research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure determination as part of an ongoing undergraduate organic laboratory project: 5-[(E)-styr­yl]-1,3,4-oxa­thia­zol-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Crandall University, PO Box 6004, Moncton, New Brunswick, Canada, and bThe Atlantic Centre for Green Chemistry and the Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada
*Correspondence e-mail: mel.schriver@crandallu.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 July 2017; accepted 31 July 2017; online 4 August 2017)

The title compound, C10H7NO2S, provides the first structure of an α-alkenyl oxa­thia­zolone ring. The phenyl ring and the oxa­thia­zolone groups make dihedral angles of 0.3 (3) and −2.8 (3)°, respectively, with the plane of the central alkene group; the dihedral angle between the rings is 2.68 (8)°. A careful consideration of bond lengths provides insight into the electronic structure and reactivity of the title compound. In the crystal, extended π-stacking is observed parallel to the a-axis direction, consisting of cofacial head-to-tail dimeric units [centroid–centroid distance of 3.6191 (11) Å]. These dimeric units are separated by a slightly longer centroid–centroid distance of 3.8383 (12) Å, generating infinite stacks of mol­ecules.

1. Chemical context

A common feature of the undergraduate organic chemistry teaching laboratory is the capstone, multi-step synthetic project that allows the student to integrate their lecture and laboratory experiences and capture a glimpse of research chemistry (Christiansen et al., 2014[Christiansen, M. A., Crawford, C. L. & Mangum, C. D. (2014). The Chemical Educator, 19, 28-33.]). The selection of an appropriate project target compound requires reliable syntheses coupled to definitive characterizations and, if possible, real-world applications. In our teaching laboratory, we have focused our student projects on the preparation, characterization and chemistry of oxa­thia­zolone derivatives. This project compliments the lecture sections on carbonyl and heterocycle chemistry at the end of a one semester introductory organic chemistry course. The preparations of oxa­thia­zolone derivatives use methods developed in earlier laboratories and allow for subsequent chemistry of either the heterocycle or substituent group, which can be explored in a three-to-four week project cycle individually, in groups and in inquiry-based class projects. The existing literature on the oxa­thia­zolone heterocycle is sufficient but not overwhelming for the research purposes of the students. In addition, the area has been the subject of several comprehensive reviews and theses (Paton, 1989[Paton, R. M. (1989). Chem. Soc. Rev. 18, 33-52.]; Wentrup & Kambouris, 1991[Wentrup, C. & Kambouris, P. (1991). Chem. Rev. 91, 363-373.]).

[Scheme 1]

Derivatives of the oxa­thia­zolone heterocycle have been known since their first preparation in 1967 by Muhlbauer and Weiss (Muhlbauer & Weiss, 1967[Muhlbauer, E. & Weiss, W. (1967). UK Pat. 1079348.]). Until recently, the predominant chemistry of the heterocycle was the thermal cyclo­reversion to the short-lived nitrile sulfide, a propargyl allenyl 1,3-dipole which could be trapped by electron-deficient π-bonds in reasonable yield to give families of new heterocycles (Paton, 1989[Paton, R. M. (1989). Chem. Soc. Rev. 18, 33-52.]). Industrially, various derivatives of the oxa­thia­zolone heterocycle have been reported as potential fungicides (Klaus et al., 1965[Klaus, S., Ludwig, E. & Richard, W. (1965). US Patent No. 3,182,068. Washington, DC: U. S. Patent and Trademark Office.]), pesticides (Hölzl & Schnyder, 2004[Hölzl, W. & Schnyder, M. (2004). U. S. Patent No. 6,689,372. Washington, DC: US Patent and Trademark Office.]), polymer additives (Crosby 1978[Crosby, J. (1978). US Patent No. 4,067,862. Washington, DC: US Patent and Trademark Office.]) and pharmaceuticals (Russo et al., 2015[Russo, F., Gising, J., Åkerbladh, L., Roos, A. K., Naworyta, A., Mowbray, S. L., Sokolowski, A., Henderson, I., Alling, T., Bailey, M. A., Files, M., Parish, T., Karlen, A. & Larhed, M. (2015). ChemistryOpen, 4, 342-362.]). In 2009, inter­est was renewed in the ring system with the report of the use of oxa­thia­zolone derivatives as selective inhibitors for mycobacterial proteasomes (Lin et al., 2009[Lin, G., Li, D., de Carvalho, L. P. S., Deng, H., Tao, H., Vogt, G., Wu, K., Schneider, J., Chidawanyika, T., Warren, J. D., Li, H. & Nathan, C. (2009). Nature, 461, 621-626.]). Subsequent research has uncovered potential use of styryl-substituted oxa­thia­zolone derivatives as anti­tubercular `warheads' (Russo et al., 2015[Russo, F., Gising, J., Åkerbladh, L., Roos, A. K., Naworyta, A., Mowbray, S. L., Sokolowski, A., Henderson, I., Alling, T., Bailey, M. A., Files, M., Parish, T., Karlen, A. & Larhed, M. (2015). ChemistryOpen, 4, 342-362.]). The significance of the structure and chemistry of styryl-substituted oxa­thia­zolone mol­ecules, especially with respect to their inter­molecular inter­actions with the proteasome, has therefore placed some significance on the structure of the title compound.

The title compound was first prepared from cinnamyl amide by Paton and coworkers (Paton et al., 1983[Paton, R. M., Stobie, I. & Mortier, R. M. (1983). Phosphorus Sulfur Relat. Elem. 15, 137-142.]) and the synthesis was subsequently reported in a patent for use as modulating agents for amino acid receptors (Cosford et al., 2005[Cosford, N. D., McDonald, I. A., Hess, S. D. & Varney, M. A. (2005). U. S. Patent No. 6,956,049. Washington, DC: US Patent and Trademark Office.]). Our inter­est in this derivative of the oxa­thia­zolone heterocycle was initially focused on the potential for exploring the chemistry of the alkene moiety in the styryl group for subsequent assessment of the substituent effect of the oxa­thia­zolone on the alkene addition and electrophilic substitution chemistry.

2. Structural commentary

The influence of oxa­thia­zolone and substituent π-conjugation on the bonding in the heterocycle has been shown spectroscopically (Markgraf et al., 2007[Markgraf, J. H., Hong, L., Richardson, D. P. & Schofield, M. H. (2007). Magn. Reson. Chem. 45, 985-988.]) and crystallographically (Krayushkin et al., 2010a[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. Compd, 46, 484-489.]; Krayushkin et al., 2010b[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610-617.]) to isolate the C=N π-system from the nascent O=C=O π-system foreshadowing the facile deca­rboxylation to the nitrile sulfide. Thus the asymmetry of the C—O bonds within the heterocycle has been linked to the ease of nitrile sulfide generation. It has been proposed that the ease of deca­rboxylation is related to the length of the C1—O2 bond.

The title compound (Fig. 1[link]) is the first oxa­thia­zolone X-ray structure of the heterocycle substituted directly to an alkene. The C—O bonds within the heterocycle [C1—O1 = 1.3852 (19), C2—O1 = 1.3678 (17) Å] are asymmetric as expected with conjugation between the alkene and the heterocycle. The bond distances and angles are consistent with the known oxa­thia­zolone derivatives that feature a Csp2—Csp2 bond between the heterocycle and the unsaturated organic substituent. The C1—O1 bond [1.3852 (19) Å] is close to the statistical average for mol­ecules of this type (1.40±0.03 Å) and significantly longer than the average for mol­ecules that feature a Csp2—Csp3 bond between the heterocycle and the saturated organic substituent (1.374±0.005 Å). In addition, the C1—S1 bond [1.7379 (18) Å] is slightly shorter than the statistical average for mol­ecules of this type (1.75±0.02 Å). Thus the pattern of bonding within the heterocycle is consistent with the Krayuskin conjugation model, leading to the hypothesis that deca­rbonylation of this derivative should occur with milder conditions than observed for heterocycles substituted with saturated substituents.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids.

The atoms in the ring of the oxa­thia­zolone heterocycle form bond angles that sum to 540.0° consistent with a planar ring (ideal 540°). The torsion angles O1—C2—C3—C4 [−2.8 (3)°] and C3—C4—C5—C6 [−179.81 (17)°] confirm a near planarity of the mol­ecule favorable for conjugation between the π-systems of the two rings and the central alkene.

The planarity, bond lengths and angles in the styryl fragment are comparable with previously reported values (Nilofar Nissa et al., 2002[Nilofar Nissa, M., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H. K., Kasinath, V. & Gopalakrishnan, G. (2002). Cryst. Res. Technol. 37, 125-133.]; Iwamoto et al., 1989[Iwamoto, T., Kashino, S. & Haisa, M. (1989). Acta Cryst. C45, 1110-1112.]). The widening of the C3—C4—C5 angle to 125.68 (14)° has been previously attributed to intra­molecular repulsion between C3 and C6 (Subramanian et al., 1999[Subramanian, E., Renganayaki, S., Shanmuga Sundara Raj, S. & Fun, H.-K. (1999). Acta Cryst. C55, 764-766.]). The C2—C3 distance [1.443 (2) Å] is shorter than observed in cinnamyl derivatives (Nilofar Nissa et al., 2002[Nilofar Nissa, M., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H. K., Kasinath, V. & Gopalakrishnan, G. (2002). Cryst. Res. Technol. 37, 125-133.]), consistent with π-delocalization between the alkene and the heterocycle.

3. Supra­molecular features

Extended π-stacking is observed parallel to the a-axis direction (Fig. 2[link], top), consisting of cofacial head-to-tail dimeric units [centroid–centroid distance of 3.6191 (11) Å]. These dimeric units are separated by a slightly longer centroid–centroid distance of 3.8383 (12) Å (Fig. 2[link], bottom). It should be noted, however, that the inter­molecular S⋯N distances [3.6879 (16) Å], are significantly longer than those observed in other related S⋯N heterocyclic mol­ecules (Bridson et al., 1995[Bridson, J. N., Schriver, M. J. & Zhu, S. (1995). Can. J. Chem. 73, 212-222.]).

[Figure 2]
Figure 2
The packing diagram of the title compound showing ππ stacking parallel to the a-axis direction (top). Cofacial head-to-tail dimeric units [separated by long dashes, centroid–centroid distance of 3.6191 (11) Å] separated by an inter-dimer distance of 3.8383 (12) Å (small dashes, bottom).

4. Database survey

There are eleven crystal structures of oxa­thia­zolone derivatives reported in the literature (Schriver & Zaworotko, 1995[Schriver, M. J. & Zaworotko, M. J. (1995). J. Chem. Crystallogr. 25, 25-28.]; Bridson et al. 1994[Bridson, J. N., Copp, S. B., Schriver, M. J., Zhu, S. & Zaworotko, M. J. (1994). Can. J. Chem. 72, 1143-1153.], 1995[Bridson, J. N., Schriver, M. J. & Zhu, S. (1995). Can. J. Chem. 73, 212-222.]; Vorontsova et al., 1996[Vorontsova, L. G., Kurella, M. G., Kalik, M. A. & Krayushkin, M. M. (1996). Crystallogr. Rep. 41, 362-364.]; McMillan et al., 2006[McMillan, K. G., Tackett, M. N., Dawson, A., Fordyce, E. & Paton, R. M. (2006). Carbohydr. Res. 341, 41-48.]; Krayushkin et al., 2010a[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. Compd, 46, 484-489.],b[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610-617.]), which have been partially reviewed (Krayushkin et al., 2010a[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. Compd, 46, 484-489.],b[Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610-617.]). The structures fall into two groups: those that feature a Csp2—Csp3 bond between the heterocycle and the saturated organic substituent and those that feature a Csp2—Csp2 bond between the heterocycle and the unsaturated organic substituent (either a phenyl group or a heterocyclic ring).

5. Synthesis and crystallization

The title compound was prepared following literature methods (Cosford et al., 2005[Cosford, N. D., McDonald, I. A., Hess, S. D. & Varney, M. A. (2005). U. S. Patent No. 6,956,049. Washington, DC: US Patent and Trademark Office.]) and was crystallized as large needles from a hot solution in chloro­form by cooling to room temperature followed by slow evaporation to a crystalline solid. The identity and purity of the product was determined by comparison with the literature (Paton et al., 1983[Paton, R. M., Stobie, I. & Mortier, R. M. (1983). Phosphorus Sulfur Relat. Elem. 15, 137-142.]; Cosford et al., 2005[Cosford, N. D., McDonald, I. A., Hess, S. D. & Varney, M. A. (2005). U. S. Patent No. 6,956,049. Washington, DC: US Patent and Trademark Office.]) and by UV–visible spectroscopy (CH2Cl2) λmax (log ) : 228 nm (4.21), 307 nm (4.52).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C10H7NO2S
Mr 205.23
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.3948 (11), 9.4609 (13), 13.5183 (19)
β (°) 95.771 (2)
V3) 941.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.46 × 0.21 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.637, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7073, 2046, 1730
Rint 0.014
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.07
No. of reflections 2046
No. of parameters 155
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.40, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2016 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: APEX2 (Bruker, 2009); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-[(E)-Styryl]-1,3,4-oxathiazol-2-one top
Crystal data top
C10H7NO2SF(000) = 424
Mr = 205.23Dx = 1.449 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3948 (11) ÅCell parameters from 4030 reflections
b = 9.4609 (13) Åθ = 2.6–28.6°
c = 13.5183 (19) ŵ = 0.31 mm1
β = 95.771 (2)°T = 296 K
V = 941.0 (2) Å3Needle, pink
Z = 40.46 × 0.21 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 97
Tmin = 0.637, Tmax = 0.746k = 1212
7073 measured reflectionsl = 1717
2046 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.2083P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2046 reflectionsΔρmax = 0.40 e Å3
155 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08082 (8)1.41478 (5)0.37424 (4)0.0704 (2)
O10.15697 (16)1.15722 (11)0.35689 (7)0.0552 (3)
O20.0742 (2)1.26055 (17)0.20881 (10)0.0880 (5)
N10.1444 (2)1.32282 (16)0.47790 (10)0.0662 (4)
C10.1007 (2)1.27047 (19)0.29653 (12)0.0590 (4)
C20.1790 (2)1.19553 (16)0.45493 (11)0.0492 (3)
C30.2399 (2)1.08768 (17)0.52613 (11)0.0519 (4)
H30.262 (3)1.122 (2)0.5907 (14)0.068 (5)*
C40.2691 (2)0.95350 (17)0.50461 (11)0.0490 (3)
H40.250 (3)0.9270 (18)0.4370 (15)0.065 (5)*
C50.3301 (2)0.84338 (15)0.57630 (10)0.0465 (3)
C60.3561 (3)0.70636 (18)0.54358 (13)0.0614 (4)
H60.333 (3)0.689 (2)0.4764 (16)0.082 (6)*
C70.4143 (3)0.60037 (19)0.60958 (15)0.0693 (5)
H70.430 (3)0.509 (2)0.5866 (16)0.082 (6)*
C80.4481 (3)0.6292 (2)0.70893 (14)0.0628 (4)
H80.485 (3)0.559 (2)0.7506 (15)0.070 (6)*
C90.4223 (3)0.7643 (2)0.74363 (13)0.0644 (5)
H90.446 (3)0.786 (2)0.8132 (16)0.077 (6)*
C100.3636 (2)0.87006 (18)0.67792 (12)0.0567 (4)
H100.347 (3)0.958 (2)0.7007 (14)0.068 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0899 (4)0.0566 (3)0.0630 (3)0.0181 (2)0.0000 (2)0.00692 (19)
O10.0711 (7)0.0519 (6)0.0415 (5)0.0005 (5)0.0001 (5)0.0008 (4)
O20.1246 (13)0.0903 (10)0.0463 (7)0.0098 (9)0.0056 (7)0.0081 (7)
N10.0902 (11)0.0561 (8)0.0505 (8)0.0147 (7)0.0019 (7)0.0012 (6)
C10.0655 (10)0.0617 (10)0.0488 (9)0.0014 (8)0.0009 (7)0.0065 (7)
C20.0529 (8)0.0516 (8)0.0426 (7)0.0002 (6)0.0021 (6)0.0026 (6)
C30.0588 (9)0.0546 (9)0.0415 (7)0.0022 (7)0.0002 (6)0.0003 (6)
C40.0525 (8)0.0525 (8)0.0414 (7)0.0031 (6)0.0027 (6)0.0010 (6)
C50.0465 (8)0.0483 (8)0.0453 (7)0.0044 (6)0.0075 (6)0.0001 (6)
C60.0801 (12)0.0529 (9)0.0522 (9)0.0014 (8)0.0113 (8)0.0050 (7)
C70.0875 (14)0.0473 (9)0.0745 (12)0.0062 (8)0.0148 (10)0.0009 (8)
C80.0669 (11)0.0542 (9)0.0670 (11)0.0008 (8)0.0049 (8)0.0164 (8)
C90.0818 (12)0.0600 (10)0.0494 (9)0.0053 (8)0.0029 (8)0.0057 (7)
C100.0739 (11)0.0476 (8)0.0477 (8)0.0020 (7)0.0013 (7)0.0019 (6)
Geometric parameters (Å, º) top
S1—N11.6761 (14)C5—C61.389 (2)
S1—C11.7379 (18)C5—C101.394 (2)
O1—C11.3852 (19)C6—H60.92 (2)
O1—C21.3678 (17)C6—C71.382 (3)
O2—C11.186 (2)C7—H70.93 (2)
N1—C21.276 (2)C7—C81.369 (3)
C2—C31.443 (2)C8—H80.90 (2)
C3—H30.930 (19)C8—C91.381 (3)
C3—C41.325 (2)C9—H90.96 (2)
C4—H40.944 (19)C9—C101.379 (2)
C4—C51.463 (2)C10—H100.90 (2)
N1—S1—C193.67 (8)C10—C5—C4122.42 (14)
C2—O1—C1111.43 (12)C5—C6—H6117.6 (14)
C2—N1—S1109.43 (11)C7—C6—C5121.04 (16)
O1—C1—S1106.87 (11)C7—C6—H6121.3 (14)
O2—C1—S1130.62 (15)C6—C7—H7120.1 (13)
O2—C1—O1122.51 (17)C8—C7—C6120.22 (17)
O1—C2—C3117.23 (13)C8—C7—H7119.7 (13)
N1—C2—O1118.60 (14)C7—C8—H8118.8 (13)
N1—C2—C3124.17 (14)C7—C8—C9119.98 (17)
C2—C3—H3113.2 (12)C9—C8—H8121.2 (13)
C4—C3—C2125.30 (14)C8—C9—H9121.0 (13)
C4—C3—H3121.4 (12)C10—C9—C8119.87 (17)
C3—C4—H4117.1 (11)C10—C9—H9119.1 (13)
C3—C4—C5125.68 (14)C5—C10—H10119.1 (12)
C5—C4—H4117.3 (11)C9—C10—C5121.11 (16)
C6—C5—C4119.80 (13)C9—C10—H10119.8 (12)
C6—C5—C10117.78 (15)
S1—N1—C2—O11.1 (2)C2—C3—C4—C5179.74 (15)
S1—N1—C2—C3179.16 (13)C3—C4—C5—C6179.81 (17)
O1—C2—C3—C42.8 (3)C3—C4—C5—C100.3 (3)
N1—S1—C1—O10.10 (13)C4—C5—C6—C7179.74 (17)
N1—S1—C1—O2179.8 (2)C4—C5—C10—C9179.52 (16)
N1—C2—C3—C4176.93 (18)C5—C6—C7—C80.2 (3)
C1—S1—N1—C20.65 (15)C6—C5—C10—C90.6 (3)
C1—O1—C2—N11.0 (2)C6—C7—C8—C90.6 (3)
C1—O1—C2—C3179.19 (14)C7—C8—C9—C100.4 (3)
C2—O1—C1—S10.45 (16)C8—C9—C10—C50.2 (3)
C2—O1—C1—O2179.68 (17)C10—C5—C6—C70.4 (3)
 

Acknowledgements

TRN and MJS would like to acknowledge the work of many student co-workers in the course Chemistry 2113 who worked on the oxa­thia­zolone synthesis and characterization project and the support of Crandall University. MS would like to acknowledge the Stephen and Ella Steeves Research Fund for operating funds. JDM would like to acknowledge the Canadian Foundation for Innovation Leaders Opportunity fund (CFI–LFO) for upgrades to the diffractometer, the Natural Science and Engineering Council of Canada (NSERC) for operating funds and Saint Mary's University for support.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; Canada Foundation for Innovation.

References

First citationBridson, J. N., Copp, S. B., Schriver, M. J., Zhu, S. & Zaworotko, M. J. (1994). Can. J. Chem. 72, 1143–1153.  CSD CrossRef CAS Web of Science Google Scholar
First citationBridson, J. N., Schriver, M. J. & Zhu, S. (1995). Can. J. Chem. 73, 212–222.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristiansen, M. A., Crawford, C. L. & Mangum, C. D. (2014). The Chemical Educator, 19, 28–33.  Google Scholar
First citationCosford, N. D., McDonald, I. A., Hess, S. D. & Varney, M. A. (2005). U. S. Patent No. 6,956,049. Washington, DC: US Patent and Trademark Office.  Google Scholar
First citationCrosby, J. (1978). US Patent No. 4,067,862. Washington, DC: US Patent and Trademark Office.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHölzl, W. & Schnyder, M. (2004). U. S. Patent No. 6,689,372. Washington, DC: US Patent and Trademark Office.  Google Scholar
First citationIwamoto, T., Kashino, S. & Haisa, M. (1989). Acta Cryst. C45, 1110–1112.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKlaus, S., Ludwig, E. & Richard, W. (1965). US Patent No. 3,182,068. Washington, DC: U. S. Patent and Trademark Office.  Google Scholar
First citationKrayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Heterocycl. Compd, 46, 484–489.  CrossRef CAS Google Scholar
First citationKrayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. Geterotsikl. Soedin. 2010, 610–617.  Google Scholar
First citationLin, G., Li, D., de Carvalho, L. P. S., Deng, H., Tao, H., Vogt, G., Wu, K., Schneider, J., Chidawanyika, T., Warren, J. D., Li, H. & Nathan, C. (2009). Nature, 461, 621–626.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarkgraf, J. H., Hong, L., Richardson, D. P. & Schofield, M. H. (2007). Magn. Reson. Chem. 45, 985–988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcMillan, K. G., Tackett, M. N., Dawson, A., Fordyce, E. & Paton, R. M. (2006). Carbohydr. Res. 341, 41–48.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMuhlbauer, E. & Weiss, W. (1967). UK Pat. 1079348.  Google Scholar
First citationNilofar Nissa, M., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H. K., Kasinath, V. & Gopalakrishnan, G. (2002). Cryst. Res. Technol. 37, 125–133.  CSD CrossRef Google Scholar
First citationPaton, R. M. (1989). Chem. Soc. Rev. 18, 33–52.  CrossRef CAS Web of Science Google Scholar
First citationPaton, R. M., Stobie, I. & Mortier, R. M. (1983). Phosphorus Sulfur Relat. Elem. 15, 137–142.  CrossRef CAS Web of Science Google Scholar
First citationRusso, F., Gising, J., Åkerbladh, L., Roos, A. K., Naworyta, A., Mowbray, S. L., Sokolowski, A., Henderson, I., Alling, T., Bailey, M. A., Files, M., Parish, T., Karlen, A. & Larhed, M. (2015). ChemistryOpen, 4, 342–362.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchriver, M. J. & Zaworotko, M. J. (1995). J. Chem. Crystallogr. 25, 25–28.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubramanian, E., Renganayaki, S., Shanmuga Sundara Raj, S. & Fun, H.-K. (1999). Acta Cryst. C55, 764–766.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVorontsova, L. G., Kurella, M. G., Kalik, M. A. & Krayushkin, M. M. (1996). Crystallogr. Rep. 41, 362–364.  Google Scholar
First citationWentrup, C. & Kambouris, P. (1991). Chem. Rev. 91, 363–373.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds