

Received 1 June 2017 Accepted 30 June 2017

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: crystal structure; naphthoquinoxaline-6,11-dione; hydrogen bonding; π -- π interaction.

CCDC references: 1559404; 1559403

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of two 2,3-diethylnaphtho[2,3-g]quinoxaline-6,11-dione derivatives

Craig M. Forsyth^a* and Craig L. Francis^b*

^aSchool of Chemistry, Monash University, Clayton Victoria 3800, Australia, and ^bBiomedical Synthetic Chemistry Group, CSIRO, Clayton, Victoria 3169, Australia. *Correspondence e-mail: craig.forsyth@monash.edu, craig.francis@csiro.au

Two new 5,12-disubstituted 2,3-diethylnaphtho[2,3-g]quinoxaline-6,11-dione compounds were readily synthesized from the commercial dye quinizarin. 2,3-diethyl-5,12-dihydroxynaphtho[2,3-g]quinoxaline-6,11-dione, For (II). C₂₀H₁₆N₂O₄, the molecule displays a near planar conformation and both hydroxy groups participate in intramolecular O-H···O(carbonyl) hydrogen bonds. In the crystal, $\pi - \pi$ ring interactions [minimum ring centroid separation = 3.5493 (9) Å form stacks of co-planar molecules down the c axis, while only minor intermolecular $C-H\cdots O$ interactions are present. In contrast, in 2,3-diethyl-5,12-bis(piperidin-1-yl)naphtho[2,3-g]quinoxaline-6,11-dione, (IV), $C_{30}H_{34}N_4O_2$, which contains two independent, but similar, molecules in the asymmetric unit, the polycyclic cores have a significant twist, with dihedral angles of 29.79 (6) and 29.31 (7) $^{\circ}$ between the terminal rings and only minor intermolecular C-H···O hydrogen-bonding interactions are present. Electron density associated with additional solvent molecules disordered about a fourfold axis was accounted for using the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9-18].

1. Chemical context

As part of a program aimed at the identification of new heterocyclic compounds for organic electronic applications, we sought new or uncommon ring systems that could be synthesized conveniently from cheap, readily available starting materials. In this context, we noted that 2,3-diamino-1,4-dihydroxyanthracene-9,10-dione (I) had been prepared from the inexpensive dye quinizarin (1,4-dihydroxyanthra-

OPEN 👌 ACCESS

research communications

quinone) (Shchekotikhin et al., 2005). The diamine (I) appeared to us to be a convenient synthetic building block for fusion of diaza-heterocycles onto the anthraquinone core. Our reaction of the diamine (I) with hexane-3.4-dione in dioxane afforded the 2,3-diethyl-5,12-dihydroxynaphtho[2,3-g]quinoxaline-6,11-dione (II). In exploring the chemistry of compound (II), we found that conversion of the hydroxy groups to the corresponding tosylates gave (III) and subsequent reaction with an excess of piperidine afforded 2,3-diethyl-5,12-bis(piperidin-1-yl)naphtho[2,3-g]quinoxaline-6.11-dione (IV). The reaction scheme for the total synthesis is shown in Fig. 1 and the crystal structures of both the intermediate compound (II) and compound (IV) are reported herein.

2. Structural commentary

The molecular structure of compound (II) is shown in Fig. 2. The naphthoquinoxaline core is essentially planar [maximum deviation 0.0739 (11) Å for N1], with a dihedral angle of 4.60 (8)° between the terminal rings of the molecule. Present in the molecule are two intramolecular $O-H\cdots O$ hydrogenbonded ring systems formed by the hydroxy and carbonyl substituents (Table 1). The two ethyl groups are approximately coplanar with the polycyclic core [torsion angles: N1-C16-C19-C20, 14.3 (2)° and N2-C15-C17-C18, -1.9 (2)°].

Table 1Hydrogen-bond geometry (Å, °) for (II).

, , ,				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O1-H1···O2	0.97 (3)	1.62 (3)	2.5270 (16)	155 (2)
$O3-H3\cdots O4$	1.00 (3)	1.58 (3)	2.5225 (17)	154 (2)
$C8-H8\cdots O1^{i}$	0.95	2.57	3.227 (2)	126
$C19-H19A\cdots O4^{ii}$	0.99	2.59	3.418 (2)	142

Symmetry codes: (i) $-y + \frac{3}{2}$, x, z + 1; (ii) -y + 1, $x - \frac{1}{2}$, -z.

The molecular structure of compound (IV) contains two independent, but conformationally very similar molecules (molecule 1 and molecule 2) (Fig. 3). In contrast to (II), the naphthoquinoxaline core of (IV) is significantly twisted, as shown by the dihedral angles between the mean planes of the two terminal six-membered rings [29.79 (6) and 29.31 (7)°]. There is a corresponding twisting of the two central sixmembered rings, presumably resulting from repulsion between neighbouring piperidin-1-yl and carbonyl moieties. The C–N bonds form angles of between 32.3 and 44.5° relative to the neighbouring C=O bonds.

3. Supramolecular features

In the crystal, molecules of (II) form canted head-to-head $\pi - \pi$ associated molecules with ring centroid separations of 3.5493 (9) Å $(Cg1\cdots Cg2^{iii})$ [symmetry code: (iii): -x, -y,-z - 1], and 3.6064 (10) Å for $(Cg2\cdots Cg3^{iv})$ [symmetry code (iv): -x, -y, -z + 1] where Cg1, Cg2 and Cg3 are the centroids of the six-membered rings defined by atoms N1/N2/ C1/C14-C16, C1-C3/C12-C14 and C3-C5/C10-C12, respectively. These slight variations in π - π separations result from the molecules being off-set by one six-membered ring along the long molecular axis and by approximately half a sixmembered ring along the short molecular axis. The result is the formation of stacks along the c axis with an inter-planar separation of ca 3.41 Å (Fig. 4). The packing viewed down the c axis is shown in Fig. 5 and displays an approximately orthogonal arrangement of the molecular stacks. Present also in the crystal structure are two minor intermolecular C-

Figure 2

Molecular conformation and atom-numbering scheme for (II), with displacement ellipsoids shown at the 50% probability level. Intra-molecular hydrogen bonds shown as dashed lines.

Figure 3

Molecular conformation and atom-numbering scheme for the two independent molecules [(a) molecule 1 and (b) molecule 2] in the asymmetric unit of (IV), with displacement ellipsoids shown at the 50% probability level.

H···O interactions linking the stacks (aromatic C8–H···O1ⁱ and methylene C19–H···O4ⁱⁱ; Table 1).

In contrast, the crystal packing of (IV) (Fig. 6) involves no $\pi-\pi$ ring interactions [minimum $Cg\cdots Cg$ separation = 3.9440 (9) Å between inversion-related molecules]. There is only one significant intermolecular hydrogen-bonding interaction involving only molecule 2: piperidin-1-yl C56–H···O3ⁱ = 3.1765 (19) Å [symmetry code (i) -x, -y + 1, -z + 1], giving inversion-related dimers (Table 2).

4. Database survey

A search of the Cambridge Structural Database (V5.38; Groom *et al.*, 2016) for the naphthoquinoxaline core gave

Figure 5

The packing in the unit cell of (II) as viewed along the c axis, with C-bound H atoms omitted.

Table 2	
Hydrogen-bond geometry (Å, °) for (IV).	

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C56-H56A\cdots O3^{i}$	0.99	2.54	3.1765 (19)	122

Symmetry code: (i) -x, -y + 1, -z + 1.

three matches each having an additional fused six-membered ring, including the unsubstituted *N*-heteropentacene pyrazino[2',3';6,7]naphtho[2,3-g]quinoxaline-6,13-dione (ref code AROCAM; Liang *et al.*, 2010) and two 13-chloro-6methylcarboxylato-naphtho[2,3-*b*]phenazine-7,12-diones (ref codes ABUVAW and ABUVEA; Chou *et al.*, 2011). Each of these examples have planar, or only slightly twisted (*ca* 12°) polycyclic cores and adopt off-set π - π stacked supramolecular structures.

5. Synthesis and crystallization

(i) 2,3-Diethyl-5,12-dihydroxynaphtho[2,3-g]quinoxaline-6,11-dione, (II)

Compound (II) was prepared using the procedure of Shchekotikhin *et al.* (2005), as follows. To a stirred mixture of diamine (I) (1.35 g, 5 mmol), hexane-3,4-dione (3.0 ml, 2.85g, 25mmol), and 1,4-dioxane (30 ml) was heated at reflux for 3 h. The mixture was cooled and the resulting crystalline solid was

Figure 6 The packing in the unit cell of (IV) as viewed along the b axis, with H atoms omitted.

collected by filtration and washed with diethyl ether to afford the title compound (1.58g, 91% yield) as rust-red needles, m.p. 507–509 K (found: M^+ 348.1102; C₂₀H₁₆N₂O₄ requires M^+ 348.1105). ¹H NMR (CDCl₃, 500 MHz) δ 8.42 (2H, *m*, ArH), 7.85 (2H, *m*, ArH), 3.18 (4H, *q*, *J* = 7.5Hz, CH₂), 1.47 (6H, *t*, *J* = 7.5 Hz, CH₃); ¹³C NMR (CDCl₃, 125 MHz) δ 184.11, 161.55, 159.86, 139.09, 134.56, 133.80, 127.28, 109.12, 28.94, 12.84. Red–orange needles of (II). Crystals suitable for X-ray structure determination were grown from an acetone solution.

(ii) 2,3-Diethyl-6,11-dioxo-6,11-dihydronaphtho[2,3-g]quinoxaline-5,12-diyl bis(4-methylbenzenesulfonate) (III)

Compound (III) was prepared using the procedure of Zielske (1987). A mixture of diol (II) (1.04g, 3.0 mmol), *p*-toluenesulfonylchloride (2.92 g, 15.3 mmol), CH₂Cl₂ (100 ml), aqueous sodium hydroxide (0.5%, 208 mL, 25.3 mmol), and tetrabutylammonium bromide (4.96 g, 15.3 mmol) was stirred rapidly for 24 h at room temperature. The organic phase was set aside and the aqueous phase was extracted with dichloromethane (50 ml). The combined organic phase was washed with water $(3 \times 200 \text{ ml})$, saturated brine (50 ml), and dried over MgSO₄. After filtration, the solvent was removed by evaporation under reduced pressure. The residual red-brown gum (3.63 g) was purified by chromatography over silica gel. Elution with 0-10% ethyl acetate in dichloromethane and evaporation afforded compound (III) (661 mg, 34%) as a honeycomb-coloured powder (found: M^+ 656.1278; C₃₄H₂₈N₂O₈³²S₂ requires M^+ 656.1282.) ¹H NMR (CDCl₃, 400 MHz) δ 8.05 (2H, m, ArH), 7.82 (4H, d, J = 8Hz, ArH), 7.75 (2H, m, ArH), 7.30 (4H, d, J = 8Hz, ArH), 2.84 (4H, q, J = 7.4 Hz, 2 × CH₂), 2.45(6H, s, 2 × ArCH₃), 1.25 (6H, t, J = 7.4 Hz, 2 × CH₃); ¹³C NMR (CDCl₃, 50 MHz) δ 180.81, 161.20, 145.03, 138.66, 134.43, 134.32, 134.03, 129.59, 128.73, 127.02, 125.78, 28.34, 21.69, 11.15.

(iii) 2,3-Diethyl-5,12-bis(piperidin-1-yl)naphtho[2,3-g]quinoxaline- 6,11-dione, (IV)

Compound (IV) was prepared by modifying the procedures of Zielske (1987) and Melliou et al. (2001). A stirred mixture of the bis-tosylate (III) (550 mg, 0.8 mmol) and piperidine (8 ml) under N₂ (bubbler) was heated at 353 K for 2h. The reaction mixture was cooled and evaporated under reduced pressure. The residue was dissolved in a mixture of ethyl acetate (50 ml) and chloroform (12 mL) and the resulting solution was washed sequentially with water $(3 \times 100 \text{ml})$ and brine (30 ml) and then dried (MgSO₄) and evaporated under reduced pressure. The residual dark-purple solid (405 mg) was purified by chromatography over silica gel. Elution with 0-20% ethyl acetate in dichloromethane afforded the title compound (328 mg, 81%) as very dark purple-navy coloured blocks (Fig. 7) after slow evaporation from dichloromethane/ ethyl acetate, m.p. 463.5–464.5 K (found: M^+ 482.2683; $C_{30}H_{34}N_4O_2$ requires M^+ 482.2676). ¹H NMR (CDCl₃, 400 MHz) δ 8.22 (2H, m, ArH), 7.70 (2H, m, ArH), 3.31 (8H, $m, 4 \times CH_2N$), 3.06 (4H, q, J = 7.4Hz, 2 × CH₂Ar), 1.90–1.75 $(12H, 2 \times CH_2CH_2CH_2), 1.46 (6H, t, J = 7.4Hz, 2 \times CH_3);$ ¹³C NMR (CDCl₃, 100 MHz) δ 183.04, 155.05, 147.52, 140.91, 135.47, 132.72, 126.19, 122.37, 54.93, 28.01, 26.97, 24.72, 12.04.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and were freely refined. Other H atoms were included in the refinement at calculated positions with C-H = 0.95-0.99 Å and treated as riding with $U_{iso}(H) =$ $1.2U_{eq}(C)$ or $1.52U_{eq}(O \text{ or methyl C})$. Electron density associated with additional solvent molecules disordered about a fourfold axis was accounted for using the SQUEEZE procedure in *PLATON* (Spek, 2015).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2014). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
- Chou, T.-C., Lin, K.-C., Kon-no, M., Lee, C.-C. & Shinmyozu, T. (2011). Org. Lett. 13, 4588–4591.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Liang, Z., Tang, Q., Liu, J., Li, J., Yan, F. & Miao, Q. (2010). Chem. Mater. 22, 6438–6443.
- Melliou, E., Magiatis, P., Mitaku, S., Skaltsounis, A.-L., Pierré, A., Atassi, G. & Renard, P. (2001). *Bioorg. Med. Chem.* 9, 607–612.

Table 3Experimental details.

	(II)	(IV)
Crystal data		
Chemical formula	$C_{20}H_{16}N_2O_4$	$C_{20}H_{24}N_4O_2$
M_r	348.35	482.61
Crystal system, space group	Tetragonal, $P4/n$	Triclinic, $P\overline{1}$
Temperature (K)	123	123
a, b, c (Å)	28.2529 (11), 28.2529 (11), 4.2504 (3)	11.6144 (6), 11.8249 (5), 19.0526 (9)
α, β, γ (°)	90, 90, 90	75.102 (2), 77.310 (2), 83.321 (2)
$V(\dot{A}^3)$	3392.8 (4)	2462.0 (2)
Z	8	4
Radiation type	Cu Ka	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.80	0.08
Crystal size (mm)	$0.25 \times 0.04 \times 0.04$	$0.25\times0.15\times0.06$
Data collection		
Diffractometer	Oxford Gemini Ultra CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)	Multi-scan (SADABS; Bruker, 2014)
T_{\min}, T_{\max}	0.857, 1.000	0.708, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10284, 2986, 2391	46624, 11784, 7969
R _{int}	0.028	0.046
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.596	0.660
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.105, 1.03	0.047, 0.113, 1.03
No. of reflections	2986	11784
No. of parameters	243	653
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.16, -0.19	0.26, -0.23

Computer programs: CrysAlis PRO (Rigaku OD, 2015), APEX2 (and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), X-SEED (Barbour, 2001) and publCIF (Westrip, 2010).

Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.

Shchekotikhin, A. E., Makarov, I. G., Buyanov, V. N. & Preobrazhenskaya, M. N. (2005). *Chem. Heterocycl. Compd.* **41**, 914–920. Sheldrick, G. M. (2015a). *Acta Cryst.* **A71**, 3–8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Spek, A. L. (2015). Acta Cryst. C71, 9–18.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Zielske, A. G. (1987). J. Org. Chem. 52, 1305–1309.

Acta Cryst. (2017). E73, 1125-1129 [https://doi.org/10.1107/S2056989017009641]

Crystal structures of two 2,3-diethylnaphtho[2,3-g]quinoxaline-6,11-dione derivatives

Craig M. Forsyth and Craig L. Francis

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015) for (II); *APEX2* (Bruker, 2014) for (IV). Cell refinement: *CrysAlis PRO* (Rigaku OD, 2015) for (II); *SAINT* (Bruker, 2014) for (IV). Data reduction: *CrysAlis PRO* (Rigaku OD, 2015) for (II); *SAINT* (Bruker, 2014) for (IV). For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015b); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

2,3-Diethyl-5,12-dihydroxynaphtho[2,3-g]quinoxaline-6,11-dione (II)

Crystal data

 $C_{20}H_{16}N_2O_4$ $M_r = 348.35$ Tetragonal, P4/n a = 28.2529 (11) Å c = 4.2504 (3) Å $V = 3392.8 (4) \text{ Å}^3$ Z = 8 F(000) = 1456 $D_x = 1.364 \text{ Mg m}^{-3}$

Data collection

Oxford Gemini Ultra CCD
diffractometer
Radiation source: fine focus sealed tube
Detector resolution: 10.3389 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
$T_{\min} = 0.857, \ T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.105$ S = 1.032986 reflections 243 parameters 0 restraints Melting point = 507–509 K Cu K α radiation, λ = 1.54184 Å Cell parameters from 2972 reflections θ = 4.4–66.9° μ = 0.80 mm⁻¹ T = 123 K Needle, orange 0.25 × 0.04 × 0.04 mm

10284 measured reflections 2986 independent reflections 2391 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 66.7^\circ, \ \theta_{min} = 5.0^\circ$ $h = -32 \rightarrow 32$ $k = -30 \rightarrow 33$ $l = -4 \rightarrow 5$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0477P)^2 + 1.2563P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.16$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Disordered solvent molecules were accounted for using PLATON SQUEEZE (Spek, 2015).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.67025 (4)	0.54392 (4)	0.1718 (3)	0.0328 (3)	
O2	0.72757 (4)	0.59355 (4)	0.4871 (3)	0.0390 (3)	
O3	0.81968 (4)	0.43226 (4)	-0.2039 (3)	0.0378 (3)	
O4	0.87451 (4)	0.48403 (4)	0.1138 (3)	0.0379 (3)	
N1	0.65539 (4)	0.47227 (4)	-0.2404 (3)	0.0290 (3)	
N2	0.73105 (4)	0.41228 (4)	-0.4052 (3)	0.0301 (3)	
C1	0.69990 (5)	0.47958 (5)	-0.1266 (4)	0.0266 (3)	
C2	0.70777 (5)	0.51838 (5)	0.0856 (4)	0.0273 (3)	
C3	0.75334 (5)	0.52791 (5)	0.1904 (4)	0.0272 (3)	
C4	0.76120 (5)	0.56822 (5)	0.3970 (4)	0.0300 (4)	
C5	0.81005 (5)	0.57931 (6)	0.4958 (4)	0.0307 (4)	
C6	0.81855 (6)	0.61881 (6)	0.6840 (4)	0.0368 (4)	
H6	0.792925	0.638278	0.748691	0.044*	
C7	0.86416 (6)	0.62974 (6)	0.7769 (4)	0.0397 (4)	
H7	0.869763	0.656889	0.903442	0.048*	
C8	0.90185 (6)	0.60122 (6)	0.6862 (4)	0.0391 (4)	
H8	0.933073	0.608708	0.752457	0.047*	
C9	0.89390 (6)	0.56199 (6)	0.4997 (4)	0.0357 (4)	
Н9	0.919743	0.542627	0.437336	0.043*	
C10	0.84809 (6)	0.55063 (6)	0.4023 (4)	0.0312 (4)	
C11	0.84036 (5)	0.50917 (5)	0.1971 (4)	0.0307 (4)	
C12	0.79233 (5)	0.49866 (5)	0.0926 (4)	0.0273 (3)	
C13	0.78477 (5)	0.46048 (5)	-0.1055 (4)	0.0287 (3)	
C14	0.73774 (5)	0.45040 (5)	-0.2159 (4)	0.0276 (3)	
C15	0.68771 (5)	0.40428 (5)	-0.5072 (4)	0.0301 (4)	
C16	0.64927 (5)	0.43592 (5)	-0.4317 (4)	0.0295 (4)	
C17	0.67933 (6)	0.36048 (6)	-0.7008 (4)	0.0357 (4)	
H17A	0.665387	0.369903	-0.905126	0.043*	
H17B	0.655945	0.340279	-0.591035	0.043*	
C18	0.72365 (6)	0.33147 (6)	-0.7628 (5)	0.0415 (4)	
H18A	0.715472	0.303671	-0.889563	0.062*	
H18B	0.746756	0.350852	-0.876749	0.062*	
H18C	0.737301	0.321187	-0.562219	0.062*	
C19	0.60067 (6)	0.42782 (6)	-0.5658 (4)	0.0344 (4)	
H19A	0.586627	0.399785	-0.461847	0.041*	
H19B	0.603839	0.420419	-0.792472	0.041*	
C20	0.56686 (6)	0.46916 (7)	-0.5296 (5)	0.0447 (5)	
H20A	0.536206	0.460944	-0.622739	0.067*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H20B	0.562632	0.476279	-0.305694	0.067*	
H20C	0.579878	0.496953	-0.636958	0.067*	
H1	0.6842 (9)	0.5668 (9)	0.314 (6)	0.073 (7)*	
H3	0.8478 (9)	0.4458 (9)	-0.091 (6)	0.072 (7)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0264 (6)	0.0316 (6)	0.0405 (6)	0.0052 (5)	0.0000 (5)	-0.0013 (5)
O2	0.0321 (6)	0.0370 (6)	0.0479 (7)	0.0048 (5)	-0.0002 (5)	-0.0077 (5)
03	0.0261 (6)	0.0361 (6)	0.0511 (7)	0.0051 (5)	0.0015 (5)	-0.0069 (6)
O4	0.0251 (6)	0.0375 (6)	0.0511 (7)	0.0029 (5)	0.0002 (5)	-0.0003 (5)
N1	0.0264 (7)	0.0281 (7)	0.0326 (7)	-0.0013 (5)	0.0009 (5)	0.0055 (6)
N2	0.0288 (7)	0.0292 (7)	0.0323 (7)	-0.0012 (5)	0.0018 (6)	0.0029 (6)
C1	0.0245 (7)	0.0262 (7)	0.0291 (8)	-0.0006 (6)	0.0011 (6)	0.0073 (6)
C2	0.0257 (8)	0.0253 (7)	0.0308 (8)	0.0030 (6)	0.0033 (6)	0.0065 (6)
C3	0.0263 (8)	0.0259 (7)	0.0296 (8)	0.0007 (6)	0.0021 (6)	0.0069 (6)
C4	0.0311 (8)	0.0281 (8)	0.0309 (8)	0.0006 (7)	0.0011 (7)	0.0052 (7)
C5	0.0305 (8)	0.0299 (8)	0.0315 (8)	-0.0033 (6)	-0.0008 (7)	0.0060 (7)
C6	0.0381 (9)	0.0332 (8)	0.0390 (9)	-0.0023 (7)	0.0004 (7)	0.0018 (7)
C7	0.0426 (10)	0.0362 (9)	0.0403 (10)	-0.0083 (7)	-0.0037 (8)	0.0007 (8)
C8	0.0341 (9)	0.0406 (9)	0.0424 (10)	-0.0086 (7)	-0.0045 (8)	0.0062 (8)
C9	0.0304 (8)	0.0366 (9)	0.0401 (10)	-0.0031 (7)	-0.0019 (7)	0.0068 (8)
C10	0.0295 (8)	0.0309 (8)	0.0333 (9)	-0.0037 (7)	0.0000 (7)	0.0075 (7)
C11	0.0280 (8)	0.0294 (8)	0.0347 (9)	0.0001 (6)	0.0012 (7)	0.0066 (7)
C12	0.0243 (7)	0.0265 (7)	0.0312 (8)	0.0006 (6)	0.0014 (6)	0.0070 (6)
C13	0.0249 (7)	0.0277 (8)	0.0334 (8)	0.0023 (6)	0.0029 (6)	0.0054 (7)
C14	0.0278 (8)	0.0258 (7)	0.0292 (8)	0.0004 (6)	0.0028 (6)	0.0055 (6)
C15	0.0311 (8)	0.0294 (8)	0.0299 (8)	-0.0011 (6)	0.0020 (7)	0.0051 (6)
C16	0.0293 (8)	0.0277 (8)	0.0317 (8)	-0.0023 (6)	0.0018 (6)	0.0053 (7)
C17	0.0350 (9)	0.0345 (9)	0.0377 (9)	-0.0014 (7)	-0.0016 (7)	-0.0014 (7)
C18	0.0426 (10)	0.0349 (9)	0.0470 (11)	0.0005 (8)	-0.0002 (8)	-0.0077 (8)
C19	0.0284 (8)	0.0358 (9)	0.0389 (9)	-0.0039 (7)	-0.0008 (7)	0.0011 (7)
C20	0.0308 (9)	0.0432 (10)	0.0602 (12)	0.0003 (8)	-0.0079 (8)	-0.0035 (9)

Geometric parameters (Å, °)

01—C2	1.3333 (18)	С8—Н8	0.9500
01—H1	0.97 (3)	C9—C10	1.396 (2)
O2—C4	1.2495 (19)	С9—Н9	0.9500
O3—C13	1.3354 (19)	C10—C11	1.477 (2)
O3—H3	1.00 (3)	C11—C12	1.458 (2)
O4—C11	1.2493 (19)	C12—C13	1.385 (2)
N1-C16	1.321 (2)	C13—C14	1.438 (2)
N1-C1	1.363 (2)	C15—C16	1.443 (2)
N2-C15	1.318 (2)	C15—C17	1.505 (2)
N2-C14	1.358 (2)	C16—C19	1.504 (2)
C1—C14	1.402 (2)	C17—C18	1.519 (2)

C1—C2	1.437 (2)	C17—H17A	0.9900
C2—C3	1.389 (2)	C17—H17B	0.9900
C3—C12	1.438 (2)	C18—H18A	0.9800
C3-C4	1 455 (2)	C18—H18B	0 9800
C4-C5	1.135(2) 1.476(2)	C18—H18C	0.9800
C5 C6	1.470(2) 1.304(2)	C_{10} C_{20}	1.517(2)
$C_{5} = C_{10}$	1.394(2) 1.402(2)	$C_{19} = C_{20}$	1.317(2)
C_{3}	1.403(2)	C19—H19A	0.9900
	1.383 (2)	C19—H19B	0.9900
C6—H6	0.9500	C20—H20A	0.9800
C/C8	1.390 (3)	C20—H20B	0.9800
С7—Н7	0.9500	C20—H20C	0.9800
C8—C9	1.381 (3)		
C2—O1—H1	102.1 (14)	C13—C12—C11	119.16 (14)
С13—О3—Н3	102.0 (14)	C3—C12—C11	120.51 (14)
C16—N1—C1	117.19 (13)	O3—C13—C12	122.78 (14)
C15—N2—C14	117.39 (14)	O3—C13—C14	117.52 (14)
N1-C1-C14	121.20 (14)	C12—C13—C14	119.69 (14)
N1-C1-C2	118.75 (13)	N2-C14-C1	121.37 (14)
$C_{14} - C_{1} - C_{2}$	120.04 (13)	N2-C14-C13	118 65 (13)
$01 - C^2 - C^3$	122.001(13) 122.97(14)	C1 - C14 - C13	119.98 (14)
$01 - C^2 - C^1$	122.57(11) 117.53(13)	N_{2} C15 C16	121.32 (15)
C_{3} C_{2} C_{1}	119 50 (14)	$N_2 = C_{15} = C_{10}$	121.32(13) 117.81(14)
$C_2 = C_2 = C_1^2$	119.30(14) 120.41(14)	$C_{16} C_{15} C_{17}$	117.01(14) 120.86(14)
$C_2 = C_3 = C_{12}$	120.41(14) 110.12(14)	C10-C15-C17	120.00(14) 121.24(14)
$C_2 = C_3 = C_4$	119.12(14) 120.46(12)	NI = CI6 = CI3	121.34(14)
C12 - C3 - C4	120.46 (13)	NI-C16-C19	118.09 (14)
02 - C4 - C3	121.14 (14)	015-016-019	120.56 (14)
02	120.14 (14)	C15—C17—C18	114.13 (14)
C3—C4—C5	118.71 (14)	C15—C17—H17A	108.7
C6—C5—C10	119.52 (15)	C18—C17—H17A	108.7
C6—C5—C4	119.61 (15)	C15—C17—H17B	108.7
C10—C5—C4	120.86 (14)	C18—C17—H17B	108.7
C7—C6—C5	120.23 (16)	H17A—C17—H17B	107.6
С7—С6—Н6	119.9	C17—C18—H18A	109.5
С5—С6—Н6	119.9	C17—C18—H18B	109.5
C6—C7—C8	120.34 (17)	H18A—C18—H18B	109.5
С6—С7—Н7	119.8	C17—C18—H18C	109.5
С8—С7—Н7	119.8	H18A—C18—H18C	109.5
C9—C8—C7	120.01 (16)	H18B-C18-H18C	109.5
С9—С8—Н8	120.0	C16—C19—C20	114.80 (14)
С7—С8—Н8	120.0	C16—C19—H19A	108.6
C8—C9—C10	120.35 (16)	C20—C19—H19A	108.6
С8—С9—Н9	119.8	C16—C19—H19B	108.6
С10—С9—Н9	119.8	C20—C19—H19B	108.6
C9-C10-C5	119 56 (15)	H19A—C19—H19B	107.5
C9-C10-C11	119.64 (15)	C19—C20—H20A	109.5
C_{5} C_{10} C_{11}	120 79 (14)	C19-C20-H20R	109.5
04-C11-C12	121.09(15)	$H_{20A} - C_{20} - H_{20B}$	109.5
	141.07 (17)	112011 020 11200	107.5

O4—C11—C10	120.28 (14)	C19—C20—H20C	109.5
C12—C11—C10	118.62 (14)	H20A—C20—H20C	109.5
C13—C12—C3	120.32 (13)	H20B—C20—H20C	109.5
N2—C15—C17—C18	-1.9 (2)	N1-C16-C19-C20	14.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
01—H1…O2	0.97 (3)	1.62 (3)	2.5270 (16)	155 (2)
O3—H3…O4	1.00 (3)	1.58 (3)	2.5225 (17)	154 (2)
C8—H8···O1 ⁱ	0.95	2.57	3.227 (2)	126
C19—H19A…O4 ⁱⁱ	0.99	2.59	3.418 (2)	142

Symmetry codes: (i) -y+3/2, x, z+1; (ii) -y+1, x-1/2, -z.

2,3-Diethyl-5,12-bis(piperidin-1-yl)naphtho[2,3-g]quinoxaline-6,11-dione (IV)

Crystal data

 $C_{30}H_{34}N_4O_2$ $M_r = 482.61$ Triclinic, $P\overline{1}$ a = 11.6144 (6) Å b = 11.8249 (5) Å c = 19.0526 (9) Å a = 75.102 (2)° $\beta = 77.310$ (2)° $\gamma = 83.321$ (2)° V = 2462.0 (2) Å³ Z = 4

Data collection

Bruker APEXII CCD	11784 independent reflections
diffractometer	7969 reflections with $I > 2\sigma(I)$
Radiation source: fine focus sealed tube	$R_{\rm int} = 0.046$
ω scans	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 1.1^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 12$
(SADABS; Bruker, 2014)	$k = -15 \rightarrow 13$
$T_{\min} = 0.708, \ T_{\max} = 0.746$	$l = -25 \rightarrow 25$
46624 measured reflections	

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.047$ H-atom parameters constrained $wR(F^2) = 0.113$ $w = 1/[\sigma^2(F_o^2) + (0.0456P)^2 + 0.481P]$ S = 1.03where $P = (F_0^2 + 2F_c^2)/3$ 11784 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$ 653 parameters 0 restraints $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

F(000) = 1032 $D_x = 1.302 \text{ Mg m}^{-3}$ Melting point = 463.5–464.5 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8449 reflections $\theta = 2.3-26.6^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 123 KPrismatic, dark red $0.25 \times 0.15 \times 0.06 \text{ mm}$

Acta Cryst. (2017). E73, 1125-1129

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.64307 (10)	0.76179 (9)	0.10075 (6)	0.0291 (3)	
O2	0.44074 (9)	0.37783 (9)	0.09799 (6)	0.0227 (2)	
03	0.00984 (9)	0.43530 (9)	0.39662 (6)	0.0238 (3)	
O4	0.20118 (9)	0.83312 (9)	0.38244 (6)	0.0244 (3)	
N1	0.92806 (11)	0.56473 (11)	-0.08692 (7)	0.0201 (3)	
N2	0.87671 (11)	0.33134 (10)	-0.02637 (7)	0.0193 (3)	
N3	0.76849 (11)	0.74582 (10)	-0.04703 (7)	0.0204 (3)	
N4	0.67498 (11)	0.27048 (10)	0.08042 (7)	0.0194 (3)	
N5	0.35733 (11)	0.31461 (10)	0.53063 (7)	0.0178 (3)	
N6	0.36271 (11)	0.51220 (10)	0.58404 (7)	0.0182 (3)	
N7	0.23683 (11)	0.32525 (10)	0.41697 (7)	0.0178 (3)	
N8	0.23239 (11)	0.71992 (10)	0.53315 (7)	0.0178 (3)	
C1	0.82928 (13)	0.53690 (13)	-0.03378 (8)	0.0177 (3)	
C2	0.75273 (13)	0.63060 (12)	-0.00901 (8)	0.0177 (3)	
C3	0.65573 (13)	0.59826 (12)	0.04761 (8)	0.0171 (3)	
C4	0.59410 (14)	0.68035 (13)	0.09244 (8)	0.0206 (3)	
C5	0.46967 (14)	0.65994 (13)	0.13028 (8)	0.0194 (3)	
C6	0.40230 (15)	0.74326 (13)	0.16528 (8)	0.0247 (4)	
H6	0.437196	0.811465	0.166282	0.030*	
C7	0.28514 (15)	0.72663 (14)	0.19840 (9)	0.0281 (4)	
H7	0.239989	0.782887	0.222699	0.034*	
C8	0.23321 (15)	0.62768 (14)	0.19622 (9)	0.0262 (4)	
H8	0.152230	0.617286	0.218220	0.031*	
C9	0.29892 (14)	0.54455 (13)	0.16220 (8)	0.0216 (3)	
H9	0.263028	0.477133	0.160859	0.026*	
C10	0.41767 (13)	0.55915 (13)	0.12984 (8)	0.0179 (3)	
C11	0.49024 (13)	0.46378 (12)	0.09913 (8)	0.0177 (3)	
C12	0.61682 (13)	0.47950 (12)	0.06835 (8)	0.0171 (3)	
C13	0.69338 (13)	0.38800 (12)	0.04854 (8)	0.0165 (3)	
C14	0.80214 (13)	0.41920 (12)	-0.00387 (8)	0.0168 (3)	
C15	0.97083 (13)	0.36001 (13)	-0.07839 (8)	0.0198 (3)	
C16	0.99814 (13)	0.47940 (13)	-0.10873 (8)	0.0210 (3)	
C17	1.04835 (14)	0.26396 (13)	-0.10759 (9)	0.0255 (4)	
H17A	1.122545	0.252641	-0.088430	0.031*	
H17B	1.069489	0.289889	-0.162262	0.031*	
C18	0.99291 (15)	0.14705 (14)	-0.08728 (10)	0.0304 (4)	
H18A	0.981807	0.114987	-0.033604	0.046*	
H18B	1.044970	0.092437	-0.112800	0.046*	
H18C	0.916122	0.158141	-0.102318	0.046*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C19	1.10924 (14)	0.51096 (14)	-0.16537(9)	0.0286 (4)
H19A	1.104599	0.487061	-0.210757	0.034*
H19B	1.177392	0.465543	-0.145914	0.034*
C20	1.13193 (15)	0.64004 (15)	-0.18601(10)	0.0325 (4)
H20A	1.069701	0.685231	-0.210746	0.049*
H20B	1 208913	0.652470	-0.219542	0.049*
H20C	1 131877	0.665951	-0.141106	0.049*
C21	0.66797 (14)	0.83081(13)	-0.05500(9)	0.0239(4)
H21A	0.663393	0.883897	-0.021748	0.029*
H21R	0.593930	0.789359	-0.040503	0.029*
C22	0.68064 (15)	0.709339	-0.13465(0)	0.029
U22	0.08004 (15)	0.90203 (13)	-0.166756	0.0282(4)
1122A 1122D	0.074077	0.043373	-0.128224	0.034*
П22D С22	0.014049 0.70740(15)	0.903170	-0.138234	0.034°
C25	0.79740 (13)	0.90007 (14)	-0.10248 (10)	0.0330 (4)
H23A	0.798951	1.021122	-0.135629	0.040*
H23B	0.805829	0.998324	-0.215905	0.040*
C24	0.89973 (16)	0.86857 (14)	-0.15035 (10)	0.0321 (4)
H24A	0.904586	0.813589	-0.182426	0.039*
H24B	0.975021	0.907830	-0.164113	0.039*
C25	0.88176 (14)	0.80104 (13)	-0.06978 (9)	0.0242 (4)
H25A	0.947023	0.739996	-0.063018	0.029*
H25B	0.883470	0.855131	-0.038113	0.029*
C26	0.61434 (14)	0.22997 (13)	0.15705 (8)	0.0226 (3)
H26A	0.531105	0.216848	0.158534	0.027*
H26B	0.614563	0.290403	0.184600	0.027*
C27	0.67639 (15)	0.11606 (13)	0.19334 (9)	0.0265 (4)
H27A	0.757300	0.131197	0.195810	0.032*
H27B	0.632714	0.086958	0.244615	0.032*
C28	0.68319 (16)	0.02295 (13)	0.14990 (9)	0.0290 (4)
H28A	0.729186	-0.047971	0.172085	0.035*
H28B	0.602556	0.000766	0.152299	0.035*
C29	0.74206 (15)	0.07018 (13)	0.06962 (9)	0.0268 (4)
H29A	0.740326	0.011871	0.040792	0.032*
H29B	0.825800	0.083003	0.066931	0.032*
C30	0.67921 (14)	0.18493 (13)	0.03607 (9)	0.0213 (3)
H30A	0.721546	0.216577	-0.015215	0.026*
H30B	0.597765	0.170718	0.034117	0.026*
C31	0.29857 (13)	0.41777(12)	0.50286 (8)	0.0161(3)
C32	0.22838(13)	0.41992(12)	0.44827 (8)	0.0158(3)
C33	0.16162 (13)	0.52427(12)	0.42530(8)	0.0159(3)
C34	0.05634(13)	0.52508(12)	0.39413 (8)	0.0168(3)
C35	-0.00127(13)	0.64074(12)	0.36195 (8)	0.0166(3)
C36	-0.09976(13)	0.64368(13)	0.33112(8)	0.0101(3)
H36	-0.131580	0.572516	0.332467	0.023*
C37	-0.15175(14)	0.75005 (13)	0.332407	0.023
H37	-0.210112	0.751708	0.277412	0.0219(3)
C38	-0.10520(14)	0.751700 0.85/24(12)	0.277712	0.020
U30 H38	-0.140806	0.03734 (13)	0.29032 (9)	0.0241(4) 0.020*
1130	0.170020	0.74/14/	0.2/3/10	0.047

C39	-0.00771 (14)	0.85251 (13)	0.32695 (8)	0.0213 (3)
H39	0.023522	0.923999	0.325567	0.026*
C40	0.04521 (13)	0.74559 (12)	0.36001 (8)	0.0173 (3)
C41	0.14774 (13)	0.74399 (12)	0.39516 (8)	0.0173 (3)
C42	0.18326 (13)	0.63122 (12)	0.44271 (8)	0.0162 (3)
C43	0.24231 (13)	0.62819 (12)	0.49935 (8)	0.0163 (3)
C44	0.30259(12)	0.51778 (12)	0.52920 (8)	0.0159 (3)
C45	0.41745 (13)	0.41175 (13)	0.61117 (8)	0.0186(3)
C46	0.41327(13)	0.30999(13)	0.58443 (8)	0.0176(3)
C47	0.48628(15)	0.40615(14)	0.67057 (9)	0.0259(4)
Н47А	0.568872	0.378011	0.653634	0.0255 (1)
H47R	0.452188	0.347711	0.715611	0.031*
C/8	0.48767 (16)	0.577711 0.52105 (14)	0.713011	0.031
U40 H48A	0.517334	0.52105 (14)	0.646320	0.0308 (4)
1140A	0.517554	0.511346	0.726680	0.040
П 4 0D	0.339328	0.511540	0.720089	0.040*
П40U	0.407204	0.343302 0.10272 (12)	0.713020	0.040°
	0.47002 (14)	0.19372 (12)	0.61958 (9)	0.0213(3)
H49A	0.448772	0.181559	0.6/411/	0.026*
H49B	0.55/021	0.196911	0.604884	0.026*
C50	0.43381 (14)	0.08951 (13)	0.59841 (9)	0.0239 (4)
H50A	0.347793	0.085241	0.612977	0.036*
H50B	0.472438	0.017246	0.623895	0.036*
H50C	0.457852	0.098836	0.544718	0.036*
C51	0.22785 (15)	0.34127 (13)	0.33992 (8)	0.0231 (4)
H51A	0.243904	0.422966	0.312547	0.028*
H51B	0.146626	0.327201	0.337434	0.028*
C52	0.31617 (15)	0.25666 (13)	0.30397 (9)	0.0260 (4)
H52A	0.306884	0.266219	0.252305	0.031*
H52B	0.397673	0.275183	0.302702	0.031*
C53	0.29684 (15)	0.13058 (13)	0.34685 (9)	0.0278 (4)
H53A	0.358319	0.077208	0.325065	0.033*
H53B	0.218614	0.108973	0.343697	0.033*
C54	0.30284 (15)	0.11791 (13)	0.42761 (9)	0.0252 (4)
H54A	0.284564	0.037295	0.456246	0.030*
H54B	0.383995	0.130809	0.430914	0.030*
C55	0.21586 (14)	0.20538 (12)	0.46088 (8)	0.0194 (3)
H55A	0.134086	0.187461	0.462318	0.023*
H55B	0.224604	0.198662	0.512350	0.023*
C56	0.12623 (13)	0.79869 (13)	0.53730 (9)	0.0200(3)
H56A	0.060834	0.762672	0 527024	0.024*
H56B	0 141143	0.873316	0 499566	0.024*
C57	0.09159(14)	0.82268 (14)	0.61428 (9)	0.0242(4)
Н57А	0.021908	0.879459	0.616046	0.029*
H57B	0.021900	0.748964	0.651245	0.029
C58	0 19249 (14)	0.87157 (14)	0.63418 (0)	0.025
H58A	0.17279(17) 0.170315	0.878707	0.03+10(9)	0.0237(+) 0.031*
H58P	0.170313	0.070705	0.601825	0.021*
C50	0.20/439	0.330703 0.70006 (14)	0.001023	0.031°
UJ7	0.30430(14)	0./9090(14)	0.02400(9)	0.0243(4)

H59A	0.371551	0.828007	0.632284	0.029*
H59B	0.293493	0.715943	0.662497	0.029*
C60	0.33318 (13)	0.76704 (13)	0.54812 (8)	0.0190 (3)
H60A	0.353546	0.840682	0.510516	0.023*
H60B	0.402596	0.710193	0.544475	0.023*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0291 (7)	0.0264 (6)	0.0372 (7)	-0.0038 (5)	-0.0057 (5)	-0.0170 (5)
O2	0.0200 (6)	0.0229 (6)	0.0277 (6)	-0.0031 (5)	-0.0056 (5)	-0.0087 (5)
O3	0.0232 (6)	0.0181 (5)	0.0323 (6)	-0.0030 (5)	-0.0090 (5)	-0.0062(5)
O4	0.0289 (6)	0.0161 (5)	0.0281 (6)	-0.0050 (5)	-0.0082 (5)	-0.0014 (5)
N1	0.0179 (7)	0.0234 (7)	0.0184 (7)	-0.0019 (5)	-0.0028 (5)	-0.0041 (5)
N2	0.0182 (7)	0.0202 (7)	0.0199 (7)	0.0038 (5)	-0.0059 (6)	-0.0058 (5)
N3	0.0185 (7)	0.0164 (6)	0.0263 (7)	-0.0030 (5)	-0.0049 (6)	-0.0041 (6)
N4	0.0223 (7)	0.0152 (6)	0.0193 (7)	-0.0009 (5)	-0.0018 (6)	-0.0036 (5)
N5	0.0168 (7)	0.0171 (6)	0.0175 (7)	0.0011 (5)	-0.0026 (5)	-0.0021 (5)
N6	0.0180 (7)	0.0190 (6)	0.0180 (7)	-0.0017 (5)	-0.0047 (5)	-0.0039 (5)
N7	0.0248 (7)	0.0126 (6)	0.0172 (6)	0.0009 (5)	-0.0066 (6)	-0.0043 (5)
N8	0.0160 (7)	0.0162 (6)	0.0240 (7)	-0.0005 (5)	-0.0055 (5)	-0.0084 (5)
C1	0.0167 (8)	0.0207 (8)	0.0165 (8)	-0.0005 (6)	-0.0056 (6)	-0.0042 (6)
C2	0.0182 (8)	0.0176 (8)	0.0194 (8)	-0.0018 (6)	-0.0076 (6)	-0.0045 (6)
C3	0.0172 (8)	0.0161 (7)	0.0190 (8)	0.0012 (6)	-0.0059 (6)	-0.0051 (6)
C4	0.0238 (9)	0.0169 (8)	0.0215 (8)	0.0007 (6)	-0.0071 (7)	-0.0038 (6)
C5	0.0232 (8)	0.0190 (8)	0.0152 (7)	0.0035 (6)	-0.0052 (6)	-0.0034 (6)
C6	0.0324 (10)	0.0201 (8)	0.0196 (8)	0.0038 (7)	-0.0040 (7)	-0.0046 (7)
C7	0.0311 (10)	0.0246 (9)	0.0227 (9)	0.0116 (7)	-0.0005 (7)	-0.0051 (7)
C8	0.0207 (9)	0.0312 (9)	0.0196 (8)	0.0072 (7)	-0.0004 (7)	-0.0002 (7)
C9	0.0210 (8)	0.0250 (8)	0.0163 (8)	0.0022 (6)	-0.0050(7)	-0.0012 (6)
C10	0.0185 (8)	0.0203 (8)	0.0139 (7)	0.0031 (6)	-0.0054 (6)	-0.0021 (6)
C11	0.0198 (8)	0.0187 (8)	0.0144 (7)	-0.0012 (6)	-0.0043 (6)	-0.0030 (6)
C12	0.0173 (8)	0.0185 (7)	0.0159 (7)	-0.0005 (6)	-0.0041 (6)	-0.0044 (6)
C13	0.0167 (8)	0.0171 (7)	0.0167 (7)	-0.0001 (6)	-0.0057 (6)	-0.0040 (6)
C14	0.0159 (8)	0.0183 (7)	0.0166 (7)	0.0023 (6)	-0.0055 (6)	-0.0046 (6)
C15	0.0167 (8)	0.0244 (8)	0.0191 (8)	0.0033 (6)	-0.0059 (7)	-0.0065 (6)
C16	0.0178 (8)	0.0270 (8)	0.0189 (8)	-0.0002 (6)	-0.0045 (7)	-0.0064 (7)
C17	0.0233 (9)	0.0283 (9)	0.0221 (8)	0.0060 (7)	-0.0019 (7)	-0.0066 (7)
C18	0.0283 (10)	0.0278 (9)	0.0374 (10)	0.0078 (7)	-0.0065 (8)	-0.0160 (8)
C19	0.0230 (9)	0.0341 (10)	0.0261 (9)	-0.0025 (7)	0.0004 (7)	-0.0065 (8)
C20	0.0268 (10)	0.0403 (10)	0.0252 (9)	-0.0082 (8)	0.0028 (8)	-0.0027 (8)
C21	0.0222 (9)	0.0164 (8)	0.0346 (9)	0.0000 (6)	-0.0089 (7)	-0.0067 (7)
C22	0.0316 (10)	0.0180 (8)	0.0365 (10)	-0.0015 (7)	-0.0130 (8)	-0.0040 (7)
C23	0.0377 (11)	0.0213 (9)	0.0367 (10)	-0.0067 (8)	-0.0094 (9)	0.0029 (8)
C24	0.0306 (10)	0.0258 (9)	0.0351 (10)	-0.0095 (7)	-0.0032 (8)	0.0019 (8)
C25	0.0234 (9)	0.0201 (8)	0.0315 (9)	-0.0058 (7)	-0.0081 (7)	-0.0063 (7)
C26	0.0253 (9)	0.0199 (8)	0.0212 (8)	-0.0034 (7)	-0.0012 (7)	-0.0044 (7)
C27	0.0325 (10)	0.0209 (8)	0.0241 (9)	-0.0051 (7)	-0.0073 (7)	0.0009 (7)

C28	0.0330 (10)	0.0173 (8)	0.0364 (10)	-0.0027 (7)	-0.0123 (8)	-0.0009 (7)
C29	0.0306 (10)	0.0171 (8)	0.0353 (10)	0.0034 (7)	-0.0097 (8)	-0.0104 (7)
C30	0.0215 (8)	0.0196 (8)	0.0254 (9)	-0.0014 (6)	-0.0062 (7)	-0.0088 (7)
C31	0.0153 (8)	0.0158 (7)	0.0155 (7)	-0.0001 (6)	-0.0006 (6)	-0.0033 (6)
C32	0.0169 (8)	0.0142 (7)	0.0151 (7)	-0.0013 (6)	-0.0006 (6)	-0.0036 (6)
C33	0.0176 (8)	0.0152 (7)	0.0146 (7)	-0.0009 (6)	-0.0025 (6)	-0.0036 (6)
C34	0.0174 (8)	0.0168 (7)	0.0157 (7)	-0.0013 (6)	-0.0015 (6)	-0.0045 (6)
C35	0.0151 (8)	0.0190 (8)	0.0137 (7)	0.0006 (6)	0.0006 (6)	-0.0049 (6)
C36	0.0178 (8)	0.0227 (8)	0.0175 (8)	-0.0021 (6)	-0.0017 (6)	-0.0051 (6)
C37	0.0179 (8)	0.0295 (9)	0.0180 (8)	0.0042 (7)	-0.0050 (7)	-0.0066 (7)
C38	0.0268 (9)	0.0219 (8)	0.0208 (8)	0.0086 (7)	-0.0059 (7)	-0.0034 (7)
C39	0.0239 (9)	0.0179 (8)	0.0206 (8)	0.0016 (6)	-0.0035 (7)	-0.0042 (6)
C40	0.0176 (8)	0.0182 (7)	0.0143 (7)	0.0010 (6)	-0.0007 (6)	-0.0035 (6)
C41	0.0184 (8)	0.0154 (7)	0.0175 (8)	0.0002 (6)	-0.0007 (6)	-0.0060 (6)
C42	0.0157 (8)	0.0145 (7)	0.0173 (7)	-0.0006 (6)	-0.0015 (6)	-0.0037 (6)
C43	0.0143 (8)	0.0156 (7)	0.0181 (8)	-0.0023 (6)	-0.0001 (6)	-0.0044 (6)
C44	0.0142 (8)	0.0172 (7)	0.0152 (7)	-0.0018 (6)	-0.0016 (6)	-0.0031 (6)
C45	0.0163 (8)	0.0209 (8)	0.0178 (8)	-0.0020 (6)	-0.0030 (6)	-0.0028 (6)
C46	0.0135 (8)	0.0205 (8)	0.0172 (8)	0.0000 (6)	-0.0015 (6)	-0.0031 (6)
C47	0.0274 (9)	0.0273 (9)	0.0250 (9)	0.0000 (7)	-0.0126 (7)	-0.0046 (7)
C48	0.0392 (11)	0.0306 (9)	0.0283 (9)	-0.0039 (8)	-0.0181 (8)	-0.0067 (8)
C49	0.0205 (8)	0.0216 (8)	0.0203 (8)	0.0031 (6)	-0.0056 (7)	-0.0028 (6)
C50	0.0210 (9)	0.0182 (8)	0.0290 (9)	0.0023 (6)	-0.0063 (7)	0.0002 (7)
C51	0.0345 (10)	0.0175 (8)	0.0195 (8)	0.0003 (7)	-0.0092 (7)	-0.0057 (6)
C52	0.0345 (10)	0.0226 (8)	0.0238 (9)	0.0005 (7)	-0.0068 (8)	-0.0112 (7)
C53	0.0325 (10)	0.0204 (8)	0.0351 (10)	0.0044 (7)	-0.0099 (8)	-0.0146 (7)
C54	0.0298 (9)	0.0133 (8)	0.0325 (9)	0.0022 (7)	-0.0081 (8)	-0.0052 (7)
C55	0.0210 (8)	0.0139 (7)	0.0227 (8)	-0.0022 (6)	-0.0059 (7)	-0.0012 (6)
C56	0.0185 (8)	0.0171 (8)	0.0272 (9)	0.0004 (6)	-0.0061 (7)	-0.0095 (7)
C57	0.0219 (9)	0.0235 (8)	0.0289 (9)	-0.0003 (7)	-0.0011 (7)	-0.0129 (7)
C58	0.0294 (9)	0.0245 (8)	0.0271 (9)	-0.0039 (7)	-0.0041 (7)	-0.0134 (7)
C59	0.0254 (9)	0.0246 (8)	0.0276 (9)	-0.0052 (7)	-0.0073 (7)	-0.0100 (7)
C60	0.0168 (8)	0.0169 (7)	0.0237 (8)	-0.0040 (6)	-0.0039 (7)	-0.0044 (6)

Geometric parameters (Å, °)

01—C4	1.233 (2)	C25—H25B	0.9900	
O2—C11	1.2316 (18)	C25—H25A	0.9900	
N1-C1	1.362 (2)	C26—H26A	0.9900	
N1-C16	1.315 (2)	C26—H26B	0.9900	
N2	1.3674 (19)	C27—H27A	0.9900	
N2—C15	1.315 (2)	C27—H27B	0.9900	
N3—C2	1.3809 (19)	C28—H28A	0.9900	
N3—C21	1.457 (2)	C28—H28B	0.9900	
N3—C25	1.466 (2)	C29—H29A	0.9900	
N4—C13	1.3870 (19)	C29—H29B	0.9900	
N4—C26	1.4575 (19)	C30—H30B	0.9900	
N4—C30	1.466 (2)	С30—Н30А	0.9900	

C1—C2	1.448 (2)	C31—C32	1.450 (2)
C1—C14	1.406 (2)	C31—C44	1.407 (2)
C2—C3	1.390 (2)	C32—C33	1.402 (2)
C3—C4	1.477 (2)	C33—C34	1.470 (2)
C3—C12	1.455 (2)	C33—C42	1.449 (2)
O3—C34	1.2318 (18)	C34—C35	1.493 (2)
C4—C5	1.483 (2)	C35—C36	1.389 (2)
O4—C41	1.2286 (18)	C35—C40	1.398 (2)
C5—C6	1.399 (2)	C36—C37	1.386 (2)
C5-C10	1400(2)	$C_{37} - C_{38}$	1 391 (2)
C6—C7	1.382(2)	C_{38} C_{39}	1.391(2) 1.380(2)
C7-C8	1 391 (2)	C_{39} C_{40}	1.300(2) 1.397(2)
C_{8} C_{9}	1.391(2) 1.380(2)	C40 $C41$	1.397(2) 1.485(2)
C_{0} C_{10}	1.300(2) 1.303(2)	C_{41} C_{42}	1.405(2) 1.478(2)
C_{10}	1.393(2) 1.402(2)	$C_{+1} = C_{+2}$	1.770(2)
	1.492(2)	C42 - C43	1.391(2) 1.440(2)
	1.475(2)	C45—C44	1.449(2)
	1.394 (2)	C45—C46	1.432 (2)
C13—C14	1.447 (2)	C45—C47	1.507 (2)
C15—C16	1.425 (2)	C46—C49	1.511 (2)
C15—C17	1.509 (2)	C47—C48	1.509 (2)
C16—C19	1.504 (2)	C49—C50	1.519 (2)
C17—C18	1.516 (2)	C51—C52	1.526 (2)
C19—C20	1.514 (2)	C52—C53	1.520 (2)
C21—C22	1.519 (2)	C53—C54	1.524 (2)
C22—C23	1.518 (3)	C54—C55	1.518 (2)
C23—C24	1.526 (3)	C56—C57	1.524 (2)
C24—C25	1.518 (2)	C57—C58	1.522 (2)
C26—C27	1.525 (2)	C58—C59	1.527 (2)
C27—C28	1.524 (2)	C59—C60	1.515 (2)
C28—C29	1.520 (2)	С36—Н36	0.9500
C29—C30	1.520 (2)	С37—Н37	0.9500
N5—C31	1.3663 (19)	С38—Н38	0.9500
N5—C46	1.316 (2)	C39—H39	0.9500
N6—C45	1 317 (2)	C47—H47A	0 9900
С6—Н6	0.9500	C47—H47B	0.9900
N6-C44	1 3631 (19)	C48 - H48A	0.9900
N7_C32	1.3031(19) 1.3822(19)	C48 - H48B	0.9800
C7 H7	0.9500	C_{48} HASC	0.9800
N7 C51	1 4565 (10)	C_{40} H_{40A}	0.9800
N7_C55	1.4505(19)	C40 H40P	0.9900
N = C33	1.4001 (19)	С49—п49В	0.9900
	0.9500	C50—H50A	0.9800
No	1.3/92 (19)		0.9800
N8-C36	1.45/(2)		0.9800
	1.464 (2)	COL-HOLA	0.9900
С9—Н9	0.9500	C51—H51B	0.9900
C17—H17B	0.9900	C52—H52A	0.9900
C17—H17A	0.9900	С52—Н52В	0.9900
C18—H18A	0.9800	С53—Н53А	0.9900

C18—H18B	0.9800	C53—H53B	0.9900
C18—H18C	0.9800	C54—H54A	0.9900
C19—H19A	0.9900	C54—H54B	0.9900
C19—H19B	0.9900	C55—H55A	0.9900
C20—H20C	0.9800	C55—H55B	0.9900
C20—H20A	0.9800	С56—Н56А	0.9900
C20—H20B	0.9800	C56—H56B	0.9900
C21—H21A	0,9900	C57—H57A	0.9900
C21—H21B	0.9900	C57—H57B	0.9900
C22—H22B	0.9900	C58—H58A	0.9900
С22—Н22А	0.9900	C58—H58B	0.9900
C22 H22A	0.9900	C59—H59A	0.9900
C23_H23B	0.9900	C59_H59B	0.9900
С24—Н24А	0.9900	C60H60A	0.9900
C24 H24R	0.9900	C60 H60B	0.9900
C24—1124D	0.9900	C00—1100B	0.9900
C1—N1—C16	118.72 (13)	C30—C29—H29B	109.00
C14—N2—C15	118.47 (13)	H29A—C29—H29B	108.00
C2—N3—C21	121.17 (13)	C30—C29—H29A	109.00
C2—N3—C25	125.19(13)	N4—C30—H30A	110.00
C21—N3—C25	112.55 (12)	N4—C30—H30B	110.00
C13—N4—C26	121.95 (12)	C29—C30—H30B	110.00
C13—N4—C30	122.39 (12)	H30A—C30—H30B	108.00
C26—N4—C30	112.94 (12)	С29—С30—Н30А	110.00
N1—C1—C2	118.83 (14)	N5—C31—C32	118.37 (13)
N1-C1-C14	120.44 (14)	N5—C31—C44	120.43 (13)
C2-C1-C14	120.73 (13)	C32—C31—C44	121.15 (13)
N3—C2—C1	120.25 (13)	N7—C32—C31	119.88 (13)
N3—C2—C3	122.22 (13)	N7—C32—C33	122.91 (13)
C1—C2—C3	117.03 (13)	C31—C32—C33	116.99 (13)
C2—C3—C4	121.26 (13)	C32—C33—C34	121.38 (13)
C2—C3—C12	121.05 (13)	C32—C33—C42	120.31 (14)
C4—C3—C12	117.53 (13)	C34—C33—C42	117.58 (13)
O1—C4—C3	122.55 (15)	O3—C34—C33	123.23 (13)
01—C4—C5	119.81 (14)	O3—C34—C35	118.34 (14)
C3—C4—C5	117.62 (14)	C33—C34—C35	118.33 (13)
C4—C5—C6	119.94 (14)	C34—C35—C36	119.34 (13)
C4C5C10	120.64 (14)	C34—C35—C40	120.87 (14)
C6-C5-C10	119.40 (15)	C36—C35—C40	119.75 (14)
С5—С6—С7	120.19 (15)	C35—C36—C37	120.24 (14)
С6—С7—С8	120.12 (15)	C36—C37—C38	120.00 (15)
С7—С8—С9	120.22 (16)	C37—C38—C39	120.27 (15)
C8—C9—C10	120.23 (15)	C38—C39—C40	120.06 (15)
C5-C10-C9	119.81 (14)	C35—C40—C39	119.69 (14)
C5-C10-C11	120.50 (14)	C35—C40—C41	120.34 (13)
C9-C10-C11	119.59 (14)	C39—C40—C41	119.94 (13)
O2—C11—C10	118.59 (14)	O4—C41—C40	119.99 (13)
O2—C11—C12	123.02 (13)	O4—C41—C42	122.83 (14)
			· · ·

C10-C11-C12	118.33 (13)	C40—C41—C42	117.14 (13)
C3—C12—C11	117.54 (13)	C33—C42—C41	117.83 (13)
C3—C12—C13	120.24 (14)	C33—C42—C43	121.14 (13)
C11—C12—C13	121.43 (13)	C41—C42—C43	120.91 (13)
N4—C13—C12	123.60 (14)	N8—C43—C42	122.42 (13)
N4—C13—C14	118.99 (13)	N8—C43—C44	119.96 (13)
C12—C13—C14	117.22 (13)	C42—C43—C44	117.09 (13)
N2-C14-C1	120 16 (14)	N6-C44-C31	120 42 (13)
N_{2} C14 C13	118 38 (13)	N6-C44-C43	118.61(13)
C1-C14-C13	121 41 (13)	C_{31} C_{44} C_{43}	120.97(13)
N_{2} C15 C16	121.11(13) 121.24(14)	N6-C45-C46	120.97(13) 121.02(14)
$N_2 - C_{15} - C_{17}$	121.24(14) 118 70 (14)	N6-C45-C47	121.02(14) 118.62(14)
12-015-017	110.70(14) 120.02(12)	$C_{46} = C_{45} = C_{47}$	110.02(14)
C10-C15-C17	120.03(13) 120.01(14)	C40 - C43 - C47	120.33(14) 121.07(14)
N1 = C16 = C13	120.91(14)	$N_{5} = C_{40} = C_{45}$	121.07(14)
NI = C16 = C19	118.23(14)	N_{3} $-C_{40}$ $-C_{49}$ C_{45} C_{46} C_{49}	118.08(14)
	120.85 (14)	C45 - C46 - C49	120.22 (13)
	114.69 (14)	C45 - C47 - C48	114.68 (14)
C16—C19—C20	114.36 (14)	C46—C49—C50	113.89 (14)
N3—C21—C22	110.29 (13)	N7—C51—C52	110.35 (13)
C21—C22—C23	112.30 (14)	C51—C52—C53	110.71 (13)
C22—C23—C24	109.93 (14)	C52—C53—C54	109.47 (13)
C23—C24—C25	110.26 (15)	C53—C54—C55	111.00 (13)
N3—C25—C24	110.77 (14)	N7—C55—C54	110.53 (12)
N4—C26—C27	109.74 (13)	N8—C56—C57	109.61 (13)
C26—C27—C28	111.05 (13)	C56—C57—C58	111.50 (13)
C27—C28—C29	109.84 (13)	C57—C58—C59	110.26 (14)
C28—C29—C30	110.81 (14)	C58—C59—C60	110.96 (13)
N4—C30—C29	110.34 (13)	N8—C60—C59	110.74 (13)
C31—N5—C46	118.44 (13)	С35—С36—Н36	120.00
С5—С6—Н6	120.00	С37—С36—Н36	120.00
С7—С6—Н6	120.00	С36—С37—Н37	120.00
C44—N6—C45	118.56 (13)	С38—С37—Н37	120.00
C32—N7—C51	121.25 (12)	С37—С38—Н38	120.00
C32—N7—C55	123.08 (12)	С39—С38—Н38	120.00
C51—N7—C55	112.71 (12)	С38—С39—Н39	120.00
С6—С7—Н7	120.00	С40—С39—Н39	120.00
C8—C7—H7	120.00	C45—C47—H47A	109.00
$C_{56} N_{8} C_{60}$	112 97 (12)	C45—C47—H47B	109.00
C43 - N8 - C56	121.01 (13)	C48-C47-H47A	109.00
C43 - N8 - C60	123.82 (13)	C48—C47—H47B	109.00
C7-C8-H8	120.00	H47A - C47 - H47B	109.00
C9-C8-H8	120.00	C47—C48—H48A	109.00
C8-C9-H9	120.00	C47 - C48 - H48R	109.00
C10_C9_H9	120.00	C47 - C48 - H48C	109.00
C_{15} C_{17} H_{17}	109.00	$H48\Delta - C48 - H48B$	109.00
C18 - C17 - H17A	109.00	$H48\Delta - C48 - H48C$	109.00
C18 C17 H17P	109.00		109.00
H17A C17 H17P	109.00	$C_{A6} = C_{A0} = U_{A0A}$	109.00
111/1 $(1 - 11)/D$	100.00	U = U = U = J = I = J A	102.00

С15—С17—Н17В	109.00	C46—C49—H49B	109.00
C17—C18—H18A	109.00	С50—С49—Н49А	109.00
C17—C18—H18C	109.00	C50—C49—H49B	109.00
H18A—C18—H18B	109.00	H49A—C49—H49B	108.00
C17-C18-H18B	109.00	C49—C50—H50A	109.00
H18B-C18-H18C	109.00	C49—C50—H50B	109.00
H18A—C18—H18C	109.00	C49—C50—H50C	109.00
С16—С19—Н19А	109.00	H50A-C50-H50B	109.00
H19A—C19—H19B	108.00	H50A—C50—H50C	109.00
С20—С19—Н19В	109.00	H50B-C50-H50C	109.00
C16-C19-H19B	109.00	N7—C51—H51A	110.00
С20—С19—Н19А	109.00	N7—C51—H51B	110.00
С19—С20—Н20С	109.00	C52—C51—H51A	110.00
С19—С20—Н20В	109.00	C52—C51—H51B	110.00
H20A—C20—H20B	109.00	H51A—C51—H51B	108.00
H20A-C20-H20C	109.00	C51—C52—H52A	110.00
H20B-C20-H20C	109.00	C51—C52—H52B	110.00
C19—C20—H20A	109.00	C53—C52—H52A	110.00
N3—C21—H21A	110.00	С53—С52—Н52В	109.00
C22—C21—H21A	110.00	H52A—C52—H52B	108.00
C22—C21—H21B	110.00	С52—С53—Н53А	110.00
N3—C21—H21B	110.00	С52—С53—Н53В	110.00
H21A—C21—H21B	108.00	С54—С53—Н53А	110.00
C21—C22—H22A	109.00	С54—С53—Н53В	110.00
C21—C22—H22B	109.00	H53A—C53—H53B	108.00
C23—C22—H22A	109.00	C53—C54—H54A	109.00
C23—C22—H22B	109.00	C53—C54—H54B	109.00
H22A—C22—H22B	108.00	C55—C54—H54A	109.00
С22—С23—Н23А	110.00	C55—C54—H54B	109.00
С24—С23—Н23А	110.00	H54A—C54—H54B	108.00
С24—С23—Н23В	110.00	N7—C55—H55A	110.00
H23A—C23—H23B	108.00	N7—C55—H55B	110.00
С22—С23—Н23В	110.00	C54—C55—H55A	110.00
C23—C24—H24A	110.00	С54—С55—Н55В	110.00
C25—C24—H24A	110.00	H55A—C55—H55B	108.00
C25—C24—H24B	110.00	N8—C56—H56A	110.00
C23—C24—H24B	110.00	N8—C56—H56B	110.00
H24A—C24—H24B	108.00	С57—С56—Н56А	110.00
N3—C25—H25B	109.00	С57—С56—Н56В	110.00
N3—C25—H25A	109.00	H56A—C56—H56B	108.00
H25A—C25—H25B	108.00	С56—С57—Н57А	109.00
C24—C25—H25A	109.00	С56—С57—Н57В	109.00
C24—C25—H25B	109.00	C58—C57—H57A	109.00
С27—С26—Н26А	110.00	С58—С57—Н57В	109.00
N4—C26—H26A	110.00	H57A—C57—H57B	108.00
C27—C26—H26B	110.00	C57—C58—H58A	110.00
H26A—C26—H26B	108.00	C57—C58—H58B	110.00
N4—C26—H26B	110.00	C59—C58—H58A	110.00

С26—С27—Н27А	109.00	С59—С58—Н58В	110.00
С26—С27—Н27В	109.00	H58A—C58—H58B	108.00
С28—С27—Н27В	109.00	С58—С59—Н59А	109.00
H27A—C27—H27B	108.00	С58—С59—Н59В	109.00
С28—С27—Н27А	109.00	С60—С59—Н59А	109.00
C27—C28—H28A	110.00	С60—С59—Н59В	109.00
C27—C28—H28B	110.00	H59A—C59—H59B	108.00
C29—C28—H28A	110.00	N8—C60—H60A	109.00
C29—C28—H28B	110.00	N8—C60—H60B	109.00
H28A—C28—H28B	108.00	С59—С60—Н60А	109.00
C28—C29—H29A	109.00	C59—C60—H60B	110.00
C28—C29—H29B	109.00	H60A—C60—H60B	108.00
	109.00		100.00
C16-N1-C1-C2	179 25 (14)	C46 - N5 - C31 - C32	-174 61 (14)
C_{16} N1 C_{1} C_{14}	-10(2)	$C_{46} = N_5 = C_{31} = C_{44}$	28(2)
C1 N1 C16 C15	1.0(2)	$C_{10} = 105 = C_{31} = C_{44}$	(2) (2) (-2) (2)
$C_1 = N_1 = C_{16} = C_{19}$	1.0(2) -177.77(14)	$C_{31} = N_{5} = C_{40} = C_{43}$	2.9(2)
C1 = N1 = C10 = C19	-1/1.1/1(14)	$C_{31} = N_{3} = C_{40} = C_{49}$	1/3.11(14)
C15 - N2 - C14 - C1	-2.8(2)	C45 - N6 - C44 - C31	0.0(2)
C15 - N2 - C14 - C13	1/4.61 (14)	C45 - N6 - C44 - C43	1/9.9/ (14)
C14 - N2 - C15 - C16	2.7 (2)	C44—N6—C45—C46	-0.6(2)
C14—N2—C15—C17	-1/5.36 (14)	C44—N6—C45—C47	178.61 (14)
C21—N3—C2—C1	144.09 (15)	C51—N7—C32—C31	-144.83 (15)
C21—N3—C2—C3	-27.5 (2)	C51—N7—C32—C33	29.6 (2)
C25—N3—C2—C1	-48.7 (2)	C55—N7—C32—C31	56.1 (2)
C25—N3—C2—C3	139.68 (16)	C55—N7—C32—C33	-129.45 (16)
C2—N3—C21—C22	-133.83 (14)	C32—N7—C51—C52	140.55 (14)
C25—N3—C21—C22	57.50 (17)	C55—N7—C51—C52	-58.37 (17)
C2—N3—C25—C24	132.31 (15)	C32—N7—C55—C54	-141.30 (15)
C21—N3—C25—C24	-59.57 (17)	C51—N7—C55—C54	58.02 (17)
C26—N4—C13—C12	-31.0 (2)	C56—N8—C43—C42	27.8 (2)
C26—N4—C13—C14	143.79 (14)	C56—N8—C43—C44	-143.56 (14)
C30—N4—C13—C12	129.01 (16)	C60—N8—C43—C42	-134.16 (16)
C30—N4—C13—C14	-56.2 (2)	C60—N8—C43—C44	54.5 (2)
C13—N4—C26—C27	-139.42 (14)	C43—N8—C56—C57	137.09 (14)
C30—N4—C26—C27	58.87 (17)	C60—N8—C56—C57	-59.11 (16)
C13—N4—C30—C29	139.43 (15)	C43—N8—C60—C59	-137.48 (14)
C26—N4—C30—C29	-58.95 (17)	C56—N8—C60—C59	59.25 (16)
N1-C1-C2-N3	10.8 (2)	N5-C31-C32-N7	-10.2(2)
N1-C1-C2-C3	-177.20(14)	N5-C31-C32-C33	174.99 (14)
C14-C1-C2-N3	-168.93(14)	C44-C31-C32-N7	172.40 (14)
C_{14} C_{1} C_{2} C_{3}	31(2)	C44-C31-C32-C33	-24(2)
N1 - C1 - C14 - N2	19(2)	N_{5} C_{31} C_{44} N_{6}	-1.6(2)
N1 C1 C14 C13	-175 35 (14)	$N_{5} = C_{31} = C_{44} = C_{43}$	1.0(2)
$C_{-C1} - C_{14} - C_{15}$	-17834(14)	C_{32} C_{31} C_{44} N6	175 67 (14)
$C_2 = C_1 = C_1 + C_1 + C_1 + C_2$	1/0.3 + (1+)	$C_{32} = C_{31} = C_{44} = C_{42}$	-27(2)
12 - 1 - 14 - 13	+.+(2)	C_{32} C_{31} C_{44} C_{43} C_{23} C_{24}	3.7(2)
113 - 02 - 03 - 04	-21.3(2)	N/-C32-C33-C42	29.0 (2)
N3-C2-C3-C12	15/.34 (14)	N/-C32-C33-C42	-161.12 (14)
C1—C2—C3—C4	160.91 (14)	C31—C32—C33—C34	-156.43 (14)

C1—C2—C3—C12	-14.5 (2)	C31—C32—C33—C42	13.5 (2)
C2-C3-C4-O1	-24.8 (2)	C32—C33—C34—O3	11.5 (2)
C2—C3—C4—C5	157.11 (14)	C32—C33—C34—C35	-172.26 (13)
C12—C3—C4—O1	150.71 (15)	C42—C33—C34—O3	-158.64 (14)
C12—C3—C4—C5	-27.3 (2)	C42—C33—C34—C35	17.6 (2)
C2—C3—C12—C11	-150.87 (14)	C32—C33—C42—C41	156.56 (14)
C2—C3—C12—C13	19.1 (2)	C32—C33—C42—C43	-19.4 (2)
C4—C3—C12—C11	33.6 (2)	C34—C33—C42—C41	-33.1(2)
C4—C3—C12—C13	-156.44 (14)	C34—C33—C42—C43	150.87 (14)
O1—C4—C5—C6	10.3 (2)	O3—C34—C35—C36	-4.6 (2)
O1—C4—C5—C10	-171.27 (14)	O3—C34—C35—C40	177.78 (14)
C3—C4—C5—C6	-171.59 (14)	C33—C34—C35—C36	178.99 (13)
C3—C4—C5—C10	6.8 (2)	C33—C34—C35—C40	1.4 (2)
C4—C5—C6—C7	177.76 (14)	C34—C35—C36—C37	-177.50 (14)
C10—C5—C6—C7	-0.7 (2)	C40—C35—C36—C37	0.1 (2)
C4—C5—C10—C9	-176.54 (14)	C34—C35—C40—C39	177.48 (14)
C4—C5—C10—C11	7.3 (2)	C34—C35—C40—C41	-4.7(2)
C6—C5—C10—C9	1.9 (2)	C36—C35—C40—C39	-0.1(2)
C6-C5-C10-C11	-174.32(14)	C36—C35—C40—C41	177.76 (14)
C5—C6—C7—C8	-0.9(2)	C35—C36—C37—C38	0.0 (2)
C6—C7—C8—C9	1.2 (2)	C36—C37—C38—C39	-0.2(2)
C7—C8—C9—C10	0.0 (2)	C37—C38—C39—C40	0.3 (2)
C8-C9-C10-C5	-1.6(2)	C38—C39—C40—C35	-0.1(2)
C8—C9—C10—C11	174.68 (14)	C38—C39—C40—C41	-177.95 (14)
C5-C10-C11-O2	-178.18(14)	C35—C40—C41—O4	167.23 (14)
C_{5} $-C_{10}$ $-C_{11}$ $-C_{12}$	-1.0(2)	C_{35} C_{40} C_{41} C_{42}	-10.7(2)
C9—C10—C11—O2	5.6 (2)	C39—C40—C41—O4	-14.9(2)
C9-C10-C11-C12	-177.24(13)	C39—C40—C41—C42	167.18 (14)
O2—C11—C12—C3	157.57 (14)	O4—C41—C42—C33	-148.11 (15)
02-C11-C12-C13	-12.3 (2)	O4—C41—C42—C43	27.9 (2)
C10-C11-C12-C3	-19.5 (2)	C40—C41—C42—C33	29.7 (2)
C10-C11-C12-C13	170.68 (14)	C40—C41—C42—C43	-154.27 (14)
C3—C12—C13—N4	163.81 (14)	C33—C42—C43—N8	-158.85(14)
C3-C12-C13-C14	-11.0(2)	C33—C42—C43—C44	12.8 (2)
C11—C12—C13—N4	-26.6(2)	C41—C42—C43—N8	25.3 (2)
C11—C12—C13—C14	158.56 (14)	C41—C42—C43—C44	-163.10(14)
N4—C13—C14—N2	7.3 (2)	N8—C43—C44—N6	-9.1 (2)
N4—C13—C14—C1	-175.33 (14)	N8—C43—C44—C31	170.33 (14)
C12—C13—C14—N2	-177.57 (14)	C42—C43—C44—N6	179.09 (14)
C12—C13—C14—C1	-0.2 (2)	C42—C43—C44—C31	-1.5(2)
N2—C15—C16—N1	-1.9(2)	N6—C45—C46—N5	1.9 (2)
N2—C15—C16—C19	176.83 (14)	N6—C45—C46—C49	-176.09(14)
C17—C15—C16—N1	176.18 (14)	C47—C45—C46—N5	-177.38(14)
C17—C15—C16—C19	-5.1 (2)	C47—C45—C46—C49	4.7 (2)
N2-C15-C17-C18	14.6 (2)	N6—C45—C47—C48	-1.9(2)
C16—C15—C17—C18	-163.53 (14)	C46—C45—C47—C48	177.32 (14)
N1—C16—C19—C20	4.9 (2)	N5-C46-C49-C50	-11.8 (2)
C15—C16—C19—C20	-173.81 (14)	C45—C46—C49—C50	166.16 (14)

N3—C21—C22—C23	-54.60 (17)	N7—C51—C52—C53	56.87 (18)
C21—C22—C23—C24	53.28 (18)	C51—C52—C53—C54	-55.34 (18)
C22—C23—C24—C25	-53.88 (18)	C52—C53—C54—C55	55.07 (18)
C23—C24—C25—N3	56.99 (17)	C53—C54—C55—N7	-55.94 (18)
N4—C26—C27—C28	-56.46 (18)	N8—C56—C57—C58	56.07 (17)
C26—C27—C28—C29	54.93 (19)	C56—C57—C58—C59	-53.61 (18)
C27—C28—C29—C30	-54.54 (19)	C57—C58—C59—C60	52.82 (18)
C27—C28—C29—C30	-54.54 (19)	C57—C58—C59—C60	-55.07 (17)
C28—C29—C30—N4	56.00 (18)	C58—C59—C60—N8	

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	D—H···A
C21—H21A···O1	0.99	2.39	2.826 (2)	106
C25—H25A…N1	0.99	2.28	2.872 (2)	117
C26—H26A····O2	0.99	2.23	2.7484 (19)	111
C30—H30A····N2	0.99	2.32	2.888 (2)	115
C51—H51 <i>B</i> ···O3	0.99	2.22	2.752 (2)	113
C55—H55 <i>B</i> ···N5	0.99	2.31	2.910 (2)	118
C56—H56A···O3 ⁱ	0.99	2.54	3.1765 (19)	122
C56—H56 <i>B</i> ····O4	0.99	2.34	2.822 (2)	109
C60—H60 <i>B</i> …N6	0.99	2.34	2.910 (2)	116

Symmetry code: (i) -x, -y+1, -z+1.