949431	0.779027	0.045*
C34	0.7100/4	1 03030 (16)	0.37651 (12)	0.043°
U24A	0.3370(2)	1.03030 (10)	0.37031(12) 0.249059	0.0341(7)
п 34А 1124 р	0.001/31	1.00018	0.296226	0.051*
п 34В	0.393234	1.0/2150	0.386326	0.051*

H34C	0 496755	1 050668	0 360655	0.051*
C35	0 76478 (17)	0.63922 (13)	0.50586 (9)	0.001
C36	0 79552 (18)	0.58544(13)	0 54891 (10)	0.0190(5)
H36	0.865580	0.583262	0.553655	0.023*
C37	0.72591 (18)	0.53484(14)	0.58508 (10)	0.029
H37	0.749218	0.497177	0.613513	0.0201 (5)
C38	0.749210 0.62107 (18)	0.497177 0.53799(14)	0.58066 (10)	0.024
C39	0.59132(18)	0.59409(14)	0.53729(10)	0.0193(5)
H30	0.521086	0.597914	0.533023	0.0217 (3)
C40	0.521000 0.66142(18)	0.577914 0.64363 (14)	0.50083 (10)	0.020
H40	0.630010	0.681147	0.71084	0.0207 (3)
C41	0.039019 0.5864 (2)	0.001147 0.42651(15)	0.471904 0.65642 (11)	0.025
H41A	0.5804 (2)	0.42031 (13)	0.633483	0.0318 (0)
H41R	0.528145	0.390774	0.682571	0.048*
	0.528145	0.400190	0.082571	0.048*
C42	0.054101 0.4508(2)	0.47877 (16)	0.078009 0.60241(11)	0.048
	0.4508 (2)	0.47877 (10)	0.566317	0.0310 (0)
1142A 1142D	0.400000	0.439291	0.500517	0.047*
П42D	0.414557	0.327378	0.597408	0.047*
П42C	0.410040	0.441554 0.87102 (12)	0.032380 0.52470(10)	0.047°
C43	1.08/10(17) 1.16022(18)	0.87102(13) 0.82542(14)	0.55470(10)	0.0170(3)
	1.10955 (16)	0.03343(14)	0.55075 (11)	0.0223 (3)
П44	1.210300	0.802041	0.333813	0.027°
U45	1.19237 (18)	0.84071 (14)	0.00803 (11)	0.0228 (3)
П43	1.249412	0.821234	0.022909	0.027°
C46	1.13421 (19)	0.89493(14)	0.64076(10)	0.0213(5)
C4/	1.05252 (19)	0.93204 (14)	0.01/10(10)	0.0221 (5)
H4/	1.012341	0.966345	0.63/060	0.026*
C48	1.02924 (18)	0.91978 (13)	0.56543 (10)	0.0207 (5)
H48	0.972696	0.945109	0.550648	0.025*
C49	1.2292 (2)	0.85579(16)	0.72049 (11)	0.0301 (6)
H49A	1.29/161	0.863652	0.69/296	0.045*
H49B	1.207223	0.802256	0.724323	0.045*
H49C	1.232031	0.867663	0.758518	0.045*
C50	1.0876 (3)	0.94759 (19)	0.72748 (12)	0.0452 (8)
H50A	1.084052	1.000644	0.707531	0.068*
H50B	1.111921	0.947165	0.764081	0.068*
H50C	1.019373	0.923509	0.734519	0.068*
N12	0.56947 (2)	0.24363 (2)	0.00835 (2)	0.01385 (7)
NII	0.68705 (14)	0.18659 (10)	-0.03550 (8)	0.0155 (4)
N12	0.55080 (14)	0.27763 (10)	-0.07190 (8)	0.0151 (4)
N13	0.45280 (14)	0.32605 (11)	0.01389 (8)	0.0171 (4)
N14	0.67462 (14)	0.31505 (11)	0.03144 (8)	0.0161 (4)
N15	0.55654 (14)	0.20771 (11)	0.09172 (8)	0.0150 (4)
N16	0.46245 (14)	0.14972 (11)	0.02362 (8)	0.0182 (4)
N17	0.99169 (15)	0.04118 (12)	0.08291 (9)	0.0242 (5)
NI8	0.57685 (19)	0.412/1 (14)	0.22925 (9)	0.0357 (6)
N19	0.94578 (16)	0.51957 (12)	-0.12614 (8)	0.0237 (5)
N20	0.31106 (17)	0.09062 (12)	-0.17089 (9)	0.0262 (5)

C51	0.7577(2)	0 15726 (15)	-0.13050(10)	0 0269 (6)
H51A	0.718818	0.137060	-0.156353	0.040*
H51R	0 792933	0.115188	-0.109264	0.040*
H51C	0.808292	0.195271	-0.152867	0.040*
C52	0.68663(17)	0.195271 0.19410 (13)	-0.08951(10)	0.040
C52	0.00003(17) 0.60277(17)	0.19410(13) 0.24108(13)	-0.11123(0)	0.0171(5)
C54	0.00277(17)	0.24198(13) 0.24080(14)	-0.16545(10)	0.0100(5)
UJ4	0.57040 (19)	0.24980 (14)	0.10343 (10)	0.0213(3)
ПЈ4	0.013333	0.224199	-0.193412	0.020°
	0.49465 (19)	0.29378 (13)	-0.1/801 (10)	0.0238 (3)
H55	0.4/54/1	0.302140	-0.215040	0.029*
056	0.44113 (18)	0.33270 (14)	-0.136/2 (10)	0.0206 (5)
H56	0.385370	0.364835	-0.145040	0.025*
C57	0.47085 (17)	0.32147 (13)	-0.08330 (10)	0.0167 (5)
C58	0.41979 (17)	0.35308 (13)	-0.03301 (10)	0.0166 (5)
C59	0.33651 (19)	0.40976 (14)	-0.03978 (11)	0.0241 (6)
H59A	0.358257	0.450045	-0.073032	0.036*
H59B	0.321669	0.432684	-0.005289	0.036*
H59C	0.274825	0.383835	-0.045475	0.036*
C60	0.72346 (19)	0.36265 (15)	0.11472 (10)	0.0250 (6)
H60A	0.779031	0.336004	0.132491	0.037*
H60B	0.673451	0.379628	0.144231	0.037*
H60C	0.751460	0.407272	0.086472	0.037*
C61	0.67234 (17)	0.30942 (13)	0.08571 (9)	0.0172 (5)
C62	0.60561 (18)	0.24702 (13)	0.12198 (10)	0.0185 (5)
C63	0.59120 (19)	0.22916 (15)	0.18118 (10)	0.0236 (5)
H63	0.626434	0.256967	0.202846	0.028*
C64	0.5243 (2)	0.16992 (15)	0.20789 (10)	0.0275 (6)
H64	0.514948	0.155467	0.248399	0.033*
C65	0.47086 (19)	0.13146 (15)	0.17613 (10)	0.0242 (6)
H65	0.423395	0.091485	0.194332	0.029*
C66	0.48824(17)	0 15267 (13)	0 11720 (10)	0.0179(5)
C67	0.43353(17)	0.12126 (13)	0.07645(10)	0.0176(5)
C68	0.34921(18)	0.06396(14)	0.09959(10)	0.0170(5)
H68A	0.292197	0.088299	0.120406	0.036*
H68B	0.374153	0.021270	0.125654	0.036*
H68C	0.325786	0.021270	0.067920	0.036*
C69	0.525700 0.76642 (17)	0.044000	-0.00836(0)	0.030
C70	0.70042(17)	0.14734(13) 0.16776(14)	-0.02611(10)	0.0137(3)
U70	0.80890 (18)	0.10770 (14)	-0.050000	0.0197(3)
C71	0.00000000000000000000000000000000000	0.200212 0.12256 (14)	0.039009	0.024
U71	0.94550 (16)	0.13230 (14)	0.00329 (10)	0.0198 (3)
H/1	1.013013	0.14/105	-0.009612	0.024^{*}
C72	0.91/99 (18)	0.07570(13)	0.05185(10)	0.0187(5)
C/3	0.81430 (17)	0.05617 (13)	0.06959 (10)	0.0186 (5)
H/3	0./94696	0.01/490	0.102280	0.022*
C/4	0.74035 (18)	0.09244 (13)	0.04017 (9)	0.0181 (5)
H74	0.670321	0.079178	0.053433	0.022*
C75	1.09837 (18)	0.04733 (15)	0.05675 (12)	0.0283 (6)
H75A	1.107647	0.022214	0.023212	0.042*

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H75B	1.141015	0.022376	0.084491	0.042*
$\begin{array}{cccccc} C76 & 0.9646 (2) & -0.02654 (15) & 0.12591 (11) & 0.0296 (6) \\ H76A & 0.904829 & -0.016017 & 0.152782 & 0.044* \\ H76B & 1.022231 & -0.040681 & 0.146707 & 0.044* \\ H76C & 0.948218 & -0.068858 & 0.107401 & 0.044* \\ C77 & 0.42147 (17) & 0.35379 (13) & 0.06615 (9) & 0.0173 (5) \\ C78 & 0.47223 (18) & 0.41554 (14) & 0.07667 (10) & 0.0197 (5) \\ H78 & 0.518429 & 0.445066 & 0.046939 & 0.024* \\ C79 & 0.45709 (19) & 0.43536 (14) & 0.13060 (10) & 0.0228 (5) \\ H79 & 0.492865 & 0.478365 & 0.137058 & 0.0278 \\ C80 & 0.3896 (2) & 0.39279 (15) & 0.17561 (10) & 0.0239 (5) \\ C81 & 0.33736 (19) & 0.33057 (15) & 0.16367 (11) & 0.0251 (6) \\ H81 & 0.290104 & 0.301186 & 0.193112 & 0.030 \\ C82 & 0.35333 (18) & 0.31143 (14) & 0.11014 (10) & 0.0213 (5) \\ H82 & 0.317470 & 0.268829 & 0.103109 & 0.026* \\ C83 & 0.4592 (3) & 0.4527 (2) & 0.24455 (13) & 0.0533 (9) \\ H83A & 0.523400 & 0.426066 & 0.235860 & 0.080* \\ H83B & 0.445762 & 0.454245 & 0.285587 & 0.080* \\ H83C & 0.464636 & 0.505161 & 0.222671 & 0.087 \\ C84 & 0.3087 (3) & 0.3664 (2) & 0.27473 (12) & 0.0478 (5) \\ H84A & 0.24138 & 0.36136 & 0.262939 & 0.072* \\ H84B & 0.301969 & 0.389675 & 0.309104 & 0.072* \\ H84B & 0.301969 & 0.389675 & 0.309104 & 0.072* \\ H84C & 0.336403 & 0.314761 & 0.283087 & 0.072* \\ H84B & 0.301969 & 0.389675 & 0.309104 & 0.072* \\ C85 & 0.74349 (17) & 0.36746 (13) & -0.00789 (10) & 0.0172 (5) \\ C86 & 0.84744 (18) & 0.36710 (14) & -0.04850 (10) & 0.0172 (5) \\ C86 & 0.84744 (18) & 0.36710 (14) & -0.08657 (10) & 0.0196 (5) \\ C89 & 0.77351 (18) & 0.47017 (14) & -0.08590 (10) & 0.0224 (5) \\ H87 & 0.984552 & 0.416525 & -0.040252 & 0.027* \\ C88 & 0.87861 (18) & 0.47017 (14) & -0.08590 (10) & 0.0224 (5) \\ H89 & 0.766454 & 0.506014 & -0.117197 & 0.024* \\ C90 & 0.70755 (18) & 0.41854 (14) & -0.0586 (10) & 0.0191 (5) \\ H91A & 1.085777 & 0.568007 & -0.145205 & 0.044* \\ H91B & 1.082341 & 0.484664 & -0.105975 & 0.044* \\ H91B & 1.082341 & 0.484664 & -0.105975 & 0.044* \\ H92A & 0.958874 & 0.615216 & -0.18309 & 0.047* \\ H92C & 0.852204 & 0.567199 & -0.18471 & 0.047* \\ C94 &$	H75C	1.118476	0.101550	0.044875	0.042*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C76	0.9646 (2)	-0.02654(15)	0.12591 (11)	0.0296 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H76A	0.904829	-0.016017	0.152782	0.044*
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H76B	1.022231	-0.040681	0.146707	0.044*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H76C	0.948218	-0.068858	0.107401	0.044*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C77	0.42147 (17)	0.35379 (13)	0.06615 (9)	0.0173 (5)
H78 0.518429 0.445066 0.046939 0.024^* C79 $0.45709 (19)$ $0.43536 (14)$ $0.13660 (10)$ $0.0228 (5)$ H79 0.492865 0.478365 0.137058 0.027^* C80 $0.33896 (2)$ $0.33057 (15)$ $0.17561 (10)$ $0.0229 (5)$ C81 $0.33736 (19)$ $0.33057 (15)$ $0.16367 (11)$ $0.0221 (5)$ H81 0.290104 0.301186 0.193112 0.030^* C82 $0.53333 (18)$ $0.31143 (14)$ $0.11014 (10)$ $0.0223 (5)$ H82 0.317470 0.268829 0.103109 0.026^* C83 $0.4592 (3)$ $0.4527 (2)$ $0.24455 (13)$ $0.0533 (9)$ H83A 0.523400 0.426066 0.235860 0.080^* H83B 0.445762 0.454245 0.285587 0.080^* H84A 0.241338 $0.3664 (2)$ $0.27473 (12)$ $0.0478 (8)$ H84A 0.241338 0.36675 0.309104 0.072^* H84B 0.301969 0.389675 0.309104 0.072^* C85 $0.74349 (17)$ $0.36746 (13)$ $-0.00769 (10)$ $0.0172 (5)$ C86 0.873301 0.331411 0.22320 0.026^* C87 $0.91370 (19)$ $0.41760 (14)$ $-0.04322 (10)$ $0.0225 (5)$ H87 0.984552 0.416525 -0.040252 0.027^* C88 $0.77311 (18)$ $0.47077 (14)$ $-0.08890 (10)$ $0.0203 (5)$ H89 0.764544 0.506014 $-0.11291 (11)$	C78	0.47223 (18)	0.41554 (14)	0.07687 (10)	0.0197 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H78	0.518429	0.445066	0.046939	0.024*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C79	0.45709 (19)	0.43536 (14)	0.13060 (10)	0.0228 (5)
C80 $0.3896 (2)$ $0.39279 (15)$ $0.17561 (10)$ $0.0239 (5)$ C81 $0.33736 (19)$ $0.33057 (15)$ $0.16367 (11)$ $0.0211 (6)$ H81 0.290104 0.301186 0.19112 $0.3021 (6)$ C82 $0.35333 (18)$ $0.31143 (14)$ $0.11014 (10)$ $0.0213 (5)$ H82 0.317470 0.268829 0.103109 $0.026*$ C83 $0.4592 (3)$ $0.4527 (2)$ $0.24455 (13)$ $0.0533 (9)$ H83A 0.523400 0.426066 0.235860 $0.080*$ H83B 0.445762 0.454245 0.225711 $0.080*$ C84 $0.3087 (3)$ $0.3664 (2)$ $0.27473 (12)$ $0.0478 (8)$ H84A 0.241338 0.363136 0.2226711 $0.080*$ K84 0.301969 0.389675 0.30104 $0.072*$ H84C 0.336403 0.314761 0.22309 $0.072*$ K85 $0.7349 (17)$ $0.36746 (13)$ $-0.00769 (10)$ $0.0172 (5)$ C86 $0.84744 (18)$ $0.36710 (14)$ $-0.00498 (10)$ $0.0214 (5)$ H86 0.873301 0.31471 $0.0232 (10)$ $0.0225 (5)$ H87 0.984552 0.416555 -0.040252 $0.027*$ C88 $0.87861 (18)$ $0.4705 (14)$ $-0.08667 (10)$ $0.0191 (5)$ C90 $0.70755 (18)$ $0.41854 (14)$ -0.054258 $0.023*$ C91 $1.04661 (19)$ $0.53340 (16)$ -0.145205 $0.044*$ H91D 1.082341 0.48664 -0.105975 0.0	H79	0.492865	0.478365	0.137058	0.027*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C80	0.3896 (2)	0.39279 (15)	0.17561 (10)	0.0239 (5)
H81 0.290104 0.301186 0.193112 $0.030*$ C82 0.35333 (18) 0.31143 (14) 0.11014 (10) 0.0213 (5)H82 0.317470 0.268829 0.103109 $0.026*$ C83 0.4592 (3) 0.4527 (2) 0.24455 (13) 0.0533 (9)H83A 0.523400 0.426066 0.255860 $0.080*$ H83B 0.445762 0.454245 0.285587 $0.080*$ K83D 0.464636 0.505161 0.222671 $0.080*$ C84 0.3087 (3) 0.3664 (2) 0.27473 (12) 0.0478 (8)H84A 0.241338 0.363136 0.262939 $0.72*$ H84B 0.301969 0.389675 0.309104 $0.072*$ H84C 0.336403 0.314761 0.283087 $0.072*$ C85 0.74349 (17) 0.36746 (13) -0.00769 (10) 0.0172 (5)C86 0.84744 (18) 0.36710 (14) -0.04322 (10) 0.0225 (5)H87 0.984552 0.416525 -0.040252 $0.027*$ C88 0.87861 (18) 0.47075 (14) -0.08857 (10) 0.0196 (5)C89 0.77311 (18) 0.47075 (14) -0.08866 (10) 0.0295 (5)H890 0.636926 0.417942 -0.054258 $0.023*$ C91 1.04661 (19) 0.5568007 -0.145205 $0.044*$ H91C 1.039846 0.556807 -0.145292 $0.047*$ H91B 1.085777 0.568007 -0.145292 $0.047*$ H92	C81	0.33736 (19)	0.33057 (15)	0.16367 (11)	0.0251 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H81	0.290104	0.301186	0.193112	0.030*
H82 0.317470 0.268829 0.103109 0.026^* C83 $0.4592 (3)$ $0.4527 (2)$ $0.24455 (13)$ $0.0533 (9)$ H83A 0.523400 0.426066 0.235860 0.080^* H83B 0.445762 0.454245 0.285587 0.080^* H83C 0.445762 0.454245 0.222671 0.080^* C84 $0.3087 (3)$ $0.3664 (2)$ $0.27473 (12)$ $0.0478 (8)$ H84A 0.241338 0.363136 0.262939 0.072^* H84B 0.301969 0.389675 0.309104 0.072^* K84C 0.336403 0.314761 0.283087 0.072^* C85 $0.74349 (17)$ $0.3676 (13)$ $-0.00769 (10)$ $0.0172 (5)$ C86 $0.84744 (18)$ $0.36710 (14)$ $-0.00498 (10)$ $0.0214 (5)$ H86 0.873301 0.331411 0.023720 0.026^* C87 $0.91370 (19)$ $0.41760 (14)$ $-0.04322 (10)$ $0.0225 (5)$ H87 0.984552 0.416525 -0.040252 $0.27*$ C88 $0.87861 (18)$ $0.47017 (14)$ $-0.08890 (10)$ $0.0203 (5)$ H89 0.746454 0.506014 -0.117197 0.024^* C90 $0.70755 (18)$ $0.41854 (14)$ -0.054258 0.023^* C91 $1.04661 (19)$ $0.53800 (16)$ -0.163205 0.044^* H91B 1.082341 0.48664 -0.105975 0.044^* H91B 1.082341 $0.88500 (16)$ -0.183090 0.047^* <	C82	0.35333 (18)	0.31143 (14)	0.11014 (10)	0.0213 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H82	0.317470	0.268829	0.103109	0.026*
H83A 0.523400 0.426066 0.235860 0.080^* H83B 0.445762 0.454245 0.285587 0.080^* H83C 0.464636 0.505161 0.222671 0.080^* C84 0.3087 (3) 0.3664 (2) 0.27473 (12) 0.0478 (8)H84A 0.241338 0.363136 0.262939 0.72^* H84B 0.301969 0.389675 0.309104 0.072^* H84C 0.336403 0.314761 0.283087 0.072^* C85 0.74349 (17) 0.36746 (13) -0.00769 (10) 0.0172 (5)C86 0.84744 (18) 0.36710 (14) -0.04498 (10) 0.0214 (5)H86 0.873301 0.31411 0.023720 0.026^* C87 0.91370 (19) 0.41760 (14) -0.044252 (10) 0.0225 (5)H87 0.984552 0.416525 -0.040252 0.027^* C88 0.87861 (18) 0.47075 (14) -0.08657 (10) 0.0196 (5)C89 0.77311 (18) 0.47075 (14) -0.05860 (10) 0.023^* (5)H90 0.636926 0.417942 -0.054258 0.023^* C91 1.04661 (19) 0.53340 (16) -0.11291 (11) 0.0225 (6)H91A 1.085777 0.568007 -0.145205 0.044^* H91B 1.082341 0.48664 -0.105975 0.044^* H91B 1.08574 0.612516 -0.188309 0.047^* H92C 0.85204 0.567199 -0.180471 0.047^* </td <td>C83</td> <td>0.4592 (3)</td> <td>0.4527 (2)</td> <td>0.24455 (13)</td> <td>0.0533 (9)</td>	C83	0.4592 (3)	0.4527 (2)	0.24455 (13)	0.0533 (9)
H83B 0.445762 0.454245 0.285587 $0.080*$ H83C 0.464636 0.505161 0.222671 $0.080*$ C84 0.3087 (3) 0.3664 (2) 0.27473 (12) 0.0478 (8)H84A 0.241338 0.363136 0.262939 $0.072*$ H84B 0.301969 0.389675 0.309104 $0.072*$ K84C 0.336403 0.314761 0.283087 $0.072*$ C85 0.74349 (17) 0.36746 (13) -0.00769 (10) 0.0172 (5)C86 0.84744 (18) 0.36710 (14) -0.0498 (10) 0.0214 (5)H86 0.873301 0.331411 0.023720 $0.026*$ C87 0.91370 (19) 0.41760 (14) -0.04322 (10) 0.0225 (5)H87 0.984552 0.416525 -0.040252 $0.027*$ C88 0.87861 (18) 0.47075 (14) -0.08890 (10) 0.0203 (5)H89 0.746454 0.506014 -0.117197 $0.024*$ C90 0.70755 (18) 0.41854 (14) -0.05866 (10) 0.0191 (5)H90 0.636926 0.417942 -0.054258 $0.023*$ C91 1.04661 (19) 0.53340 (16) -0.11291 (11) 0.0225 (6)H91A 1.082341 0.48664 -0.105975 $0.044*$ H91B 1.082341 0.48664 -0.105975 $0.044*$ H91C 1.039846 0.557199 -0.18309 $0.047*$ H92A 0.958874 0.612516 -0.18309 $0.047*$ H92B	H83A	0.523400	0.426066	0.235860	0.080*
H83C 0.464636 0.505161 0.222671 $0.080*$ C84 $0.3087(3)$ $0.3664(2)$ $0.27473(12)$ $0.0478(8)$ H84A 0.241338 0.363136 0.262939 $0.072*$ H84B 0.301969 0.389675 0.309104 $0.072*$ H84C 0.336403 0.314761 0.283087 $0.072*$ C85 $0.74349(17)$ $0.36746(13)$ $-0.00769(10)$ $0.0172(5)$ C86 $0.84744(18)$ $0.36710(14)$ $-0.0498(10)$ $0.0214(5)$ H86 0.873301 0.331411 0.023720 $0.026*$ C87 $0.91370(19)$ $0.41760(14)$ $-0.04922(10)$ $0.0225(5)$ H87 0.984552 0.416525 -0.040252 $0.027*$ C88 $0.87861(18)$ $0.47075(14)$ $-0.08890(10)$ $0.0203(5)$ H89 0.746454 0.506014 -0.117197 $0.024*$ C90 $0.70755(18)$ $0.41854(14)$ $-0.05086(10)$ $0.0191(5)$ H90 0.636926 0.417942 -0.054258 $0.023*$ C91 $1.04661(19)$ $0.53340(16)$ $-0.11291(11)$ $0.0295(6)$ H91A 1.082341 0.48464 -0.105975 $0.044*$ H91B 1.082341 0.486660 -0.078608 $0.047*$ H92A 0.958874 0.612516 -0.183309 $0.047*$ H92B 0.872168 0.619454 -0.135292 $0.047*$ H92B 0.872168 0.619454 $-0.12151(9)$ $0.0175(5)$ C94 $0.32708(18$	H83B	0.445762	0.454245	0.285587	0.080*
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H83C	0.464636	0.505161	0.222671	0.080*
H84A 0.241338 0.363136 0.262939 $0.072*$ H84B 0.301969 0.389675 0.309104 $0.072*$ H84C 0.336403 0.314761 0.283087 $0.072*$ C85 $0.74349(17)$ $0.36746(13)$ $-0.00769(10)$ $0.0172(5)$ C86 $0.84744(18)$ $0.36710(14)$ $-0.00498(10)$ $0.0214(5)$ H86 0.873301 0.331411 0.023720 $0.026*$ C87 $0.91370(19)$ $0.41760(14)$ $-0.04322(10)$ $0.0225(5)$ H87 0.984552 0.416525 -0.040252 $0.027*$ C88 $0.87861(18)$ $0.47075(14)$ $-0.08657(10)$ $0.0196(5)$ C89 $0.77311(18)$ $0.47077(14)$ $-0.08890(10)$ $0.0203(5)$ H89 0.746454 0.506014 -0.117197 $0.024*$ C90 $0.70755(18)$ $0.41854(14)$ $-0.05086(10)$ $0.0191(5)$ H90 0.636926 0.417942 -0.054258 $0.023*$ C91 $1.04661(19)$ $0.53340(16)$ $-0.11291(11)$ $0.0295(6)$ H91A 1.085777 0.568007 -0.145205 $0.044*$ H91E 1.039846 0.556860 -0.078608 $0.044*$ C92 $0.9038(2)$ $0.58500(16)$ -0.183099 $0.047*$ H92A 0.958874 0.612516 -0.183099 $0.047*$ H92B 0.872168 0.619454 $-0.03611(11)$ $0.0237(5)$ H94 0.288481 0.189838 -0.012175 $0.028*$ C95	C84	0.3087 (3)	0.3664 (2)	0.27473 (12)	0.0478 (8)
H84B 0.301969 0.389675 0.309104 $0.072*$ H84C 0.336403 0.314761 0.283087 $0.072*$ C85 $0.74349(17)$ $0.36746(13)$ $-0.00769(10)$ $0.0172(5)$ C86 $0.84744(18)$ $0.36710(14)$ $-0.00498(10)$ $0.0214(5)$ H86 0.873301 0.331411 0.023720 $0.026*$ C87 $0.91370(19)$ $0.41760(14)$ $-0.04322(10)$ $0.0225(5)$ H87 0.984552 0.416525 -0.040252 $0.027*$ C88 $0.87861(18)$ $0.47075(14)$ $-0.08657(10)$ $0.0196(5)$ C89 $0.77311(18)$ $0.47017(14)$ $-0.08890(10)$ $0.023(5)$ H89 0.746454 0.506014 -0.117197 $0.024*$ C90 $0.70755(18)$ $0.41854(14)$ $-0.5086(10)$ $0.0191(5)$ H90 0.636926 0.417942 -0.054258 $0.023*$ C91 $1.04661(19)$ $0.53340(16)$ $-0.11291(11)$ $0.0295(6)$ H91A 1.085777 0.568007 -0.145205 $0.044*$ H91B 1.082341 0.484664 -0.105975 $0.044*$ H92A 0.958874 0.612516 -0.183309 $0.047*$ H92B 0.872168 0.619454 -0.135292 $0.047*$ H92C 0.85204 0.567199 -0.180471 $0.047*$ C93 $0.41735(17)$ $0.12778(13)$ $-0.02151(9)$ $0.0175(5)$ H94 0.288481 0.189838 -0.012175 $0.028*$ C95	H84A	0.241338	0.363136	0.262939	0.072*
H84C 0.336403 0.314761 0.283087 $0.072*$ C85 $0.74349 (17)$ $0.36746 (13)$ $-0.00769 (10)$ $0.0172 (5)$ C86 $0.84744 (18)$ $0.36710 (14)$ $-0.00498 (10)$ $0.0214 (5)$ H86 0.873301 0.331411 0.023720 $0.026*$ C87 $0.91370 (19)$ $0.41760 (14)$ $-0.04322 (10)$ $0.0225 (5)$ H87 0.984552 0.416525 -0.040252 $0.027*$ C88 $0.87861 (18)$ $0.47075 (14)$ $-0.08657 (10)$ $0.0196 (5)$ C89 $0.77311 (18)$ $0.47017 (14)$ $-0.08890 (10)$ $0.0203 (5)$ H89 0.746454 0.506014 -0.117197 $0.024*$ C90 $0.70755 (18)$ $0.41854 (14)$ $-0.05086 (10)$ $0.0191 (5)$ H90 0.636926 0.417942 -0.054258 $0.023*$ C91 $1.04661 (19)$ $0.53400 (16)$ $-0.11291 (11)$ $0.0295 (6)$ H91A 1.085777 0.568007 -0.145205 $0.044*$ H91C 1.039846 0.556860 -0.078608 $0.044*$ C92 $0.9038 (2)$ $0.58500 (16)$ $-0.16033 (11)$ $0.312 (6)$ H92B 0.872168 0.612516 -0.18309 $0.047*$ H92C 0.852204 0.567199 -0.180471 $0.047*$ C93 $0.41735 (17)$ $0.12778 (13)$ $-0.02151 (9)$ $0.0175 (5)$ C94 $0.32708 (18)$ $0.15923 (14)$ -0.03819 $0.031*$ C95 0.229322 0.168900 -0.09	H84B	0.301969	0.389675	0.309104	0.072*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H84C	0.336403	0.314761	0.283087	0.072*
C86 $0.84744 (18)$ $0.36710 (14)$ $-0.00498 (10)$ $0.0214 (5)$ H86 0.873301 0.331411 0.023720 $0.026*$ C87 $0.91370 (19)$ $0.41760 (14)$ $-0.04322 (10)$ $0.0225 (5)$ H87 0.984552 0.416525 -0.040252 $0.027*$ C88 $0.87861 (18)$ $0.47075 (14)$ $-0.08657 (10)$ $0.0196 (5)$ C89 $0.77311 (18)$ $0.47017 (14)$ $-0.08890 (10)$ $0.0203 (5)$ H89 0.746454 0.506014 -0.117197 $0.024*$ C90 $0.70755 (18)$ $0.41854 (14)$ $-0.05086 (10)$ $0.0191 (5)$ H90 0.636926 0.417942 -0.054258 $0.023*$ C91 $1.04661 (19)$ $0.53340 (16)$ $-0.11291 (11)$ $0.0295 (6)$ H91A 1.085777 0.568007 -0.145205 $0.044*$ H91B 1.082341 0.484664 -0.105975 $0.044*$ H91C 1.039846 0.556860 -0.078608 $0.044*$ C92 $0.9038 (2)$ $0.58500 (16)$ -0.18309 $0.047*$ H92B 0.872168 0.619454 -0.135292 $0.047*$ H92C 0.852204 0.567199 -0.180471 $0.047*$ C93 $0.41735 (17)$ $0.12778 (13)$ $-0.02151 (9)$ $0.0175 (5)$ C94 $0.32708 (18)$ $0.15923 (14)$ $-0.03611 (11)$ $0.0237 (5)$ H94 0.288481 0.189838 -0.012175 $0.028*$ C95 $0.29206 (19)$ $0.14689 (14)$ $-0.08494 ($	C85	0.74349 (17)	0.36746 (13)	-0.00769 (10)	0.0172 (5)
H86 0.873301 0.331411 0.023720 0.026^* C87 $0.91370(19)$ $0.41760(14)$ $-0.04322(10)$ $0.0225(5)$ H87 0.984552 0.416525 -0.040252 0.027^* C88 $0.87861(18)$ $0.47075(14)$ $-0.08657(10)$ $0.0196(5)$ C89 $0.77311(18)$ $0.47017(14)$ $-0.08890(10)$ $0.0203(5)$ H89 0.746454 0.506014 -0.117197 0.024^* C90 $0.70755(18)$ $0.41854(14)$ $-0.05086(10)$ $0.0191(5)$ H90 0.636926 0.417942 -0.054258 0.023^* C91 $1.04661(19)$ $0.53340(16)$ $-0.11291(11)$ $0.0295(6)$ H91A 1.085777 0.568007 -0.145205 0.044^* H91B 1.082341 0.484664 -0.105975 0.044^* H91C 1.039846 0.556860 -0.078608 0.044^* C92 $0.9038(2)$ $0.58500(16)$ $-0.1633(11)$ $0.0312(6)$ H92A 0.958874 0.612516 -0.188309 0.047^* H92B 0.872168 0.619454 -0.135292 0.047^* H92C 0.852204 0.567199 -0.180471 0.047^* C93 $0.41735(17)$ $0.12778(13)$ $-0.02151(9)$ $0.0175(5)$ C94 $0.32708(18)$ $0.15923(14)$ $-0.03611(11)$ $0.0237(5)$ H94 0.288481 0.189838 -0.012175 0.28^* C95 $0.29206(19)$ $0.14689(14)$ $-0.08494(11)$ $0.0257(6)$ <td>C86</td> <td>0.84744 (18)</td> <td>0.36710 (14)</td> <td>-0.00498 (10)</td> <td>0.0214 (5)</td>	C86	0.84744 (18)	0.36710 (14)	-0.00498 (10)	0.0214 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H86	0.873301	0.331411	0.023720	0.026*
H87 0.984552 0.416525 -0.040252 0.027^* C88 $0.87861 (18)$ $0.47075 (14)$ $-0.08657 (10)$ $0.0196 (5)$ C89 $0.77311 (18)$ $0.47017 (14)$ $-0.08890 (10)$ $0.0203 (5)$ H89 0.746454 0.506014 -0.117197 0.024^* C90 $0.70755 (18)$ $0.41854 (14)$ $-0.05086 (10)$ $0.0191 (5)$ H90 0.636926 0.417942 -0.054258 0.023^* C91 $1.04661 (19)$ $0.53340 (16)$ $-0.11291 (11)$ $0.0295 (6)$ H91A 1.085777 0.568007 -0.145205 0.044^* H91B 1.082341 0.484664 -0.105975 0.044^* H91C 1.039846 0.556860 -0.078608 0.044^* C92 $0.9038 (2)$ $0.58500 (16)$ $-0.16033 (11)$ $0.0312 (6)$ H92A 0.958874 0.612516 -0.188309 0.047^* H92B 0.872168 0.619454 $-0.02151 (9)$ $0.0175 (5)$ C94 $0.32708 (18)$ $0.15923 (14)$ $-0.03611 (11)$ $0.0237 (5)$ H94 0.288481 0.189838 -0.012175 0.028^* C95 $0.29206 (19)$ $0.14689 (14)$ $-0.08494 (11)$ $0.0257 (6)$ H95 0.229322 0.168900 -0.093819 0.031^*	C87	0.91370 (19)	0.41760 (14)	-0.04322 (10)	0.0225 (5)
C88 $0.87861 (18)$ $0.47075 (14)$ $-0.08657 (10)$ $0.0196 (5)$ C89 $0.77311 (18)$ $0.47017 (14)$ $-0.08890 (10)$ $0.0203 (5)$ H89 0.746454 0.506014 -0.117197 $0.024*$ C90 $0.70755 (18)$ $0.41854 (14)$ $-0.05086 (10)$ $0.0191 (5)$ H90 0.636926 0.417942 -0.054258 $0.023*$ C91 $1.04661 (19)$ $0.53340 (16)$ $-0.11291 (11)$ $0.0295 (6)$ H91A 1.085777 0.568007 -0.145205 $0.044*$ H91B 1.082341 0.484664 -0.105975 $0.044*$ H91C 1.039846 0.556860 -0.078608 $0.044*$ C92 $0.9038 (2)$ $0.58500 (16)$ $-0.16033 (11)$ $0.0312 (6)$ H92A 0.958874 0.612516 -0.188309 $0.047*$ H92B 0.872168 0.619454 $-0.02151 (9)$ $0.0175 (5)$ C93 $0.41735 (17)$ $0.12778 (13)$ $-0.02151 (9)$ $0.0175 (5)$ C94 $0.32708 (18)$ $0.15923 (14)$ $-0.03611 (11)$ $0.0237 (5)$ H94 0.288481 0.189838 -0.012175 $0.028*$ C95 0.229322 0.168900 -0.093819 $0.031*$ C96 $0.34662 (19)$ $0.10272 (13)$ $-0.12180 (10)$ $0.0208 (5)$	H87	0.984552	0.416525	-0.040252	0.027*
C89 $0.77311(18)$ $0.47017(14)$ $-0.08890(10)$ $0.0203(5)$ H89 0.746454 0.506014 -0.117197 $0.024*$ C90 $0.70755(18)$ $0.41854(14)$ $-0.05086(10)$ $0.0191(5)$ H90 0.636926 0.417942 -0.054258 $0.023*$ C91 $1.04661(19)$ $0.53340(16)$ $-0.11291(11)$ $0.0295(6)$ H91A 1.085777 0.568007 -0.145205 $0.044*$ H91B 1.082341 0.484664 -0.105975 $0.044*$ H91C 1.039846 0.556860 -0.078608 $0.044*$ C92 $0.9038(2)$ $0.58500(16)$ $-0.16033(11)$ $0.0312(6)$ H92A 0.958874 0.612516 -0.188309 $0.047*$ H92B 0.872168 0.619454 $-0.02151(9)$ $0.047*$ H92C 0.852204 0.567199 -0.180471 $0.047*$ C93 $0.41735(17)$ $0.12778(13)$ $-0.02151(9)$ $0.0175(5)$ C94 $0.32708(18)$ $0.15923(14)$ $-0.03611(11)$ $0.0237(5)$ H94 0.288481 0.189838 -0.012175 $0.028*$ C95 $0.29206(19)$ $0.14689(14)$ $-0.08494(11)$ $0.0257(6)$ H95 0.229322 0.168900 -0.093819 $0.031*$ C96 $0.34662(19)$ $0.10272(13)$ $-0.12180(10)$ $0.0208(5)$	C88	0.87861 (18)	0.47075 (14)	-0.08657 (10)	0.0196 (5)
H890.7464540.506014-0.1171970.024*C900.70755 (18)0.41854 (14)-0.05086 (10)0.0191 (5)H900.6369260.417942-0.0542580.023*C911.04661 (19)0.53340 (16)-0.11291 (11)0.0295 (6)H91A1.0857770.568007-0.1452050.044*H91B1.0823410.484664-0.1059750.044*H91C1.0398460.556860-0.0786080.044*C920.9038 (2)0.58500 (16)-0.16033 (11)0.0312 (6)H92A0.9588740.612516-0.1883090.047*H92B0.8721680.619454-0.1352920.047*H92C0.8522040.567199-0.1804710.047*C930.41735 (17)0.12778 (13)-0.02151 (9)0.0175 (5)C940.32708 (18)0.15923 (14)-0.03611 (11)0.0237 (5)H940.2884810.189838-0.0121750.028*C950.29206 (19)0.14689 (14)-0.08494 (11)0.0257 (6)H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	C89	0.77311 (18)	0.47017 (14)	-0.08890 (10)	0.0203 (5)
C90 $0.70755(18)$ $0.41854(14)$ $-0.05086(10)$ $0.0191(5)$ H90 0.636926 0.417942 -0.054258 0.023^* C91 $1.04661(19)$ $0.53340(16)$ $-0.11291(11)$ $0.0295(6)$ H91A 1.085777 0.568007 -0.145205 0.044^* H91B 1.082341 0.484664 -0.105975 0.044^* H91C 1.039846 0.556860 -0.078608 0.044^* C92 $0.9038(2)$ $0.58500(16)$ $-0.16033(11)$ $0.0312(6)$ H92A 0.958874 0.612516 -0.188309 0.047^* H92B 0.872168 0.619454 -0.135292 0.047^* H92C 0.852204 0.567199 -0.180471 0.047^* C93 $0.41735(17)$ $0.12778(13)$ $-0.02151(9)$ $0.0175(5)$ C94 $0.32708(18)$ $0.15923(14)$ $-0.03611(11)$ $0.0237(5)$ H94 0.288481 0.189838 -0.012175 0.028^* C95 $0.29206(19)$ $0.14689(14)$ $-0.08494(11)$ $0.0257(6)$ H95 0.229322 0.168900 -0.093819 0.031^* C96 $0.34662(19)$ $0.10272(13)$ $-0.12180(10)$ $0.0208(5)$	H89	0.746454	0.506014	-0.117197	0.024*
H900.6369260.417942-0.0542580.023*C911.04661 (19)0.53340 (16)-0.11291 (11)0.0295 (6)H91A1.0857770.568007-0.1452050.044*H91B1.0823410.484664-0.1059750.044*H91C1.0398460.556860-0.0786080.044*C920.9038 (2)0.58500 (16)-0.16033 (11)0.0312 (6)H92A0.9588740.612516-0.1883090.047*H92B0.8721680.619454-0.1352920.047*H92C0.8522040.567199-0.1804710.047*C930.41735 (17)0.12778 (13)-0.02151 (9)0.0175 (5)C940.32708 (18)0.15923 (14)-0.03611 (11)0.0237 (5)H940.2884810.189838-0.0121750.028*C950.29206 (19)0.14689 (14)-0.08494 (11)0.0257 (6)H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	C90	0.70755 (18)	0.41854 (14)	-0.05086 (10)	0.0191 (5)
C91 $1.04661(19)$ $0.53340(16)$ $-0.11291(11)$ $0.0295(6)$ H91A 1.085777 0.568007 -0.145205 $0.044*$ H91B 1.082341 0.484664 -0.105975 $0.044*$ H91C 1.039846 0.556860 -0.078608 $0.044*$ C92 $0.9038(2)$ $0.58500(16)$ $-0.16033(11)$ $0.0312(6)$ H92A 0.958874 0.612516 -0.188309 $0.047*$ H92B 0.872168 0.619454 -0.135292 $0.047*$ H92C 0.852204 0.567199 -0.180471 $0.047*$ C93 $0.41735(17)$ $0.12778(13)$ $-0.02151(9)$ $0.0175(5)$ C94 $0.32708(18)$ $0.15923(14)$ $-0.03611(11)$ $0.0237(5)$ H94 0.288481 0.189838 -0.012175 $0.028*$ C95 $0.29206(19)$ $0.14689(14)$ $-0.08494(11)$ $0.0257(6)$ H95 0.229322 0.168900 -0.093819 $0.031*$ C96 $0.34662(19)$ $0.10272(13)$ $-0.12180(10)$ $0.0208(5)$	H90	0.636926	0.417942	-0.054258	0.023*
H91A1.0857770.568007-0.1452050.044*H91B1.0823410.484664-0.1059750.044*H91C1.0398460.556860-0.0786080.044*C920.9038 (2)0.58500 (16)-0.16033 (11)0.0312 (6)H92A0.9588740.612516-0.1883090.047*H92B0.8721680.619454-0.1352920.047*H92C0.8522040.567199-0.1804710.047*C930.41735 (17)0.12778 (13)-0.02151 (9)0.0175 (5)C940.32708 (18)0.15923 (14)-0.03611 (11)0.0237 (5)H940.2884810.189838-0.0121750.028*C950.29206 (19)0.14689 (14)-0.08494 (11)0.0257 (6)H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	C91	1.04661 (19)	0.53340 (16)	-0.11291 (11)	0.0295 (6)
H91B1.0823410.484664-0.1059750.044*H91C1.0398460.556860-0.0786080.044*C920.9038 (2)0.58500 (16)-0.16033 (11)0.0312 (6)H92A0.9588740.612516-0.1883090.047*H92B0.8721680.619454-0.1352920.047*H92C0.8522040.567199-0.1804710.047*C930.41735 (17)0.12778 (13)-0.02151 (9)0.0175 (5)C940.32708 (18)0.15923 (14)-0.03611 (11)0.0237 (5)H940.2884810.189838-0.0121750.028*C950.29206 (19)0.14689 (14)-0.08494 (11)0.0257 (6)H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	H91A	1.085777	0.568007	-0.145205	0.044*
H91C1.0398460.556860-0.0786080.044*C920.9038 (2)0.58500 (16)-0.16033 (11)0.0312 (6)H92A0.9588740.612516-0.1883090.047*H92B0.8721680.619454-0.1352920.047*H92C0.8522040.567199-0.1804710.047*C930.41735 (17)0.12778 (13)-0.02151 (9)0.0175 (5)C940.32708 (18)0.15923 (14)-0.03611 (11)0.0237 (5)H940.2884810.189838-0.0121750.028*C950.29206 (19)0.14689 (14)-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	H91B	1.082341	0.484664	-0.105975	0.044*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H91C	1.039846	0.556860	-0.078608	0.044*
H92A0.9588740.612516-0.1883090.047*H92B0.8721680.619454-0.1352920.047*H92C0.8522040.567199-0.1804710.047*C930.41735 (17)0.12778 (13)-0.02151 (9)0.0175 (5)C940.32708 (18)0.15923 (14)-0.03611 (11)0.0237 (5)H940.2884810.189838-0.0121750.028*C950.29206 (19)0.14689 (14)-0.08494 (11)0.0257 (6)H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	C92	0.9038 (2)	0.58500 (16)	-0.16033 (11)	0.0312 (6)
H92B0.8721680.619454-0.1352920.047*H92C0.8522040.567199-0.1804710.047*C930.41735 (17)0.12778 (13)-0.02151 (9)0.0175 (5)C940.32708 (18)0.15923 (14)-0.03611 (11)0.0237 (5)H940.2884810.189838-0.0121750.028*C950.29206 (19)0.14689 (14)-0.08494 (11)0.0257 (6)H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	H92A	0.958874	0.612516	-0.188309	0.047*
H92C0.8522040.567199-0.1804710.047*C930.41735 (17)0.12778 (13)-0.02151 (9)0.0175 (5)C940.32708 (18)0.15923 (14)-0.03611 (11)0.0237 (5)H940.2884810.189838-0.0121750.028*C950.29206 (19)0.14689 (14)-0.08494 (11)0.0257 (6)H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	H92B	0.872168	0.619454	-0.135292	0.047*
C930.41735 (17)0.12778 (13)-0.02151 (9)0.0175 (5)C940.32708 (18)0.15923 (14)-0.03611 (11)0.0237 (5)H940.2884810.189838-0.0121750.028*C950.29206 (19)0.14689 (14)-0.08494 (11)0.0257 (6)H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	H92C	0.852204	0.567199	-0.180471	0.047*
C940.32708 (18)0.15923 (14)-0.03611 (11)0.0237 (5)H940.2884810.189838-0.0121750.028*C950.29206 (19)0.14689 (14)-0.08494 (11)0.0257 (6)H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	C93	0.41735 (17)	0.12778 (13)	-0.02151 (9)	0.0175 (5)
H940.2884810.189838-0.0121750.028*C950.29206 (19)0.14689 (14)-0.08494 (11)0.0257 (6)H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	C94	0.32708 (18)	0.15923 (14)	-0.03611 (11)	0.0237 (5)
C950.29206 (19)0.14689 (14)-0.08494 (11)0.0257 (6)H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	H94	0.288481	0.189838	-0.012175	0.028*
H950.2293220.168900-0.0938190.031*C960.34662 (19)0.10272 (13)-0.12180 (10)0.0208 (5)	C95	0.29206 (19)	0.14689 (14)	-0.08494 (11)	0.0257 (6)
C96 0.34662 (19) 0.10272 (13) -0.12180 (10) 0.0208 (5)	H95	0.229322	0.168900	-0.093819	0.031*
	C96	0.34662 (19)	0.10272 (13)	-0.12180 (10)	0.0208 (5)

C97	0.43628 (19)	0.06970 (14)	-0.10535 (11)	0.0236 (5)
H97	0.474148	0.037587	-0.128340	0.028*
C98	0.47125 (18)	0.08247 (13)	-0.05667 (10)	0.0207 (5)
H98	0.533245	0.059857	-0.047081	0.025*
C99	0.2497 (2)	0.15044 (16)	-0.19891 (11)	0.0339 (7)
H99A	0.228728	0.134516	-0.232516	0.051*
H99B	0.290311	0.198064	-0.210936	0.051*
H99C	0.188793	0.158934	-0.172099	0.051*
C100	0.3762 (2)	0.05017 (18)	-0.20938 (12)	0.0392 (7)
H10D	0.341524	0.044890	-0.241766	0.059*
H10E	0.390724	-0.000810	-0.188909	0.059*
H10F	0.440548	0.079042	-0.223531	0.059*
Cl1	0.32592 (6)	-0.13439 (4)	0.27016 (3)	0.03678 (17)
Cl2	0.20244 (5)	0.14063 (4)	0.22310 (3)	0.02772 (14)
C13	0.78142 (5)	0.36539 (4)	0.24816 (3)	0.02773 (15)
Cl4	0.68265 (5)	0.64160 (4)	0.26307 (3)	0.02594 (14)
C1S	0.5820 (2)	0.32718 (17)	0.35855 (12)	0.0371 (7)
HISA	0.531364	0.368201	0.362327	0.045*
HISB	0.641193	0.348995	0.330020	0.045*
Cl5	0 52651 (6)	0 25141 (5)	0 33470 (4)	0.0515(2)
Cl6	0.62287 (6)	0.29465 (5)	0.42512 (3)	0.04281(19)
C2S	0.5202(3)	0.76821(19)	0.34787(13)	0.0475 (9)
H2SA	0.545927	0.724886	0 329145	0.057*
H2SR	0.475215	0.799167	0.323530	0.057*
C17	0.44865(7)	0.73200 (5)	0.323330 0.41754(4)	0.057
C18	0.62339(7)	0.82496(5)	0.35527(3)	0.0511(2) 0.0502(2)
C3S	0.02555(7)	0.02190(3) 0.20879(16)	0.33327(3) 0.12292(12)	0.0352(2)
H3SA	0.025519	0.159576	0.113933	0.0332 (7)
H3SB	0.101700	0 197948	0 146971	0.042*
Cl9	0.09611 (6)	0 27075 (4)	0.05845(3)	0.012 0.04107 (18)
C110	-0.05734(6)	0.24757(5)	0.05015(3)	0.0514(2)
C4S	0.05754(0) 0.9087(2)	0.24757(5)	0.16731(12)	0.0314(2) 0.0381(7)
H4SA	0.844761	0.651571	0.190230	0.0361 (7)
H4SR	0.941460	0.608152	0.162716	0.046*
Cl11	0.87950 (6)	0.69474(4)	0.09336 (3)	0.040
C112	0.99139 (6)	0.09424(4) 0.72231(5)	0.09330(3) 0.18242(4)	0.04204(19)
01	0.15979(14)	-0.03002(11)	0.10242(4) 0.20668(7)	0.0302(2) 0.0298(4)
	0.208421	-0.057922	0.223474	0.0290(4)
HIOR	0.173321	0.057522	0.223474	0.049(10)
02	0.173321 0.35472(14)	0.03293(11)	0.29766 (7)	0.001(11) 0.0331(4)
U2 H2OA	0.33472 (14)	-0.019509	0.29700(7)	0.0331(4)
H2OR	0.349378	0.019509	0.277110	0.074(12) 0.082(13)*
03	0.310178 0.70760 (17)	0.003391 0.52151(11)	0.277110 0.17747(8)	$0.082(13)^{-1}$
	0.70709(17)	0.52131 (11)	0.17747 (8)	0.0409(3)
LISOA LISOA	0.702130	0.333309	0.201413	$0.000(12)^{\circ}$
04	0.732130 0.8157 (2)	0.4/2002	0.174073	$0.007(14)^{*}$
	0.0137(2)	0.50104 (12)	0.31347 (10)	0.037((1))
П4UA Ц4OP	0.7/4/72	0.341300	0.29030/	$0.00/(11)^{*}$
H4OB	0.799392	0.461176	0.28/49/	0.16 (2)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
Ni1	0.01361 (15)	0.01447 (15)	0.01276 (14)	0.00145 (12)	-0.00309 (11)	-0.00332 (11)
N1	0.0149 (10)	0.0183 (10)	0.0183 (10)	0.0020 (8)	-0.0039 (8)	-0.0069 (8)
N2	0.0146 (10)	0.0134 (10)	0.0162 (9)	-0.0004 (8)	-0.0040 (7)	-0.0042 (8)
N3	0.0144 (10)	0.0126 (10)	0.0163 (10)	0.0001 (8)	-0.0020 (7)	-0.0027 (8)
N4	0.0154 (10)	0.0153 (10)	0.0189 (10)	0.0027 (8)	-0.0056 (8)	-0.0061 (8)
N5	0.0150 (10)	0.0156 (10)	0.0171 (10)	0.0045 (8)	-0.0023 (8)	-0.0027 (8)
N6	0.0136 (10)	0.0166 (10)	0.0228 (10)	0.0009 (8)	-0.0020 (8)	-0.0053 (8)
N7	0.0616 (18)	0.0553 (18)	0.0196 (12)	-0.0070 (14)	0.0054 (11)	-0.0146 (12)
N8	0.0188 (11)	0.0269 (12)	0.0361 (13)	0.0039 (9)	-0.0085 (9)	0.0036 (10)
N9	0.0185 (11)	0.0253 (12)	0.0244 (11)	-0.0042 (9)	-0.0017 (8)	-0.0054 (9)
N10	0.0341 (13)	0.0290 (13)	0.0323 (12)	0.0119 (10)	-0.0155 (10)	-0.0152 (10)
C1	0.0219 (13)	0.0217 (13)	0.0276 (13)	0.0070 (11)	-0.0080 (10)	-0.0044 (11)
C2	0.0134 (11)	0.0156 (12)	0.0227 (12)	-0.0015 (9)	-0.0051 (9)	-0.0049 (9)
C3	0.0165 (12)	0.0135 (12)	0.0210 (12)	-0.0017 (9)	-0.0066 (9)	-0.0021 (9)
C4	0.0214 (13)	0.0173 (12)	0.0200 (12)	0.0027 (10)	-0.0083 (10)	-0.0007 (10)
C5	0.0276 (14)	0.0259 (14)	0.0152 (12)	-0.0025 (11)	-0.0075 (10)	-0.0005 (10)
C6	0.0241 (13)	0.0195 (13)	0.0148 (11)	-0.0025 (10)	-0.0023 (9)	-0.0048 (9)
C7	0.0173 (12)	0.0150 (12)	0.0158 (11)	-0.0027 (9)	-0.0032 (9)	-0.0018 (9)
C8	0.0171 (12)	0.0168 (12)	0.0190 (12)	0.0001 (10)	-0.0022 (9)	-0.0060 (9)
C9	0.0288 (14)	0.0313 (15)	0.0197 (12)	0.0084 (12)	-0.0045 (10)	-0.0089 (11)
C10	0.0263 (14)	0.0323 (15)	0.0231 (13)	0.0001 (12)	-0.0089 (11)	-0.0130 (11)
C11	0.0162 (12)	0.0177 (12)	0.0185 (12)	0.0055 (10)	-0.0061 (9)	-0.0059 (9)
C12	0.0215 (13)	0.0194 (12)	0.0170 (11)	0.0075 (10)	-0.0059 (9)	-0.0069 (10)
C13	0.0325 (15)	0.0266 (14)	0.0172 (12)	0.0061 (12)	-0.0072 (10)	-0.0065 (10)
C14	0.0403 (16)	0.0309 (15)	0.0133 (12)	0.0062 (13)	0.0000 (11)	-0.0016 (11)
C15	0.0259 (14)	0.0217 (13)	0.0201 (12)	0.0034 (11)	0.0039 (10)	-0.0004 (10)
C16	0.0173 (12)	0.0169 (12)	0.0196 (12)	0.0059 (10)	0.0016 (9)	-0.0023 (9)
C17	0.0134 (12)	0.0149 (12)	0.0251 (13)	0.0037 (9)	0.0001 (9)	-0.0020 (10)
C18	0.0179 (13)	0.0268 (14)	0.0315 (14)	-0.0017 (11)	0.0002 (11)	-0.0029 (11)
C19	0.0167 (12)	0.0189 (12)	0.0187 (12)	0.0073 (10)	-0.0039 (9)	-0.0052 (10)
C20	0.0160 (12)	0.0214 (13)	0.0315 (14)	0.0038 (10)	-0.0018 (10)	-0.0063 (11)
C21	0.0204 (13)	0.0248 (14)	0.0258 (13)	0.0041 (11)	0.0043 (10)	-0.0001 (11)
C22	0.0315 (15)	0.0288 (15)	0.0203 (13)	0.0084 (12)	0.0010 (11)	-0.0069 (11)
C23	0.0267 (14)	0.0200 (13)	0.0228 (13)	0.0012 (11)	-0.0042 (10)	-0.0089 (10)
C24	0.0205 (13)	0.0160 (12)	0.0208 (12)	0.0026 (10)	-0.0020 (10)	-0.0024 (10)
C25	0.089 (3)	0.045 (2)	0.0248 (16)	0.0015 (19)	-0.0071 (16)	-0.0143 (14)
C26	0.051 (2)	0.069 (2)	0.0218 (15)	0.0097 (18)	0.0086 (14)	-0.0023 (15)
C27	0.0177 (12)	0.0152 (12)	0.0159 (11)	0.0033 (9)	-0.0041 (9)	-0.0061 (9)
C28	0.0187 (12)	0.0181 (12)	0.0184 (12)	-0.0005 (10)	-0.0003 (9)	-0.0027 (9)
C29	0.0137 (12)	0.0223 (13)	0.0257 (13)	-0.0003 (10)	-0.0014 (10)	-0.0075 (10)
C30	0.0166 (12)	0.0178 (12)	0.0251 (13)	0.0025 (10)	-0.0044 (10)	-0.0052 (10)
C31	0.0194 (13)	0.0185 (13)	0.0228 (12)	0.0002 (10)	-0.0034 (10)	0.0006 (10)
C32	0.0141 (12)	0.0184 (12)	0.0227 (12)	-0.0012 (10)	0.0002 (9)	-0.0024 (10)
C33	0.0181 (13)	0.0281 (15)	0.0461 (17)	0.0025 (11)	-0.0130 (12)	-0.0063 (12)
C34	0.0282 (15)	0.0335 (16)	0.0377 (16)	0.0062 (13)	-0.0125(12)	0.0069 (13)

C35	0.0160 (12)	0.0174 (12)	0.0180 (11)	0.0004 (9)	-0.0039 (9)	-0.0067 (9)
C36	0.0150 (12)	0.0209 (13)	0.0233 (12)	0.0023 (10)	-0.0066 (10)	-0.0071 (10)
C37	0.0216 (13)	0.0198 (13)	0.0200 (12)	0.0014 (10)	-0.0044 (10)	-0.0035 (10)
C38	0.0183 (12)	0.0208 (13)	0.0218 (12)	0.0003 (10)	-0.0021 (10)	-0.0110 (10)
C39	0.0142 (12)	0.0293 (14)	0.0235 (13)	0.0013 (10)	-0.0040 (10)	-0.0092(11)
C40	0.0204 (13)	0.0209 (13)	0.0227 (12)	0.0033 (10)	-0.0072 (10)	-0.0059 (10)
C41	0.0326 (16)	0.0252 (15)	0.0342 (15)	-0.0025 (12)	-0.0014(12)	0.0004 (12)
C42	0.0250 (14)	0.0355 (16)	0.0325 (15)	-0.0094 (12)	-0.0036 (11)	-0.0063(12)
C43	0.0146 (12)	0.0171 (12)	0.0212 (12)	-0.0031 (10)	-0.0024 (9)	-0.0038 (9)
C44	0.0176 (13)	0.0209 (13)	0.0311 (14)	0.0012 (10)	-0.0041 (10)	-0.0115 (11)
C45	0.0165 (12)	0.0219 (13)	0.0325 (14)	0.0037 (10)	-0.0083(10)	-0.0081(11)
C46	0.0214 (13)	0.0195 (13)	0.0249 (13)	-0.0016(10)	-0.0063(10)	-0.0069(10)
C47	0.0224(13)	0.0183(13)	0.0272(13)	0.0029 (10)	-0.0043(10)	-0.0083(10)
C48	0.0181(12)	0.0177 (12)	0.0274(13)	0.0008(10)	-0.0061(10)	-0.0046(10)
C49	0.0318(15)	0.0338(16)	0.0254(14)	0.0011(12)	-0.0087(11)	-0.0034(12)
C50	0.057(2)	0.055 (2)	0.0333 (16)	0.0227(17)	-0.0205(15)	-0.0239(15)
Ni2	0.01312(15)	0.01556(15)	0.01360 (14)	0.00094(12)	-0.00360(11)	-0.00327(11)
N11	0.0140(10)	0.0143(10)	0.0187(10)	-0.0005(8)	-0.0050(8)	-0.0027(8)
N12	0.0142(10)	0.0142(10)	0.0172(10)	0.0002 (8)	-0.0041(8)	-0.0024(8)
N13	0.0147(10)	0.0192(10)	0.0187(10)	0.0014(8)	-0.0032(8)	-0.0068(8)
N14	0.0130(10)	0.0167(10)	0.0196 (10)	0.0016 (8)	-0.0053(8)	-0.0035(8)
N15	0.0124 (10)	0.0175 (10)	0.0159 (9)	0.0040 (8)	-0.0032(7)	-0.0044(8)
N16	0.0159(10)	0.0173 (10)	0.0222 (10)	0.0014 (8)	-0.0026(8)	-0.0061(8)
N17	0.0173(11)	0.0253(12)	0.0309(12)	0.0039 (9)	-0.0101(9)	-0.0022(9)
N18	0.0465 (15)	0.0418 (15)	0.0183 (11)	-0.0026(12)	0.0030 (10)	-0.0106(10)
N19	0.0212 (11)	0.0263 (12)	0.0224 (11)	-0.0051(9)	0.0002 (9)	-0.0041(9)
N20	0.0332(13)	0.0223(12)	0.0254(11)	0.0000 (10)	-0.0118(9)	-0.0038(9)
C51	0.0314 (15)	0.0311 (15)	0.0215 (13)	0.0138 (12)	-0.0076(11)	-0.0112(11)
C52	0.0172 (12)	0.0156 (12)	0.0194 (12)	0.0002 (10)	-0.0040(9)	-0.0046(9)
C53	0.0178 (12)	0.0147 (12)	0.0181 (11)	-0.0019(9)	-0.0048(9)	-0.0033(9)
C54	0.0244 (13)	0.0229 (13)	0.0171 (12)	0.0028 (11)	-0.0044(10)	-0.0039(10)
C55	0.0278 (14)	0.0286 (14)	0.0163(12)	0.0024 (11)	-0.0099(10)	-0.0023(10)
C56	0.0199 (13)	0.0195 (13)	0.0236 (13)	0.0042 (10)	-0.0094(10)	-0.0022(10)
C57	0.0146 (12)	0.0144 (12)	0.0218 (12)	0.0002 (9)	-0.0051(9)	-0.0030(9)
C58	0.0132 (11)	0.0157 (12)	0.0221 (12)	-0.0005 (9)	-0.0055 (9)	-0.0038(9)
C59	0.0224 (13)	0.0250 (14)	0.0263 (13)	0.0071 (11)	-0.0072(10)	-0.0057 (11)
C60	0.0246 (14)	0.0296 (14)	0.0243 (13)	-0.0021 (11)	-0.0082(10)	-0.0105 (11)
C61	0.0133 (12)	0.0210 (13)	0.0196 (12)	0.0026 (10)	-0.0077(9)	-0.0053(10)
C62	0.0175 (12)	0.0194 (12)	0.0199 (12)	0.0052 (10)	-0.0061(9)	-0.0044(10)
C63	0.0255 (14)	0.0281 (14)	0.0187(12)	0.0050 (11)	-0.0085(10)	-0.0043(10)
C64	0.0323 (15)	0.0339 (15)	0.0150 (12)	0.0057(12)	-0.0032(11)	-0.0017(11)
C65	0.0219 (13)	0.0254 (14)	0.0219 (13)	0.0015 (11)	0.0013 (10)	0.0007 (10)
C66	0.0149 (12)	0.0174 (12)	0.0209 (12)	0.0051 (10)	-0.0014(9)	-0.0036(10)
C67	0.0125 (11)	0.0160 (12)	0.0235(12)	0.0023 (9)	-0.0007(9)	-0.0036(10)
C68	0.0175 (13)	0.0248 (14)	0.0265 (13)	-0.0025 (11)	0.0027 (10)	-0.0036 (11)
C69	0.0157 (12)	0.0174 (12)	0.0155 (11)	0.0028 (9)	-0.0042 (9)	-0.0059 (9)
C70	0.0191 (12)	0.0196 (13)	0.0199 (12)	-0.0006 (10)	-0.0031 (10)	-0.0015 (10)
C71	0.0128 (12)	0.0221 (13)	0.0246 (13)	0.0006 (10)	-0.0006 (9)	-0.0064 (10)
	- \ /	\ - /	- (-)		- X /	- (-)

C72	0.0186 (12)	0.0182 (12)	0.0217 (12)	0.0012 (10)	-0.0059 (10)	-0.0080 (10)
C73	0.0169 (12)	0.0183 (12)	0.0199 (12)	-0.0001 (10)	-0.0032 (9)	-0.0012 (10)
C74	0.0147 (12)	0.0197 (12)	0.0196 (12)	-0.0004 (10)	-0.0016 (9)	-0.0036 (10)
C75	0.0180 (13)	0.0260 (14)	0.0443 (16)	0.0040 (11)	-0.0097 (12)	-0.0114 (12)
C76	0.0277 (15)	0.0309 (15)	0.0306 (14)	0.0078 (12)	-0.0118 (11)	-0.0010 (12)
C77	0.0144 (12)	0.0205 (13)	0.0183 (11)	0.0063 (10)	-0.0051 (9)	-0.0057 (10)
C78	0.0187 (12)	0.0189 (13)	0.0205 (12)	0.0023 (10)	-0.0018 (10)	-0.0023(10)
C79	0.0259 (14)	0.0205 (13)	0.0236 (13)	0.0008 (11)	-0.0045 (10)	-0.0080(10)
C80	0.0276 (14)	0.0248 (14)	0.0192 (12)	0.0072 (11)	-0.0022(10)	-0.0057(10)
C81	0.0210(13)	0.0257 (14)	0.0250 (13)	0.0022 (11)	0.0047 (10)	-0.0019 (11)
C82	0.0142 (12)	0.0212 (13)	0.0294 (13)	0.0007 (10)	-0.0027(10)	-0.0074(10)
C83	0.075 (3)	0.063 (2)	0.0260 (16)	-0.014(2)	-0.0068(16)	-0.0183(15)
C84	0.061 (2)	0.055 (2)	0.0230(15)	0.0020(18)	0.0058 (14)	-0.0063(14)
C85	0.0156 (12)	0.0180(12)	0.0193 (12)	-0.0011(10)	-0.0029(9)	-0.0061(9)
C86	0.0200 (13)	0.0224 (13)	0.0229(12)	0.0021 (10)	-0.0066(10)	-0.0040(10)
C87	0.0156 (12)	0.0271 (14)	0.0255 (13)	-0.0014(10)	-0.0031(10)	-0.0066 (11)
C88	0.0205(13)	0.0217(13)	0.0182(12)	-0.0034(10)	0 0006 (9)	-0.0104(10)
C89	0.0216(13)	0.0206(13)	0.0192(12)	-0.0001(10)	-0.0054(10)	-0.0029(10)
C90	0.0210(12) 0.0145(12)	0.0232(13)	0.0192(12) 0.0218(12)	0 0004 (10)	-0.0064(9)	-0.0029(10)
C91	0.0217(14)	0.0232(15) 0.0330(16)	0.0210(12) 0.0327(15)	-0.0094(12)	0.0001(9)	-0.0077(12)
C92	0.0334(16)	0.0320(10) 0.0322(16)	0.0327(13) 0.0245(14)	-0.0057(12)	0.0025(11) 0.0006(11)	0.0001(11)
C93	0.0154(12)	0.0170(12)	0.0196(12)	-0.0051(10)	-0.0014(9)	-0.0029(9)
C94	0.0178(13)	0.0235(14)	0.0324(14)	0.0021 (10)	-0.0033(10)	-0.0128(11)
C95	0.0180 (13)	0.0249 (14)	0.0369(15)	0.0049 (11)	-0.0104(11)	-0.0077(11)
C96	0.0221(13)	0.0166(12)	0.0230(12)	-0.0057(10)	-0.0046(10)	-0.0009(10)
C97	0.0247(14)	0.0196(13)	0.0280(12)	0.0013 (11)	-0.0025(11)	-0.0093(10)
C98	0.0176(12)	0.0185 (13)	0.0280(13)	0.0036 (10)	-0.0052(10)	-0.0078(10)
C99	0.0399 (17)	0.0326 (16)	0.0302(15)	0.0022 (13)	-0.0150(13)	0.0001 (12)
C100	0.0505 (19)	0.0433 (18)	0.0288 (15)	0.0067 (15)	-0.0130(13)	-0.0142(13)
Cl1	0.0372 (4)	0.0388 (4)	0.0420 (4)	0.0156 (3)	-0.0163(3)	-0.0197(3)
Cl2	0.0301 (3)	0.0307 (4)	0.0248 (3)	0.0085 (3)	-0.0075(3)	-0.0091(3)
C13	0.0377 (4)	0.0244 (3)	0.0230 (3)	0.0058 (3)	-0.0118(3)	-0.0037(3)
Cl4	0.0318 (3)	0.0256 (3)	0.0227(3)	0.0056 (3)	-0.0119(3)	-0.0043(2)
C1S	0.0398 (17)	0.0360(17)	0.0377 (16)	0.0043 (14)	-0.0036(13)	-0.0143(13)
Cl5	0.0444 (5)	0.0626 (6)	0.0497 (5)	-0.0157(4)	0.0080 (4)	-0.0278(4)
C16	0.0417 (4)	0.0436 (4)	0.0466 (4)	0.0194 (4)	-0.0126(3)	-0.0136 (4)
C2S	0.065 (2)	0.0424 (19)	0.0442 (18)	0.0049 (17)	-0.0361 (17)	-0.0097(15)
C17	0.0575 (5)	0.0495 (5)	0.0516 (5)	0.0051 (4)	-0.0162(4)	-0.0146 (4)
C18	0.0694 (6)	0.0399 (5)	0.0447 (5)	0.0032 (4)	-0.0117(4)	-0.0145(4)
C3S	0.0442 (18)	0.0299 (16)	0.0341 (15)	0.0086 (13)	-0.0093 (13)	-0.0107 (12)
C19	0.0470 (5)	0.0439 (4)	0.0336 (4)	-0.0046 (4)	-0.0058(3)	-0.0104 (3)
C110	0.0378 (4)	0.0386 (5)	0.0687 (6)	0.0053 (4)	0.0097 (4)	-0.0011(4)
C4S	0.0419 (18)	0.0387 (18)	0.0351 (16)	-0.0035 (14)	-0.0025 (13)	-0.0130 (13)
C111	0.0483 (5)	0.0393 (4)	0.0457 (4)	0.0161 (4)	-0.0162(4)	-0.0152(3)
Cl12	0.0410 (5)	0.0649 (6)	0.0500 (5)	-0.0092 (4)	-0.0063 (4)	-0.0249 (4)
01	0.0311 (11)	0.0299 (11)	0.0288 (10)	0.0007 (9)	-0.0081 (8)	-0.0037 (8)
O2	0.0390 (12)	0.0301 (11)	0.0309 (10)	0.0060 (9)	-0.0106 (9)	-0.0035 (8)
O3	0.0683 (15)	0.0297 (11)	0.0323 (11)	0.0198 (11)	-0.0264 (10)	-0.0110 (9)
	· · ·	× /	· · /	× /	· /	· · ·

04	0.0944 (19)	0.0404 (13)	0.0651 (15)	0.0388 (13)	-0.0599 (15)	-0.0272 (12)
Geome	tric parameters (Å	, °)				
Nil—N	12	1.9694	(18)	N14—C61]	.285 (3)
Ni1—N	15	1.9725	(18)	N14—C85]	.422 (3)
Ni1—N	13	2.0844	(18)	N15—C62]	.331 (3)
Ni1—N	14	2.0948	(19)	N15—C66	1	.334 (3)
Ni1—N	J1	2.1243	(19)	N16—C67	1	.280 (3)
Ni1—N	16	2.1354	(19)	N16—C93	1	.427 (3)
N1-C	2	1.277 (3	3)	N17—C72	1	.388 (3)
N1—C	19	1.432 (3	3)	N17—C76]	.445 (3)
N2—C	7	1.338 (3	3)	N17—C75	1	.451 (3)
N2—C	3	1.340 (3	3)	N18—C80]	.382 (3)
N3—C	8	1.286 (3	3)	N18—C83	1	.434 (4)
N3—C	27	1.421 (3	3)	N18—C84	1	.441 (4)
N4—C	11	1.284 (3	3)	N19—C88	1	.381 (3)
N4—C	35	1.423 (3	3)	N19—C91	1	.450 (3)
N5—C	12	1.328 (3	3)	N19—C92]	.452 (3)
N5—C	16	1.336 (3	3)	N20—C96	1	.386 (3)
N6—C	17	1.281 (3	3)	N20-C100]	.447 (3)
N6—C	43	1.429 (3	3)	N20—C99	1	.458 (3)
N7—C	22	1.376 (3	3)	C51—C52	1	.489 (3)
N7—C	25	1.436 (4	4)	C51—H51A	().9800
N7—C	26	1.437 (4	4)	C51—H51B	().9800
N8—C	30	1.372 (3	3)	C51—H51C	().9800
N8-C	34	1.434 (3	3)	С52—С53	1	.489 (3)
N8—C	33	1.443 (3	3)	C53—C54	1	.382 (3)
N9—C	38	1.377 (3	3)	C54—C55	1	.382 (3)
N9—C	41	1.451 (3	3)	С54—Н54	().9500
N9—C	42	1.456 (3	3)	C55—C56	1	.388 (3)
N10-0	C46	1.376 (3	3)	С55—Н55	(0.9500
N10-0	C50	1.434 (3	3)	C56—C57	1	.379 (3)
N10-0	C49	1.450 (3	3)	С56—Н56	(0.9500
C1C2	2	1.494 (3	3)	С57—С58	1	.489 (3)
С1—Н	1A	0.9800		C58—C59	1	.490 (3)
С1—Н	1 B	0.9800		С59—Н59А	().9800
С1—Н	1C	0.9800		С59—Н59В	().9800
C2C	3	1.489 (3	3)	С59—Н59С	().9800
С3—С	4	1.380 (3	3)	C60—C61	1	.493 (3)
C4—C	5	1.387 (3	3)	C60—H60A	(0.9800
C4—H	4	0.9500		C60—H60B	().9800
С5—С	6	1.384 (3	3)	С60—Н60С	().9800
С5—Н	5	0.9500		C61—C62	1	.484 (3)
C6—C	7	1.386 (3	3)	C62—C63	1	.384 (3)
С6—Н	6	0.9500		C63—C64	1	.379 (4)
C7—C	8	1.486 (3	3)	С63—Н63	(0.9500
C8—C	9	1.485 (3	3)	C64—C65	1	.382 (4)

С9—Н9А	0.9800	C64—H64	0.9500
С9—Н9В	0.9800	C65—C66	1.382 (3)
С9—Н9С	0.9800	С65—Н65	0.9500
C10—C11	1.491 (3)	C66—C67	1.488 (3)
C10—H10A	0.9800	C67—C68	1.489 (3)
C10—H10B	0.9800	C68—H68A	0.9800
C10—H10C	0.9800	C68—H68B	0.9800
C11—C12	1.486 (3)	C68—H68C	0.9800
C12—C13	1.383 (3)	C69—C74	1.384 (3)
C13—C14	1.383 (4)	C69—C70	1.387 (3)
С13—Н13	0.9500	C70—C71	1.377 (3)
C14—C15	1.381 (4)	С70—Н70	0.9500
C14—H14	0.9500	C71—C72	1.398 (3)
C15—C16	1.383 (3)	C71—H71	0.9500
С15—Н15	0.9500	С72—С73	1.400 (3)
C16—C17	1.482 (3)	C73—C74	1.379 (3)
C17—C18	1.488 (3)	С73—Н73	0.9500
C18—H18A	0.9800	С74—Н74	0.9500
C18—H18B	0.9800	С75—Н75А	0.9800
C18—H18C	0.9800	С75—Н75В	0.9800
C19—C24	1.377 (3)	С75—Н75С	0.9800
C19—C20	1.389 (3)	С76—Н76А	0.9800
C20—C21	1.377 (3)	С76—Н76В	0.9800
С20—Н20	0.9500	С76—Н76С	0.9800
C21—C22	1.405 (4)	С77—С78	1.373 (3)
C21—H21	0.9500	С77—С82	1.390 (3)
C22—C23	1.398 (3)	C78—C79	1.383 (3)
C23—C24	1.384 (3)	С78—Н78	0.9500
С23—Н23	0.9500	С79—С80	1.401 (3)
С24—Н24	0.9500	С79—Н79	0.9500
С25—Н25А	0.9800	C80—C81	1.403 (4)
С25—Н25В	0.9800	C81—C82	1.373 (3)
С25—Н25С	0.9800	C81—H81	0.9500
С26—Н26А	0.9800	С82—Н82	0.9500
C26—H26B	0.9800	С83—Н83А	0.9800
C26—H26C	0.9800	С83—Н83В	0.9800
С27—С32	1.383 (3)	С83—Н83С	0.9800
C27—C28	1.387 (3)	C84—H84A	0.9800
C28—C29	1.373 (3)	C84—H84B	0.9800
C28—H28	0.9500	C84—H84C	0.9800
C29—C30	1.402 (3)	C85—C86	1.386 (3)
С29—Н29	0.9500	C85—C90	1.387 (3)
C30—C31	1.403 (3)	C86—C87	1.375 (3)
C31—C32	1.376 (3)	С86—Н86	0.9500
C31—H31	0.9500	C87—C88	1.404 (3)
С32—Н32	0.9500	С87—Н87	0.9500
С33—Н33А	0.9800	C88—C89	1.405 (3)
С33—Н33В	0.9800	C89—C90	1.379 (3)

С33—Н33С	0.9800	C89—H89	0.9500
C34—H34A	0.9800	С90—Н90	0.9500
C34—H34B	0.9800	C91—H91A	0.9800
C34—H34C	0.9800	C91—H91B	0.9800
C35—C36	1.381 (3)	С91—Н91С	0.9800
C35—C40	1.390 (3)	С92—Н92А	0.9800
C36—C37	1.379 (3)	С92—Н92В	0.9800
С36—Н36	0.9500	С92—Н92С	0.9800
C37—C38	1.406 (3)	C93—C94	1.379 (3)
С37—Н37	0.9500	C93—C98	1.384 (3)
C38—C39	1.404 (3)	C94—C95	1.378 (3)
C39—C40	1.376 (3)	C94—H94	0.9500
C39—H39	0.9500	C95-C96	1400(3)
C40—H40	0.9500	C95—H95	0.9500
C41—H41A	0.9800	C96-C97	1 396 (3)
C41—H41B	0.9800	C97 - C98	1.370(3)
C41 - H41C	0.9800	C97—H97	0.9500
C42—H42A	0.9800	C98—H98	0.9500
C42—H42B	0.9800	C99—H99A	0.9500
C42 H42C	0.9800	C99—H99B	0.9800
C43 - C44	1.378(3)	C99—H99C	0.9800
C43 - C48	1.376 (3)	C100—H10D	0.9800
C44 - C45	1.300(3) 1.377(3)	C100—H10E	0.9800
C44—H44	0.9500	C100—H10E	0.9800
C45-C46	1401(3)	C1S— $C15$	1 761 (3)
C45—H45	0.9500	C1S $C1S$ $C16$	1.762 (3)
C46-C47	1400(3)	C1S—H1SA	0.9900
C47 - C48	1.100(3) 1.377(3)	C1S—H1SB	0.9900
C47—H47	0.9500	C2S - C18	1 754 (3)
C48—H48	0.9500	C2S - C17	1.804 (3)
C49—H49A	0.9800	C2S H2SA	0.9900
C49—H49B	0.9800	C2S—H2SB	0.9900
C49 - H49C	0.9800	C3S— $C110$	1 747 (3)
C50—H50A	0.9800	C3S - C19	1.768 (3)
C50—H50B	0.9800	C3S—H3SA	0.9900
C50—H50C	0.9800	C3S—H3SB	0.9900
Ni2—N12	1 9658 (18)	C4S— $C112$	1 757 (3)
Ni2—N15	1.9030 (10)	C4S-C111	1.762 (3)
Ni2—N14	2 0909 (19)	C4S - H4SA	0.9900
Ni2—N11	2.0909 (19)	C4S H4SB	0.9900
Ni2—N13	2.0377 (19)	01 - H10A	0.9059
Ni2—N16	2.1100 (17)	O1—H1OB	0.8792
N11-C52	1.281(3)	Ω^2 —H2 Ω A	1 0124
N11—C69	1 424 (3)	Ω^2 —H2OR	0 9488
N12—C53	1.321(3)	03—H30A	0.8977
N12-C57	1.338 (3)	O3—H3OB	0.8681
N13-C58	1.281 (3)	04—H40A	0 9400
N13—C77	1.432 (3)	O4—H4OB	1.0754

N2—Ni1—N5	167.57 (8)	N13—Ni2—N16	93.21 (7)
N2—Ni1—N3	77.92 (7)	C52—N11—C69	122.23 (19)
N5—Ni1—N3	111.32 (7)	C52—N11—Ni2	114.90 (15)
N2—Ni1—N4	110.91 (7)	C69—N11—Ni2	122.67 (14)
N5—Ni1—N4	77.83 (8)	C53—N12—C57	121.22 (19)
N3—Ni1—N4	92.14 (7)	C53—N12—Ni2	117.99 (15)
N2—Ni1—N1	76.66 (7)	C57—N12—Ni2	118.85 (15)
N5—Ni1—N1	94.65 (7)	C58—N13—C77	123.3 (2)
N3—Ni1—N1	153.98 (7)	C58—N13—Ni2	115.75 (15)
N4—Ni1—N1	91.75 (7)	C77—N13—Ni2	120.70 (14)
N2—Ni1—N6	94.89 (7)	C61—N14—C85	120.50 (19)
N5—Ni1—N6	76.68 (8)	C61—N14—Ni2	114.47 (15)
N3—Ni1—N6	93.36 (7)	C85—N14—Ni2	125.02 (14)
N4—Ni1—N6	154.19 (7)	C62—N15—C66	121.43 (19)
N1—Ni1—N6	94.25 (7)	C62 - N15 - Ni2	118.25 (16)
C2—N1—C19	123.0 (2)	C66—N15—Ni2	119.56 (15)
C_2 —N1—Ni1	115.82 (15)	C67 - N16 - C93	122.8 (2)
C19 - N1 - Ni1	120.76 (14)	C67 - N16 - Ni2	114.91 (16)
C7-N2-C3	121.08 (19)	C93 - N16 - Ni2	121.82 (14)
C7—N2—Ni1	117.70 (15)	C72 - N17 - C76	119.4 (2)
$C_3 - N_2 - N_{11}$	118 99 (15)	C72 - N17 - C75	119.1(2)
C8-N3-C27	121.54 (19)	C76 - N17 - C75	115.2(2)
C8—N3—Ni1	115.05 (15)	C80 - N18 - C83	118.1(2)
$C_{27} N_{3} N_{11}$	123 16 (14)	C80 - N18 - C84	118.2(2)
C11 - N4 - C35	120 56 (19)	C83 - N18 - C84	117.8(2)
C11—N4—Ni1	114 91 (16)	C88 - N19 - C91	1189(2)
C35 - N4 - Ni1	124 53 (14)	C88 - N19 - C92	118.9(2)
C12 - N5 - C16	121.6 (2)	C91 - N19 - C92	110.0(2) 114 2(2)
C12 - N5 - Ni1	118 15 (16)	C96 - N20 - C100	1180(2)
C16 - N5 - Ni1	119 28 (16)	C96 - N20 - C99	1177(2)
C17 - N6 - C43	123 4 (2)	$C_{100} N_{20} C_{99}$	1148(2)
C17 - N6 - Ni1	115.06 (16)	C52—C51—H51A	109.5
C43—N6—Ni1	121.40 (14)	C52—C51—H51B	109.5
C22—N7—C25	120.1 (2)	H51A—C51—H51B	109.5
C22—N7—C26	120.6 (3)	С52—С51—Н51С	109.5
C25—N7—C26	119.2 (2)	H51A—C51—H51C	109.5
C30—N8—C34	120.0 (2)	H51B—C51—H51C	109.5
C30—N8—C33	120.6 (2)	N11—C52—C51	126.4 (2)
C34—N8—C33	118.1 (2)	N11—C52—C53	114.9 (2)
C38—N9—C41	118.4 (2)	C51—C52—C53	118.7 (2)
C38—N9—C42	118.8 (2)	N12—C53—C54	121.0 (2)
C41—N9—C42	114.8 (2)	N12—C53—C52	112.90 (19)
C46—N10—C50	119.4 (2)	C54—C53—C52	126.1 (2)
C46—N10—C49	119.4 (2)	C53—C54—C55	118.4 (2)
C50—N10—C49	118.1 (2)	C53—C54—H54	120.8
C2—C1—H1A	109.5	С55—С54—Н54	120.8
C2—C1—H1B	109.5	C54—C55—C56	120.2 (2)

H1A—C1—H1B	109.5	С54—С55—Н55	119.9
C2—C1—H1C	109.5	С56—С55—Н55	119.9
H1A—C1—H1C	109.5	C57—C56—C55	118.2 (2)
H1B—C1—H1C	109.5	С57—С56—Н56	120.9
N1—C2—C3	114.3 (2)	С55—С56—Н56	120.9
N1-C2-C1	125.9 (2)	N12—C57—C56	121.0 (2)
$C_{3}-C_{2}-C_{1}$	119.8 (2)	N12-C57-C58	113.09 (19)
N2-C3-C4	121.0(2)	$C_{56} - C_{57} - C_{58}$	125.9 (2)
$N_2 = C_3 = C_2$	112 76 (19)	N13-C58-C57	123.3(2) 114.1(2)
$C_4 - C_3 - C_2$	126.2 (2)	N13-C58-C59	125.8(2)
C_{1} C_{2} C_{2} C_{2}	120.2(2) 1181(2)	C57 C58 C59	120.0(2)
$C_3 = C_4 = C_3$	120.0	C_{58} C_{59} H_{59A}	120.1 (2)
$C_5 = C_4 = H_4$	120.9	C58 C50 H50P	109.5
C_{3}	120.9	С38—С39—П39В Н50А С50 Н50Р	109.5
$C_0 = C_3 = C_4$	120.7 (2)	ПЈУА-СЈУ-ПЈУВ	109.5
C6C5H5	119.7	С58—С59—Н59С	109.5
C4—C5—H5	119.7	H59A-C59-H59C	109.5
C5-C6-C7	118.0 (2)	Н59В—С59—Н59С	109.5
С5—С6—Н6	121.0	С61—С60—Н60А	109.5
С7—С6—Н6	121.0	C61—C60—H60B	109.5
N2—C7—C6	121.0 (2)	H60A—C60—H60B	109.5
N2—C7—C8	112.55 (19)	C61—C60—H60C	109.5
C6—C7—C8	126.4 (2)	H60A—C60—H60C	109.5
N3—C8—C9	126.2 (2)	H60B—C60—H60C	109.5
N3—C8—C7	115.0 (2)	N14—C61—C62	115.5 (2)
C9—C8—C7	118.7 (2)	N14—C61—C60	126.2 (2)
С8—С9—Н9А	109.5	C62—C61—C60	118.2 (2)
С8—С9—Н9В	109.5	N15—C62—C63	120.7 (2)
Н9А—С9—Н9В	109.5	N15—C62—C61	113.01 (19)
С8—С9—Н9С	109.5	C63—C62—C61	126.2 (2)
Н9А—С9—Н9С	109.5	C64—C63—C62	118.3 (2)
Н9В—С9—Н9С	109.5	С64—С63—Н63	120.9
C11—C10—H10A	109.5	С62—С63—Н63	120.9
C11—C10—H10B	109.5	C63—C64—C65	120.5 (2)
H10A—C10—H10B	109.5	С63—С64—Н64	119.8
C11—C10—H10C	109.5	С65—С64—Н64	119.8
H10A—C10—H10C	109.5	C64—C65—C66	118 3 (2)
H10B-C10-H10C	109.5	C64-C65-H65	120.9
N4-C11-C12	114.9(2)	C66—C65—H65	120.9
N4-C11-C10	126.9(2)	N15-C66-C65	120.9 120.7(2)
C_{12} C_{11} C_{10}	120.9(2) 1181(2)	N15 C66 C67	120.7(2)
$N_{5} C_{12} C_{13}$	110.1(2) 120.5(2)	C65 C66 C67	113.43(19) 125.8(2)
N5 C12 C11	120.3(2) 112 50(10)	116 C67 C66	123.8(2)
$N_{3} = C_{12} = C_{11}$	113.30(19)	N10 - C07 - C00	114.0(2)
C13 - C12 - C11	120.0(2)	$\frac{1}{10} - \frac{1}{10} - \frac{1}{100} = \frac{1}{1$	120.2(2)
$\begin{array}{c} 12 \\ \hline \\ 112 \\ \hline 11$	110.7 (2)	C00 - C0/ - C08	118.9 (2)
C12-C13-H13	120.7	$C_0 / - C_0 $ H08A	109.5
C14—C13—H13	120.7	C0/-C08-H08B	109.5
C15—C14—C13	120.0 (2)	H68A—C68—H68B	109.5
C15—C14—H14	120.0	C67—C68—H68C	109.5

C13_C14_H14	120.0	H68AH68C	109.5
C14-C15-C16	118 5 (2)	H68B— $C68$ — $H68C$	109.5
C14-C15-H15	120.7	C74-C69-C70	1185(2)
C16—C15—H15	120.7	C74-C69-N11	119.0(2)
N5-C16-C15	120.6 (2)	C70-C69-N11	112.3(2)
N5-C16-C17	113 43 (19)	C71 - C70 - C69	122.3(2) 120.9(2)
C_{15} C_{16} C_{17}	115.45(17) 126.0(2)	C71 - C70 - H70	119.6
N6 C17 C16	120.0(2) 114.8(2)	$C_{10} = C_{10} = H_{10}$	119.6
$N_{0} = C_{17} = C_{10}$	114.0(2) 126.1(2)	C70 $C71$ $C72$	117.0 121.1(2)
$C_{16} = C_{17} = C_{18}$	120.1(2) 1101(2)	C70 C71 H71	121.1(2)
$C_{10} - C_{17} - C_{18}$	119.1 (2)	C72 C71 H71	119.4
C17 C18 H18P	109.5	172 - 171 - 1171	119.4 121.0(2)
	109.5	N17 - C72 - C71	121.9(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	N1/-C/2-C/3	120.3(2)
	109.5	C/1 - C/2 - C/3	117.0(2)
H18A - C18 - H18C	109.5	C/4 - C/3 - C/2	120.8 (2)
H18B-C18-H18C	109.5	C/4—C/3—H/3	119.6
C24—C19—C20	119.3 (2)	С/2—С/3—Н/3	119.6
C24—C19—N1	119.3 (2)	C73—C74—C69	121.1 (2)
C20—C19—N1	120.5 (2)	С73—С74—Н74	119.4
C21—C20—C19	120.5 (2)	С69—С74—Н74	119.4
C21—C20—H20	119.7	N17—C75—H75A	109.5
С19—С20—Н20	119.7	N17—C75—H75B	109.5
C20—C21—C22	120.8 (2)	H75A—C75—H75B	109.5
C20—C21—H21	119.6	N17—C75—H75C	109.5
C22—C21—H21	119.6	H75A—C75—H75C	109.5
N7—C22—C23	120.7 (2)	H75B—C75—H75C	109.5
N7—C22—C21	121.4 (2)	N17—C76—H76A	109.5
C23—C22—C21	117.9 (2)	N17—C76—H76B	109.5
C24—C23—C22	120.7 (2)	H76A—C76—H76B	109.5
C24—C23—H23	119.6	N17—C76—H76C	109.5
С22—С23—Н23	119.6	Н76А—С76—Н76С	109.5
C19—C24—C23	120.7 (2)	H76B—C76—H76C	109.5
C19—C24—H24	119.6	C78—C77—C82	119.0 (2)
C23—C24—H24	119.6	C78—C77—N13	119.4 (2)
N7—C25—H25A	109.5	C82—C77—N13	120.6 (2)
N7—C25—H25B	109.5	C77—C78—C79	121.0 (2)
H25A—C25—H25B	109.5	С77—С78—Н78	119.5
N7—C25—H25C	109.5	С79—С78—Н78	119.5
H25A—C25—H25C	109.5	C78—C79—C80	120.8 (2)
H25B—C25—H25C	109.5	С78—С79—Н79	119.6
N7—C26—H26A	109.5	С80—С79—Н79	119.6
N7—C26—H26B	109.5	N18—C80—C79	120.0 (2)
H26A—C26—H26B	109.5	N18—C80—C81	122.6(2)
N7—C26—H26C	109.5	C79—C80—C81	117.4 (2)
H26A—C26—H26C	109.5	C82—C81—C80	121.1(2)
H26B—C26—H26C	109.5	C82—C81—H81	119,4
C_{32} C_{27} C_{28}	118.5 (2)	C80—C81—H81	119.4
C32—C27—N3	119.5 (2)	C81 - C82 - C77	120.7 (2)
	· · · · · · · · · · · · · · · · · · ·		

C28—C27—N3	121.9 (2)	C81—C82—H82	119.7
C29—C28—C27	121.3 (2)	С77—С82—Н82	119.7
С29—С28—Н28	119.4	N18—C83—H83A	109.5
С27—С28—Н28	119.4	N18—C83—H83B	109.5
C28—C29—C30	120.7 (2)	H83A—C83—H83B	109.5
С28—С29—Н29	119.6	N18—C83—H83C	109.5
С30—С29—Н29	119.6	H83A—C83—H83C	109.5
N8—C30—C29	121.5 (2)	H83B—C83—H83C	109.5
N8—C30—C31	121.0 (2)	N18—C84—H84A	109.5
C29—C30—C31	117.5 (2)	N18—C84—H84B	109.5
C32—C31—C30	121.1 (2)	H84A—C84—H84B	109.5
C32—C31—H31	119.5	N18—C84—H84C	109.5
С30—С31—Н31	119.5	H84A—C84—H84C	109.5
C31—C32—C27	120.8 (2)	H84B—C84—H84C	109.5
С31—С32—Н32	119.6	C86—C85—C90	118.7 (2)
С27—С32—Н32	119.6	C86—C85—N14	121.3 (2)
N8—C33—H33A	109.5	C90—C85—N14	120.0 (2)
N8—C33—H33B	109.5	C87—C86—C85	121.0 (2)
H33A—C33—H33B	109.5	C87—C86—H86	119.5
N8—C33—H33C	109.5	С85—С86—Н86	119.5
H33A—C33—H33C	109.5	C86—C87—C88	121.2 (2)
H33B—C33—H33C	109.5	С86—С87—Н87	119.4
N8—C34—H34A	109.5	С88—С87—Н87	119.4
N8—C34—H34B	109.5	N19—C88—C87	121.1 (2)
H34A—C34—H34B	109.5	N19—C88—C89	121.8 (2)
N8—C34—H34C	109.5	C87—C88—C89	117.1 (2)
H34A—C34—H34C	109.5	C90—C89—C88	121.2 (2)
H34B—C34—H34C	109.5	С90—С89—Н89	119.4
C36—C35—C40	118.9 (2)	С88—С89—Н89	119.4
C36—C35—N4	120.1 (2)	C89—C90—C85	120.8 (2)
C40—C35—N4	121.0 (2)	С89—С90—Н90	119.6
C37—C36—C35	120.9 (2)	С85—С90—Н90	119.6
С37—С36—Н36	119.5	N19—C91—H91A	109.5
С35—С36—Н36	119.5	N19—C91—H91B	109.5
C36—C37—C38	121.2 (2)	H91A—C91—H91B	109.5
С36—С37—Н37	119.4	N19—C91—H91C	109.5
С38—С37—Н37	119.4	Н91А—С91—Н91С	109.5
N9—C38—C39	121.3 (2)	H91B—C91—H91C	109.5
N9—C38—C37	121.7 (2)	N19—C92—H92A	109.5
C39—C38—C37	116.9 (2)	N19—C92—H92B	109.5
C40—C39—C38	121.6 (2)	H92A—C92—H92B	109.5
С40—С39—Н39	119.2	N19—C92—H92C	109.5
С38—С39—Н39	119.2	Н92А—С92—Н92С	109.5
C39—C40—C35	120.5 (2)	Н92В—С92—Н92С	109.5
С39—С40—Н40	119.7	C94—C93—C98	118.3 (2)
C35—C40—H40	119.7	C94—C93—N16	121.3 (2)
N9—C41—H41A	109.5	C98—C93—N16	119.8 (2)
N9—C41—H41B	109.5	C95—C94—C93	120.9 (2)

H41A—C41—H41B	109.5	С95—С94—Н94	119.5
N9—C41—H41C	109.5	С93—С94—Н94	119.5
H41A—C41—H41C	109.5	C94—C95—C96	121.7 (2)
H41B—C41—H41C	109.5	С94—С95—Н95	119.2
N9—C42—H42A	109.5	С96—С95—Н95	119.2
N9—C42—H42B	109.5	N20—C96—C97	122.2 (2)
H42A—C42—H42B	109.5	N20—C96—C95	121.4 (2)
N9—C42—H42C	109.5	C97—C96—C95	116.4 (2)
H42A—C42—H42C	109.5	C98—C97—C96	121.7 (2)
H42B—C42—H42C	109.5	С98—С97—Н97	119.2
C44—C43—C48	118.5 (2)	С96—С97—Н97	119.2
C44—C43—N6	121.2 (2)	С97—С98—С93	120.9 (2)
C48—C43—N6	119.5 (2)	С97—С98—Н98	119.5
C45—C44—C43	121.0 (2)	С93—С98—Н98	119.5
C45—C44—H44	119.5	N20—C99—H99A	109.5
C43—C44—H44	119.5	N20—C99—H99B	109.5
C44—C45—C46	121.4 (2)	H99A—C99—H99B	109.5
C44—C45—H45	119.3	N20-C99-H99C	109.5
C46—C45—H45	119.3	H99A—C99—H99C	109.5
N10-C46-C47	121.7 (2)	H99B—C99—H99C	109.5
N10-C46-C45	121.5 (2)	N20—C100—H10D	109.5
C47—C46—C45	116.8 (2)	N20—C100—H10E	109.5
C48—C47—C46	121.3 (2)	H10D—C100—H10E	109.5
С48—С47—Н47	119.4	N20-C100-H10F	109.5
С46—С47—Н47	119.4	H10D—C100—H10F	109.5
C47—C48—C43	120.9 (2)	H10E—C100—H10F	109.5
C47—C48—H48	119.5	Cl5—C1S—Cl6	110.65 (16)
C43—C48—H48	119.5	Cl5—C1S—H1SA	109.5
N10—C49—H49A	109.5	Cl6—C1S—H1SA	109.5
N10—C49—H49B	109.5	C15—C1S—H1SB	109.5
H49A—C49—H49B	109.5	Cl6—C1S—H1SB	109.5
N10—C49—H49C	109.5	H1SA—C1S—H1SB	108.1
H49A—C49—H49C	109.5	C18—C2S—C17	109.50 (16)
H49B—C49—H49C	109.5	C18—C2S—H2SA	109.8
N10—C50—H50A	109.5	Cl7—C2S—H2SA	109.8
N10-C50-H50B	109.5	C18—C2S—H2SB	109.8
H50A—C50—H50B	109.5	Cl7—C2S—H2SB	109.8
N10—C50—H50C	109.5	H2SA—C2S—H2SB	108.2
H50A-C50-H50C	109.5	C110—C3S—C19	112.50 (15)
H50B—C50—H50C	109.5	C110—C3S—H3SA	109.1
N12—Ni2—N15	167.94 (8)	C19—C3S—H3SA	109.1
N12—Ni2—N14	110.67 (7)	Cl10—C3S—H3SB	109.1
N15—Ni2—N14	78.01 (7)	C19—C3S—H3SB	109.1
N12—Ni2—N11	77.79 (7)	H3SA—C3S—H3SB	107.8
N15—Ni2—N11	111.03 (7)	Cl12—C4S—Cl11	110.70 (16)
N14—Ni2—N11	91.70 (7)	Cl12—C4S—H4SA	109.5
N12—Ni2—N13	76.89 (7)	Cl11—C4S—H4SA	109.5
N15—Ni2—N13	94.86 (7)	Cl12—C4S—H4SB	109.5
	~ /		

N14—Ni2—N13	91.88 (7)	Cl11—C4S—H4SB	109.5
N11—Ni2—N13	154.04 (7)	H4SA—C4S—H4SB	108.1
N12—Ni2—N16	94.74 (7)	H1OA—O1—H1OB	101.9
N15—Ni2—N16	76.75 (8)	H2OA—O2—H2OB	106.9
N14—Ni2—N16	154.58 (7)	НЗОА—ОЗ—НЗОВ	107.3
N11—Ni2—N16	94.50 (7)	H4OA—O4—H4OB	97.4
C19—N1—C2—C3	-174.7 (2)	C69—N11—C52—C51	8.0 (4)
Ni1—N1—C2—C3	-1.7 (3)	Ni2—N11—C52—C51	-177.1 (2)
C19—N1—C2—C1	6.6 (4)	C69—N11—C52—C53	-174.92 (19)
Ni1—N1—C2—C1	179.59 (18)	Ni2—N11—C52—C53	0.0 (3)
C7—N2—C3—C4	0.9 (3)	C57—N12—C53—C54	0.7 (3)
Ni1—N2—C3—C4	163.54 (17)	Ni2—N12—C53—C54	164.72 (18)
C7—N2—C3—C2	-176.91 (19)	C57—N12—C53—C52	-178.1(2)
Ni1—N2—C3—C2	-14.3 (2)	Ni2—N12—C53—C52	-14.1 (2)
N1-C2-C3-N2	9.9 (3)	N11—C52—C53—N12	8.8 (3)
C1—C2—C3—N2	-171.3 (2)	C51—C52—C53—N12	-173.9 (2)
N1—C2—C3—C4	-167.8 (2)	N11—C52—C53—C54	-170.0(2)
C1—C2—C3—C4	11.0 (4)	C51—C52—C53—C54	7.4 (4)
N2—C3—C4—C5	-1.4 (3)	N12—C53—C54—C55	0.2 (4)
C2—C3—C4—C5	176.1 (2)	C52—C53—C54—C55	178.8 (2)
C3—C4—C5—C6	1.0 (4)	C53—C54—C55—C56	-0.2 (4)
C4—C5—C6—C7	-0.1 (4)	C54—C55—C56—C57	-0.6(4)
C3—N2—C7—C6	0.0 (3)	C53—N12—C57—C56	-1.6(3)
Ni1—N2—C7—C6	-162.83 (17)	Ni2—N12—C57—C56	-165.45 (17)
C3—N2—C7—C8	177.9 (2)	C53—N12—C57—C58	177.1 (2)
Ni1—N2—C7—C8	15.1 (2)	Ni2—N12—C57—C58	13.2 (3)
C5—C6—C7—N2	-0.4 (3)	C55—C56—C57—N12	1.5 (3)
C5—C6—C7—C8	-178.0 (2)	C55—C56—C57—C58	-177.0 (2)
C27—N3—C8—C9	-8.4 (4)	C77—N13—C58—C57	173.8 (2)
Ni1—N3—C8—C9	177.17 (19)	Ni2—N13—C58—C57	-0.4 (3)
C27—N3—C8—C7	173.92 (19)	C77—N13—C58—C59	-7.6 (4)
Ni1—N3—C8—C7	-0.5 (3)	Ni2—N13—C58—C59	178.22 (18)
N2—C7—C8—N3	-9.1 (3)	N12-C57-C58-N13	-7.8 (3)
C6—C7—C8—N3	168.6 (2)	C56—C57—C58—N13	170.8 (2)
N2—C7—C8—C9	173.1 (2)	N12—C57—C58—C59	173.4 (2)
C6—C7—C8—C9	-9.2 (4)	C56—C57—C58—C59	-8.0 (4)
C35—N4—C11—C12	173.98 (19)	C85—N14—C61—C62	-173.63 (19)
Ni1—N4—C11—C12	-6.3 (2)	Ni2—N14—C61—C62	7.3 (2)
C35—N4—C11—C10	-10.6 (3)	C85—N14—C61—C60	11.3 (3)
Ni1—N4—C11—C10	169.21 (19)	Ni2—N14—C61—C60	-167.74 (19)
C16—N5—C12—C13	-3.5 (3)	C66—N15—C62—C63	3.5 (3)
Ni1—N5—C12—C13	-172.13 (17)	Ni2—N15—C62—C63	173.47 (17)
C16—N5—C12—C11		Q(())15 Q(2 Q(1	175 (0 (10)
	175.21 (19)	C00-N13-C02-C01	-1/3.09(19)
Ni1—N5—C12—C11	175.21 (19) 6.6 (3)	Ni2—N15—C62—C61	-173.09(19) -5.7(3)
Ni1—N5—C12—C11 N4—C11—C12—N5	175.21 (19) 6.6 (3) 0.2 (3)	Ni2—N15—C62—C61 N14—C61—C62—N15	-1.5(3) -1.5(3)
Ni1—N5—C12—C11 N4—C11—C12—N5 C10—C11—C12—N5	175.21 (19) 6.6 (3) 0.2 (3) -175.7 (2)	Ni2—N15—C62—C61 N14—C61—C62—N15 C60—C61—C62—N15	-5.7(3) -1.5(3) 174.0(2)

C10-C11-C12-C13	2.9 (3)	C60—C61—C62—C63	-5.1 (3)
N5-C12-C13-C14	1.1 (4)	N15—C62—C63—C64	-0.3 (4)
C11—C12—C13—C14	-177.5 (2)	C61—C62—C63—C64	178.7 (2)
C12—C13—C14—C15	1.7 (4)	C62—C63—C64—C65	-2.1 (4)
C13—C14—C15—C16	-2.0(4)	C63—C64—C65—C66	1.6 (4)
C12—N5—C16—C15	3.1 (3)	C62—N15—C66—C65	-4.0(3)
Ni1—N5—C16—C15	171.65 (17)	Ni2—N15—C66—C65	-173.90(17)
C12 - N5 - C16 - C17	-1753(2)	C62 - N15 - C66 - C67	173 76 (19)
Ni1 $-$ N5 $-$ C16 $-$ C17	-68(3)	Ni2—N15—C66—C67	39(3)
C_{14} C_{15} C_{16} N_{5}	-0.3(3)	C_{64} C_{65} C_{66} N_{15}	14(3)
C_{14} C_{15} C_{16} C_{17}	177 0 (2)	C64 C65 C66 C67	-1760(2)
$C_{14} = C_{13} = C_{10} = C_{17}$	-178.06(10)	C03 N16 C67 C66	-178.7(2)
$N_{11}^{-1} N_{12}^{-1} C_{12}^{-1} C_{13}^{-1} C_{14}^{-1} C_{1$	1/0.00(19)	$N_{2}^{2} = N_{10}^{2} - C_{00}^{2} - C_{00}^{2}$	1/0.7(2)
NII - NO - CI / - CIO	0.1(2)	N12 - N10 - C07 - C00	-0.0(2)
$V_{43} = N_{0} = C_{17} = C_{18}$	4.2 (4)	$V_{3}^{2} = N_{10}^{10} = C_{0}^{2} = C_{0}^{2}$	-1.7(4)
$N_{11} - N_{6} - C_{17} - C_{18}$	-1/1.64(19)	$N_{12} - N_{16} - C_{67} - C_{68}$	1/0.43 (18)
N5—C16—C17—N6	0.0 (3)	N15—C66—C67—N16	2.2 (3)
C15—C16—C17—N6	-178.4 (2)	C65—C66—C67—N16	179.8 (2)
N5—C16—C17—C18	177.9 (2)	N15—C66—C67—C68	-175.1 (2)
C15—C16—C17—C18	-0.5 (4)	C65—C66—C67—C68	2.6 (3)
C2—N1—C19—C24	84.7 (3)	C52—N11—C69—C74	-130.9 (2)
Ni1—N1—C19—C24	-87.9 (2)	Ni2—N11—C69—C74	54.5 (3)
C2-N1-C19-C20	-106.2 (3)	C52—N11—C69—C70	54.3 (3)
Ni1—N1—C19—C20	81.2 (2)	Ni2—N11—C69—C70	-120.3 (2)
C24—C19—C20—C21	0.2 (3)	C74—C69—C70—C71	0.9 (3)
N1-C19-C20-C21	-168.9 (2)	N11—C69—C70—C71	175.7 (2)
C19—C20—C21—C22	0.6 (4)	C69—C70—C71—C72	0.1 (4)
C25—N7—C22—C23	2.9 (4)	C76—N17—C72—C71	-168.5(2)
C26—N7—C22—C23	-173.3 (3)	C75—N17—C72—C71	-17.6(3)
C_{25} N7 C_{22} C_{21}	-1761(3)	C76 - N17 - C72 - C73	137(3)
$C_{26} N_{7} C_{22} C_{21}$	76(4)	C75 - N17 - C72 - C73	164.6(2)
C_{20} C_{21} C_{22} C_{21} C_{22} C_{21} C_{21} C_{21} C_{22} C_{21} C	1775(3)	C70-C71-C72-N17	-1781(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.5(4)	C70 $C71$ $C72$ $C73$	-0.3(3)
$V_{20} = C_{21} = C_{22} = C_{23}$	1.3(4)	17 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -	0.3(3)
N = C22 = C23 = C24	177.4(2)	N1/-C/2-C/3-C/4	177.4(2)
$C_{21} = C_{22} = C_{23} = C_{24}$	1.7(4)	C/1 - C/2 - C/3 - C/4	-0.4(3)
$C_{20} = C_{19} = C_{24} = C_{23}$	-0.1(3)	C/2 - C/3 - C/4 - C09	1.4 (4)
N1 - C19 - C24 - C23	169.1 (2)	C/0 - C69 - C/4 - C/3	-1.7(3)
C22—C23—C24—C19	-0.9 (4)	NII—C69—C/4—C/3	-176.7(2)
C8—N3—C27—C32	130.6 (2)	C58—N13—C77—C78	-86.4 (3)
Ni1—N3—C27—C32	-55.5 (3)	Ni2—N13—C77—C78	87.6 (2)
C8—N3—C27—C28	-53.9 (3)	C58—N13—C77—C82	105.1 (3)
Ni1—N3—C27—C28	120.1 (2)	Ni2—N13—C77—C82	-81.0 (2)
C32—C27—C28—C29	-1.0 (3)	C82—C77—C78—C79	0.6 (3)
N3—C27—C28—C29	-176.6 (2)	N13—C77—C78—C79	-168.2 (2)
C27—C28—C29—C30	-0.9 (4)	C77—C78—C79—C80	0.2 (4)
C34—N8—C30—C29	-174.7 (2)	C83—N18—C80—C79	-25.9 (4)
C33—N8—C30—C29	-8.3 (4)	C84—N18—C80—C79	-178.5 (3)
C34—N8—C30—C31	4.8 (4)	C83—N18—C80—C81	154.1 (3)
C33—N8—C30—C31	171.2 (2)	C84—N18—C80—C81	1.4 (4)

C28—C29—C30—N8	-178.9 (2)	C78—C79—C80—N18	178.9 (2)
C28—C29—C30—C31	1.6 (3)	C78—C79—C80—C81	-1.0 (4)
N8—C30—C31—C32	-179.9 (2)	N18—C80—C81—C82	-178.7 (2)
C29—C30—C31—C32	-0.4 (4)	C79—C80—C81—C82	1.2 (4)
C30—C31—C32—C27	-1.5 (4)	C80—C81—C82—C77	-0.5 (4)
C28—C27—C32—C31	2.2 (3)	C78—C77—C82—C81	-0.4 (3)
N3-C27-C32-C31	177.9 (2)	N13—C77—C82—C81	168.2 (2)
C11—N4—C35—C36	129.5 (2)	C61—N14—C85—C86	53.4 (3)
Ni1—N4—C35—C36	-50.3 (3)	Ni2—N14—C85—C86	-127.7 (2)
C11—N4—C35—C40	-53.0 (3)	C61—N14—C85—C90	-128.8 (2)
Ni1-N4-C35-C40	127.2 (2)	Ni2—N14—C85—C90	50.1 (3)
C40—C35—C36—C37	2.4 (3)	C90—C85—C86—C87	1.8 (4)
N4—C35—C36—C37	180.0 (2)	N14—C85—C86—C87	179.5 (2)
C35—C36—C37—C38	-2.2 (4)	C85—C86—C87—C88	-0.6 (4)
C41—N9—C38—C39	170.1 (2)	C91—N19—C88—C87	-19.4 (3)
C42—N9—C38—C39	23.0 (3)	C92—N19—C88—C87	-164.9 (2)
C41—N9—C38—C37	-13.3 (3)	C91—N19—C88—C89	162.7 (2)
C42—N9—C38—C37	-160.4 (2)	C92—N19—C88—C89	17.2 (3)
C36—C37—C38—N9	-175.8 (2)	C86—C87—C88—N19	-177.7 (2)
C36—C37—C38—C39	0.9 (3)	C86—C87—C88—C89	0.3 (3)
N9-C38-C39-C40	176.7 (2)	N19-C88-C89-C90	176.7 (2)
C37—C38—C39—C40	0.0 (3)	C87—C88—C89—C90	-1.2 (3)
C38—C39—C40—C35	0.3 (4)	C88—C89—C90—C85	2.5 (4)
C36—C35—C40—C39	-1.5 (3)	C86—C85—C90—C89	-2.7 (3)
N4—C35—C40—C39	-179.0 (2)	N14—C85—C90—C89	179.5 (2)
C17—N6—C43—C44	-89.2 (3)	C67—N16—C93—C94	81.9 (3)
Ni1—N6—C43—C44	86.4 (2)	Ni2—N16—C93—C94	-89.7 (2)
C17—N6—C43—C48	101.2 (3)	C67—N16—C93—C98	-107.3 (3)
Ni1—N6—C43—C48	-83.2 (2)	Ni2—N16—C93—C98	81.2 (2)
C48—C43—C44—C45	1.2 (4)	C98—C93—C94—C95	-1.0 (4)
N6-C43-C44-C45	-168.5 (2)	N16-C93-C94-C95	170.0 (2)
C43—C44—C45—C46	-0.4 (4)	C93—C94—C95—C96	-0.5 (4)
C50—N10—C46—C47	8.6 (4)	C100—N20—C96—C97	-7.7 (4)
C49—N10—C46—C47	168.5 (2)	C99—N20—C96—C97	-152.2 (2)
C50—N10—C46—C45	-172.0 (3)	C100—N20—C96—C95	174.5 (2)
C49—N10—C46—C45	-12.1 (4)	C99—N20—C96—C95	30.0 (3)
C44—C45—C46—N10	179.5 (2)	C94—C95—C96—N20	-179.9 (2)
C44—C45—C46—C47	-1.1 (4)	C94—C95—C96—C97	2.2 (4)
N10-C46-C47-C48	-178.8 (2)	N20-C96-C97-C98	179.6 (2)
C45—C46—C47—C48	1.8 (4)	C95—C96—C97—C98	-2.5 (4)
C46—C47—C48—C43	-1.0 (4)	C96—C97—C98—C93	1.2 (4)
C44—C43—C48—C47	-0.6 (4)	C94—C93—C98—C97	0.7 (4)
N6-C43-C48-C47	169.4 (2)	N16-C93-C98-C97	-170.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1—H1 <i>OA</i> ···Cl1	0.91	2.33	3.2381 (19)	177

O1—H1 <i>OB</i> ···Cl2	0.88	2.31	3.188 (2)	177
O2—H2 <i>OA</i> ···Cl1	1.01	2.18	3.192 (2)	175
O2—H2 <i>OB</i> ···Cl2	0.95	2.32	3.2691 (19)	177
O3—H3 <i>OA</i> ···Cl4	0.90	2.30	3.198 (2)	178
O3—H3 <i>OB</i> ···Cl3	0.87	2.34	3.201 (2)	174
O4—H4 <i>OB</i> ···Cl3	1.08	2.12	3.180 (2)	168
O4—H4 <i>OA</i> ···Cl4	0.94	2.25	3.192 (2)	177
C1 <i>S</i> —H1 <i>SB</i> ···Cl3	0.99	2.47	3.422 (3)	162
C2 <i>S</i> —H2 <i>SA</i> ···Cl4	0.99	2.81	3.743 (4)	158
C2S—H2SB···Cl1 ⁱ	0.99	2.66	3.642 (3)	169
C3S—H3SA···N17 ⁱⁱ	0.99	2.42	3.403 (4)	173
C3 <i>S</i> —H3 <i>SB</i> ···Cl2	0.99	2.49	3.447 (3)	163
C4S—H4SA····Cl4	0.99	2.54	3.527 (3)	176

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*-1, *y*, *z*.