research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl­ene­di­oxy­tetra­thia­fulvalene-4,5-bis­­(thiol­benzoic acid) 0.25-hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Material Science and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Ningbo 315211, People's Republic of China
*Correspondence e-mail: xunwenxiao@126.com

Edited by H. Ishida, Okayama University, Japan (Received 30 June 2017; accepted 27 July 2017; online 1 August 2017)

In the title compound (systematic name: 4,4′-{[2-(5,6-di­hydro-[1,3]di­thiolo[4,5-b][1,4]dioxin-2-yl­idene)-1,3-di­thiole-4,5-di­yl]bis­(sulfanedi­yl)}di­benzoic acid 0.25-hydrate), C22H14O6S6·0.25H2O, the tetra­thia­fulvalene (TTF) core adopts a boat conformation, where the central S2C=CS2 plane makes dihedral angles of 31.34 (4) and 26.83 (6)°, respectively, with the peripheral S2C=CS2 and S2C2O2 planes. In the crystal, the benzoic acid mol­ecules are linked via O—H⋯O hydrogen bonds, forming inversion dimers with R22(8) motifs. The dimers are linked through weak C—H⋯O hydrogen bonds into a chain structure along [-101]. The chains stack along the a axis through S⋯S and S⋯C short contacts, forming layers parallel to the ac plane.

1. Chemical context

Tetra­thia­fulvalene (TTF) and its derivatives have received much attention in recent years due to their unique electrical properties and synthetic versatility (Canvert et al., 2009[Canvert, D., Sallé, M., Zhang, G. & Zhang, D. (2009). Chem. Commun. pp. 2245-2269.]; Xiao et al., 2012[Xiao, X., Wang, G., Shen, L., Fang, J. & Gao, H. (2012). Synth. Met. 162, 900-903.]). Among them, bis­(ethyl­enedi­oxy)-TTF (BEDO-TTF) derivatives have afforded two-dimensional stable metallic CT complexes resulting from its self-assembling nature in partially oxidized states (Horiuchi et al., 1996[Horiuchi, S., Yamochi, H., Saito, G., Sakaguchi, K. & Kusunoki, M. (1996). J. Am. Chem. Soc. 118, 8604-8622.]). Ethyl­enedi­oxy-TTF (EDO-TTF) is a noted electron-donor mol­ecule, and (EDO-TTF)2PF6 shows a metal–insulator thermal transition at near room temperature (Ota et al., 2002[Ota, A., Yamochi, H. & Saito, G. (2002). J. Mater. Chem. 12, 2600-2602.]). There are also many reports that peripheral aryl­ation of TTF could afford photochemically active organic materials. Recently, Shao's group reported a method to introduce aryls to TTF through the sulfur atom (Sun et al., 2013[Sun, J., Lu, X., Shao, J., Cui, Z., Shao, Y., Jiang, G., Yu, W. & Shao, X. (2013). RSC Adv. 3, 10193-10196.]; Zhang et al., 2015[Zhang, X., Lu, X., Sun, J., Zhao, Y. & Shao, X. (2015). CrystEngComm, 17, 4110-4116.]). Our group has also reported a donor mol­ecule, EDO-TTF-pyridine (Xiao et al., 2012[Xiao, X., Wang, G., Shen, L., Fang, J. & Gao, H. (2012). Synth. Met. 162, 900-903.]). To obtain more insight into this system, we report here the synthesis and crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains one benzoic acid mol­ecule and a quarter mol­ecule of solvent water (Fig. 1[link]). The TTF core adopts a boat conformation, as usually observed in neutral TTF derivatives. The central plane A (S1/S2/C5/C6/S3/S4) and the adjacent planes B (S3/S4/C7/C8/S5/S6) and C (S1/S2/C3/C4/O1/O2) are almost planar with r.m.s. deviations of 0.0233, 0.0274 and 0.0105 Å, respectively. The dihedral angles between planes A and B and A and C are 31.24 (4) and 26.83 (6)°, respectively. Plane B makes dihedral angles of 85.88 (11) and 82.03 (15)°, respectively, with the benzene C9–C14 and C16–C21 rings. These benzene rings are approximately parallel, subtending a dihedral angle of 11.82 (14)°. All bond lengths and angles in the TTF fragment are within the range of the values for a neutral TTF mol­ecule (Zhang et al., 2015[Zhang, X., Lu, X., Sun, J., Zhao, Y. & Shao, X. (2015). CrystEngComm, 17, 4110-4116.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. A, B and C indicate mean planes defined by six atoms.

3. Supra­molecular features

In the crystal, pairs of inversion-related benzoic acid mol­ecules are linked by O—H⋯O hydrogen bonds between carboxyl groups (Table 1[link]), forming [R_{2}^{2}] (8) hydrogen-bond motifs (Fig. 2[link]). The water mol­ecule links two carboxyl groups in the benzoic acid mol­ecule through O—H⋯O hydrogen bonds. The dimers are linked by weak C—H⋯O hydrogen bonds into a chain structure running along [[\overline{1}]01]. The chains stack along the a axis via S⋯S and S⋯C inter­actions [S4⋯S5iv = 3.420 (5) Å and S1⋯C20v = 3.456 (5) Å; symmetry codes: (iv) x − 1, y, z; (v) −x + 1, −y, −z + 1], forming a layer parallel to the ac plane (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.86 (2) 1.78 (2) 2.629 (3) 165 (5)
O6—H6⋯O3i 0.84 (2) 1.78 (2) 2.624 (3) 177 (4)
O1W—H1WA⋯O5ii 0.85 2.38 3.18 (2) 155
O1W—H1WB⋯O3ii 0.85 2.37 3.17 (2) 158
C13—H13A⋯O2iii 0.93 2.67 3.570 (4) 163
C20—H20A⋯O1iii 0.93 2.65 3.552 (4) 164
Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y, z+1; (iii) -x, -y, -z+1.
[Figure 2]
Figure 2
A view of the inversion dimer of the title compound with two [R_{2}^{2}](8) hydrogen-bond motifs. O—H⋯O hydrogen bonds are shown as dotted lines.
[Figure 3]
Figure 3
A view of the crystal packing of the title compound, showing O—H⋯O and C—H⋯O hydrogen bonds, and S⋯S and S⋯C inter­actions.

4. Database survey

The crystal structure of 3′,4′-ethyl­enedioxo­tetra­thia­fulvolenyl-3-carb­oxy­lic acid (EDO-TTF-COOH) reported by Mézière et al. (2000[Mézière, C., Fourmigué, M. & Fabre, J.-M. (2000). C. R. Acad. Sci. Ser. IIc Chim. 3, 387-395.]) has a similar structure to the title compound. Both structures include O—H⋯O hydrogen bonds between carboxyl groups with [R_{2}^{2}] (8) ring motifs.

5. Synthesis and crystallization

The title compound was prepared according to the reaction scheme shown in Fig. 4[link]. 4,5-Ethyl­enedioy-1,3-di­thiole-2-thione, 3, (systematic name: 5,6-di­hydro-[1,3]di­thiolo[4,5-b][1,4]dioxine-2-thione) and 4,5-bis­(thiol­methyl­benzoate)-1,3-di­thiole-2-thion, 4, [systematic name: dimethyl 4,4′-(2-oxo-1,3-di­thiole-4,5-di­yl)bis­(sufanedi­yl)dibenzoate] were synthesized by the literature method (Sun et al., 2013[Sun, J., Lu, X., Shao, J., Cui, Z., Shao, Y., Jiang, G., Yu, W. & Shao, X. (2013). RSC Adv. 3, 10193-10196.]). Compound 2 was prepared from compounds 3 and 4 using a standard phosphite-mediated coupling procedure as follows:

[Figure 4]
Figure 4
Synthesis of the title compound.

Compounds 3 (193 mg 0.1 mmol) and 4 (465 mg 0.1 mmol) were mixed in tri­ethyl­phosphite (5 ml) and heated at 393 K for 6 h. P(OEt)3 was then removed under reduced pressure and the red residue was purified by column chromatography on silica gel (DCM) to give 310 mg of a red powder of 2 (yield = 53%). 1H NMR [CDCl3, δ (ppm), J (Hz)]: 8.01 (d, 4H, J = 8.5), 7.41 (d, 4H, J = 8.5), 4.28 (s, 4H), 3.94 (s, 6H).

Finally, compound 1 was obtained by hydrolysis reaction of compound 2: A 50 ml flask was charged with compound 2 (260 mg, 0.50 mmol) under an N2 atmosphere. Degassed methanol (6 ml) and THF (6 ml) were added to generate a suspension. In a separate flask, sodium hydroxide (230 mg, 5.8 mmol) was dissolved in degassed water (4 ml). The sodium hydroxide solution was added to compound 2 and the reaction was heated to reflux for 8 h. The reaction was then cooled to room temperature and the volatiles were removed in vacuo. Hydro­chloric acid (1 mol l−1, 15 ml) was added to afford a maroon precipitate, which was collected by filtration and washed with water (50 ml). The product was collected and dried under high vacuum for 12 h to afford 1 as a maroon solid (179 mg, 0.35 mmol, 70% yield). 1H NMR [DMSO-d6, δ (ppm), J (Hz)]: 8.02 (d, 4H, J = 8.6),7.43 (d, 4H, J = 8.6), 4.28 (s, 4H). Elemental analysis calculated for C22H14O6S6: C 46.62, H 2.49%; found: C 46.67, H 2.51%. Red crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate solution of the title compound. Elemental analysis calculated for C22H14O6S6·0.25H2O: C 46.26, H 2.56%; found: C 46.29, H 2.58%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carboxyl H atoms were located in a difference-Fourier map and refined with O—H = 0.85 (2) Å, and with Uiso(H) = 1.2Ueq(O). H atoms bonded to C and O(water) atoms were positioned geometrically and included in the refinement in the riding-model approximation (C—H = 0.93 or 0.97 Å, and O—H = 0.85 Å) with Uiso(H) = 1.2Ueq(C or O). In the refinement, the occupancy of the lattice water mol­ecule was fixed at 0.25, which was estimated from the results of element analysis and gave acceptable displacement parameters for the water O atom.

Table 2
Experimental details

Crystal data
Chemical formula C22H14O6S6·0.25H2O
Mr 571.19
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.6995 (6), 9.2634 (8), 17.9198 (14)
α, β, γ (°) 90.970 (4), 92.039 (4), 110.902 (4)
V3) 1192.64 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.61
Crystal size (mm) 0.32 × 0.22 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.85, 0.91
No. of measured, independent and observed [I > 2σ(I)] reflections 40263, 5496, 4411
Rint 0.066
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.08
No. of reflections 5496
No. of parameters 322
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.27
Computer programs: APEX2 and SAINT-Plus (Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT-Plus (Bruker, 2014); data reduction: SAINT-Plus (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

4,4'-{[2-(5,6-Dihydro-[1,3]dithiolo[4,5-b][1,4]dioxin-2-ylidene)-1,3-dithiole-4,5-diyl]bis(sulfanediyl)}dibenzoic acid 0.25-hydrate top
Crystal data top
C22H14O6S6·0.25H2OZ = 2
Mr = 571.19F(000) = 585
Triclinic, P1Dx = 1.591 Mg m3
a = 7.6995 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2634 (8) ÅCell parameters from 9956 reflections
c = 17.9198 (14) Åθ = 2.6–27.6°
α = 90.970 (4)°µ = 0.61 mm1
β = 92.039 (4)°T = 296 K
γ = 110.902 (4)°Block, red
V = 1192.64 (17) Å30.32 × 0.22 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
4411 reflections with I > 2σ(I)
ω and φ scansRint = 0.066
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.6°, θmin = 2.6°
Tmin = 0.85, Tmax = 0.91h = 1010
40263 measured reflectionsk = 1212
5496 independent reflectionsl = 2323
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0409P)2 + 1.3142P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5496 reflectionsΔρmax = 0.47 e Å3
322 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.11044 (11)0.09238 (9)0.66738 (4)0.04393 (19)
S20.09625 (9)0.29064 (8)0.61324 (4)0.03501 (16)
S30.32187 (10)0.13385 (8)0.51255 (4)0.03623 (17)
S40.12080 (9)0.32989 (8)0.45679 (4)0.03457 (16)
S50.66618 (9)0.29700 (9)0.42971 (4)0.04079 (19)
S60.42943 (10)0.51964 (8)0.36264 (4)0.03834 (17)
O10.1244 (3)0.3703 (2)0.75549 (11)0.0433 (5)
O1W0.114 (3)0.387 (2)1.0200 (8)0.189 (11)0.25
H1WA0.11410.29921.03280.227*0.25
H1WB0.22420.38651.02360.227*0.25
O20.0741 (3)0.1748 (3)0.80773 (11)0.0470 (5)
O30.4480 (5)0.2974 (3)0.00584 (14)0.0900 (11)
O40.2328 (5)0.0854 (3)0.04444 (14)0.0863 (10)
H40.222 (7)0.048 (5)0.0006 (14)0.104*
O50.7607 (4)0.0500 (3)0.08500 (12)0.0664 (7)
O60.5255 (4)0.1560 (3)0.11897 (12)0.0575 (6)
H60.539 (5)0.200 (4)0.0790 (14)0.069*
C10.0452 (6)0.3816 (4)0.83013 (18)0.0591 (9)
H1A0.11850.41670.86400.071*
H1B0.08000.45790.83220.071*
C20.0387 (6)0.2316 (4)0.85521 (18)0.0599 (9)
H2A0.01240.24410.90620.072*
H2B0.16420.15590.85470.072*
C30.0365 (4)0.1960 (3)0.73426 (15)0.0362 (6)
C40.0543 (4)0.2847 (3)0.71027 (14)0.0335 (6)
C50.0641 (3)0.1999 (3)0.59408 (14)0.0318 (5)
C60.1508 (3)0.2153 (3)0.52984 (14)0.0291 (5)
C70.4361 (3)0.2753 (3)0.44870 (13)0.0295 (5)
C80.3442 (3)0.3653 (3)0.42336 (13)0.0291 (5)
C90.3906 (3)0.4271 (3)0.27335 (13)0.0290 (5)
C100.4906 (4)0.5139 (3)0.21609 (15)0.0415 (7)
H10A0.56980.61550.22560.050*
C110.4719 (5)0.4482 (3)0.14444 (16)0.0472 (7)
H11A0.53940.50580.10620.057*
C120.3526 (4)0.2970 (3)0.13006 (15)0.0394 (6)
C130.2478 (4)0.2132 (3)0.18680 (15)0.0412 (7)
H13A0.16390.11340.17670.049*
C140.2677 (4)0.2776 (3)0.25845 (14)0.0375 (6)
H14A0.19860.22040.29650.045*
C150.3430 (5)0.2226 (4)0.05515 (16)0.0514 (8)
C160.6443 (3)0.2013 (3)0.34120 (13)0.0296 (5)
C170.7745 (4)0.2746 (3)0.28949 (15)0.0387 (6)
H17A0.86280.37210.30080.046*
C180.7729 (4)0.2022 (3)0.22095 (16)0.0419 (7)
H18A0.85970.25150.18620.050*
C190.6421 (4)0.0565 (3)0.20418 (14)0.0330 (5)
C200.5125 (4)0.0176 (3)0.25668 (15)0.0354 (6)
H20A0.42520.11580.24580.042*
C210.5142 (3)0.0553 (3)0.32484 (14)0.0340 (6)
H21A0.42780.00610.35980.041*
C220.6426 (4)0.0211 (3)0.13115 (15)0.0407 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0568 (4)0.0448 (4)0.0426 (4)0.0312 (4)0.0196 (3)0.0122 (3)
S20.0351 (3)0.0449 (4)0.0316 (3)0.0212 (3)0.0112 (3)0.0041 (3)
S30.0419 (4)0.0402 (4)0.0346 (3)0.0238 (3)0.0106 (3)0.0010 (3)
S40.0305 (3)0.0527 (4)0.0268 (3)0.0221 (3)0.0060 (2)0.0005 (3)
S50.0269 (3)0.0621 (5)0.0336 (4)0.0172 (3)0.0012 (3)0.0215 (3)
S60.0484 (4)0.0341 (3)0.0279 (3)0.0087 (3)0.0086 (3)0.0067 (3)
O10.0529 (12)0.0482 (12)0.0359 (10)0.0260 (10)0.0124 (9)0.0025 (9)
O1W0.25 (2)0.169 (18)0.059 (9)0.035 (16)0.038 (12)0.041 (10)
O20.0530 (12)0.0575 (13)0.0358 (11)0.0253 (10)0.0093 (9)0.0118 (9)
O30.165 (3)0.0509 (15)0.0402 (13)0.0183 (17)0.0469 (17)0.0017 (11)
O40.134 (3)0.0605 (16)0.0378 (14)0.0012 (16)0.0300 (15)0.0190 (12)
O50.0908 (18)0.0584 (14)0.0373 (12)0.0089 (13)0.0296 (12)0.0078 (10)
O60.0739 (16)0.0509 (13)0.0378 (12)0.0099 (12)0.0164 (11)0.0167 (10)
C10.079 (2)0.062 (2)0.0426 (18)0.0330 (19)0.0057 (16)0.0096 (15)
C20.080 (2)0.070 (2)0.0342 (16)0.031 (2)0.0124 (16)0.0041 (15)
C30.0368 (14)0.0379 (14)0.0349 (14)0.0133 (11)0.0098 (11)0.0064 (11)
C40.0340 (13)0.0358 (13)0.0325 (13)0.0136 (11)0.0119 (10)0.0013 (11)
C50.0299 (12)0.0326 (13)0.0347 (13)0.0126 (10)0.0096 (10)0.0013 (10)
C60.0269 (11)0.0324 (13)0.0293 (12)0.0119 (10)0.0048 (9)0.0027 (10)
C70.0245 (11)0.0384 (13)0.0262 (12)0.0125 (10)0.0030 (9)0.0115 (10)
C80.0293 (12)0.0380 (13)0.0196 (11)0.0118 (10)0.0043 (9)0.0084 (9)
C90.0338 (12)0.0339 (13)0.0230 (12)0.0159 (10)0.0078 (9)0.0014 (9)
C100.0545 (17)0.0317 (14)0.0334 (14)0.0084 (12)0.0131 (12)0.0012 (11)
C110.073 (2)0.0389 (15)0.0278 (14)0.0164 (14)0.0216 (14)0.0056 (11)
C120.0598 (18)0.0361 (14)0.0244 (13)0.0191 (13)0.0090 (12)0.0002 (10)
C130.0513 (16)0.0346 (14)0.0305 (14)0.0062 (12)0.0087 (12)0.0059 (11)
C140.0418 (14)0.0380 (14)0.0272 (13)0.0064 (12)0.0120 (11)0.0017 (11)
C150.084 (2)0.0416 (17)0.0279 (14)0.0212 (16)0.0164 (15)0.0029 (12)
C160.0273 (11)0.0394 (14)0.0265 (12)0.0173 (10)0.0042 (9)0.0063 (10)
C170.0450 (15)0.0324 (13)0.0359 (14)0.0097 (12)0.0112 (12)0.0042 (11)
C180.0517 (17)0.0382 (15)0.0339 (14)0.0122 (13)0.0184 (12)0.0015 (11)
C190.0401 (14)0.0378 (14)0.0255 (12)0.0190 (11)0.0065 (10)0.0040 (10)
C200.0331 (13)0.0381 (14)0.0329 (14)0.0104 (11)0.0047 (10)0.0073 (11)
C210.0302 (12)0.0428 (15)0.0289 (13)0.0124 (11)0.0103 (10)0.0042 (11)
C220.0544 (17)0.0431 (16)0.0271 (13)0.0200 (13)0.0090 (12)0.0040 (11)
Geometric parameters (Å, º) top
S1—C31.755 (3)C2—H2A0.9700
S1—C51.763 (3)C2—H2B0.9700
S2—C41.762 (3)C3—C41.323 (4)
S2—C51.763 (3)C5—C61.336 (3)
S3—C71.761 (3)C7—C81.346 (4)
S3—C61.769 (2)C9—C141.386 (4)
S4—C61.759 (3)C9—C101.391 (3)
S4—C81.762 (2)C10—C111.392 (4)
S5—C71.757 (2)C10—H10A0.9300
S5—C161.777 (2)C11—C121.387 (4)
S6—C81.759 (3)C11—H11A0.9300
S6—C91.767 (2)C12—C131.388 (4)
O1—C41.375 (3)C12—C151.486 (4)
O1—C11.436 (4)C13—C141.387 (4)
O1W—H1WA0.8522C13—H13A0.9300
O1W—H1WB0.8483C14—H14A0.9300
O2—C31.371 (3)C16—C211.385 (4)
O2—C21.455 (4)C16—C171.388 (4)
O3—C151.260 (4)C17—C181.387 (4)
O4—C151.258 (4)C17—H17A0.9300
O4—H40.863 (19)C18—C191.387 (4)
O5—C221.261 (3)C18—H18A0.9300
O6—C221.263 (4)C19—C201.397 (4)
O6—H60.843 (18)C19—C221.483 (3)
C1—C21.485 (5)C20—C211.383 (3)
C1—H1A0.9700C20—H20A0.9300
C1—H1B0.9700C21—H21A0.9300
C3—S1—C591.86 (12)C14—C9—S6123.81 (19)
C4—S2—C591.46 (12)C10—C9—S6116.2 (2)
C7—S3—C693.69 (12)C9—C10—C11119.9 (3)
C6—S4—C893.76 (12)C9—C10—H10A120.1
C7—S5—C16103.60 (11)C11—C10—H10A120.1
C8—S6—C9103.42 (11)C12—C11—C10120.1 (2)
C4—O1—C1110.0 (2)C12—C11—H11A120.0
H1WA—O1W—H1WB107.7C10—C11—H11A120.0
C3—O2—C2109.7 (2)C11—C12—C13119.8 (2)
C15—O4—H4116 (3)C11—C12—C15120.2 (3)
C22—O6—H6115 (3)C13—C12—C15120.0 (3)
O1—C1—C2112.2 (3)C14—C13—C12120.3 (3)
O1—C1—H1A109.2C14—C13—H13A119.8
C2—C1—H1A109.2C12—C13—H13A119.8
O1—C1—H1B109.2C9—C14—C13119.9 (2)
C2—C1—H1B109.2C9—C14—H14A120.0
H1A—C1—H1B107.9C13—C14—H14A120.0
O2—C2—C1111.8 (3)O4—C15—O3122.8 (3)
O2—C2—H2A109.2O4—C15—C12118.2 (3)
C1—C2—H2A109.2O3—C15—C12119.0 (3)
O2—C2—H2B109.2C21—C16—C17120.1 (2)
C1—C2—H2B109.2C21—C16—S5122.88 (19)
H2A—C2—H2B107.9C17—C16—S5116.8 (2)
C4—C3—O2125.3 (3)C18—C17—C16119.9 (2)
C4—C3—S1118.0 (2)C18—C17—H17A120.0
O2—C3—S1116.7 (2)C16—C17—H17A120.0
C3—C4—O1125.0 (2)C19—C18—C17120.1 (2)
C3—C4—S2118.2 (2)C19—C18—H18A120.0
O1—C4—S2116.75 (19)C17—C18—H18A120.0
C6—C5—S2123.0 (2)C18—C19—C20119.8 (2)
C6—C5—S1121.6 (2)C18—C19—C22119.8 (2)
S2—C5—S1115.37 (14)C20—C19—C22120.4 (2)
C5—C6—S4123.8 (2)C21—C20—C19119.9 (2)
C5—C6—S3123.1 (2)C21—C20—H20A120.1
S4—C6—S3112.94 (13)C19—C20—H20A120.1
C8—C7—S5125.7 (2)C20—C21—C16120.2 (2)
C8—C7—S3116.87 (18)C20—C21—H21A119.9
S5—C7—S3117.18 (15)C16—C21—H21A119.9
C7—C8—S6126.18 (19)O5—C22—O6123.6 (3)
C7—C8—S4117.00 (19)O5—C22—C19118.5 (3)
S6—C8—S4116.78 (15)O6—C22—C19118.0 (2)
C14—C9—C10120.0 (2)
C4—O1—C1—C243.5 (4)C9—S6—C8—S4100.45 (15)
C3—O2—C2—C142.7 (4)C6—S4—C8—C714.3 (2)
O1—C1—C2—O260.5 (4)C6—S4—C8—S6163.43 (14)
C2—O2—C3—C414.2 (4)C8—S6—C9—C1418.4 (3)
C2—O2—C3—S1164.1 (2)C8—S6—C9—C10162.2 (2)
C5—S1—C3—C412.6 (2)C14—C9—C10—C112.3 (4)
C5—S1—C3—O2169.0 (2)S6—C9—C10—C11178.3 (2)
O2—C3—C4—O10.4 (4)C9—C10—C11—C120.5 (5)
S1—C3—C4—O1178.6 (2)C10—C11—C12—C132.0 (5)
O2—C3—C4—S2177.6 (2)C10—C11—C12—C15175.3 (3)
S1—C3—C4—S20.7 (3)C11—C12—C13—C142.8 (5)
C1—O1—C4—C314.8 (4)C15—C12—C13—C14174.6 (3)
C1—O1—C4—S2167.3 (2)C10—C9—C14—C131.5 (4)
C5—S2—C4—C313.6 (2)S6—C9—C14—C13179.1 (2)
C5—S2—C4—O1168.3 (2)C12—C13—C14—C91.0 (5)
C4—S2—C5—C6155.6 (2)C11—C12—C15—O4179.9 (4)
C4—S2—C5—S122.02 (16)C13—C12—C15—O42.7 (5)
C3—S1—C5—C6155.8 (2)C11—C12—C15—O31.9 (5)
C3—S1—C5—S221.84 (17)C13—C12—C15—O3175.5 (3)
S2—C5—C6—S41.2 (3)C7—S5—C16—C2147.9 (2)
S1—C5—C6—S4176.19 (14)C7—S5—C16—C17137.0 (2)
S2—C5—C6—S3176.14 (14)C21—C16—C17—C180.8 (4)
S1—C5—C6—S31.3 (3)S5—C16—C17—C18176.0 (2)
C8—S4—C6—C5152.2 (2)C16—C17—C18—C190.3 (5)
C8—S4—C6—S323.12 (15)C17—C18—C19—C200.3 (4)
C7—S3—C6—C5152.4 (2)C17—C18—C19—C22179.2 (3)
C7—S3—C6—S423.01 (15)C18—C19—C20—C210.5 (4)
C16—S5—C7—C883.1 (2)C22—C19—C20—C21179.5 (3)
C16—S5—C7—S3102.52 (15)C19—C20—C21—C160.1 (4)
C6—S3—C7—C813.8 (2)C17—C16—C21—C200.6 (4)
C6—S3—C7—S5161.13 (14)S5—C16—C21—C20175.5 (2)
S5—C7—C8—S62.8 (3)C18—C19—C22—O51.7 (4)
S3—C7—C8—S6177.20 (13)C20—C19—C22—O5179.4 (3)
S5—C7—C8—S4174.74 (13)C18—C19—C22—O6177.6 (3)
S3—C7—C8—S40.3 (3)C20—C19—C22—O61.4 (4)
C9—S6—C8—C782.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.86 (2)1.78 (2)2.629 (3)165 (5)
O6—H6···O3i0.84 (2)1.78 (2)2.624 (3)177 (4)
O1W—H1WA···O5ii0.852.383.18 (2)155
O1W—H1WB···O3ii0.852.373.17 (2)158
C13—H13A···O2iii0.932.673.570 (4)163
C20—H20A···O1iii0.932.653.552 (4)164
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z+1; (iii) x, y, z+1.
 

Funding information

This work was supported by Zhejiang Province Planted Talent Plan, Ningbo Natural Science Foundation 2017 A610013.

References

First citationBruker (2014). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanvert, D., Sallé, M., Zhang, G. & Zhang, D. (2009). Chem. Commun. pp. 2245–2269.  Google Scholar
First citationHoriuchi, S., Yamochi, H., Saito, G., Sakaguchi, K. & Kusunoki, M. (1996). J. Am. Chem. Soc. 118, 8604–8622.  CSD CrossRef CAS Web of Science Google Scholar
First citationMézière, C., Fourmigué, M. & Fabre, J.-M. (2000). C. R. Acad. Sci. Ser. IIc Chim. 3, 387–395.  Google Scholar
First citationOta, A., Yamochi, H. & Saito, G. (2002). J. Mater. Chem. 12, 2600–2602.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, J., Lu, X., Shao, J., Cui, Z., Shao, Y., Jiang, G., Yu, W. & Shao, X. (2013). RSC Adv. 3, 10193–10196.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, X., Wang, G., Shen, L., Fang, J. & Gao, H. (2012). Synth. Met. 162, 900–903.  Web of Science CrossRef CAS Google Scholar
First citationZhang, X., Lu, X., Sun, J., Zhao, Y. & Shao, X. (2015). CrystEngComm, 17, 4110–4116.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds