research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

KInAs2O7, a new diarsenate with the TlInAs2O7 structure type

CROSSMARK_Color_square_no_text.svg

aTU Wien, Institute for Chemical Technology and Analytics, Division of Structural Chemistry, Getreidemarkt 9/164-SC, 1060 Wien, Austria, and bNaturhistorisches Museum Wien, Burgring 7, 1010 Wien, and Universität Wien, Institut für Mineralogie und Kristallographie, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

Edited by S. Parkin, University of Kentucky, USA (Received 11 July 2017; accepted 1 August 2017; online 4 August 2017)

Potassium indium diarsenate(V) was grown under mild hydro­thermal conditions (T = 493 K, 7 d) at a pH value of about 1. It adopts the TlInAs2O7 structure type (P-1, Z = 4) and is closely related to the KAlP2O7 (P21/c) and RbAlAs2O7 (P-1) structure types. The framework topology of KInAs2O7 is built of two symmetrically non-equivalent As2O7 groups which share corners with InO6 octa­hedra. The K atoms are located in channels extending along [010].

1. Chemical context

Metal arsenates often form tetra­hedral–octa­hedral framework structures exhibiting potentially inter­esting properties, such as ion conductivity, ion exchange and catalytic properties (Masquelier et al., 1990[Masquelier, C., d'Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584-1587.], 1994a[Masquelier, C., d'Yvoire, F., Bretey, E., Berthet, P. & Peytour-Chansac, C. (1994a). Solid State Ionics, 67, 183-189.],b[Masquelier, C., d'Yvoire, F. & Collin, G. (1994b). Solid State Ionic Materials: Proceedings of the 4th Asian Conference on Solid State Ionics, 4th, pp. 167-172.], 1995[Masquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33-42.], 1996[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, pp. 188-191.], 1998[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228-234.]; Mesa et al., 2000[Mesa, J. L., Goñi, A., Brandl, A. L., Moreno, N. O., Barberis, G. E. & Rojo, T. (2000). J. Mater. Chem. 10, 2779-2785.]; Ouerfelli et al., 2007a[Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224-1229.], 2008[Ouerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41-i44.]; Pintard-Scrépel et al., 1983[Pintard-Scrépel, M., d'Yvoire, F. & Bretey, E. (1983). Stud. Inorg. Chem. 3, 215-218.]; Rousse et al., 2013[Rousse, G., Rodriguez-Carvajal, J., Wurm, C. & Masquelier, C. (2013). Phys. Rev. B Condens. Matter Mater. Phys. 88, 214433/214431-214433/214439.]). During a detailed study of the system M+M3+–As–O–(H) by hydro­thermal syntheses, a large variety of new compounds and structure types were found (Kolitsch, 2004[Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.]; Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]; Schwendtner & Kolitsch, 2004a[Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.],b[Schwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84-i88.], 2005[Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.], 2007a[Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.],b[Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.],c[Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.],d[Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249-263.], 2017a[Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.],b[Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 785-790.]). KInAs2O7 is another example of a microporous metal diarsenate compound forming a tetra­hedral–octa­hedral framework structure.

M+M3+As2O7 compounds crystallize in six known structure types (for a short review, see: Schwendtner & Kolitsch, 2017b[Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 785-790.]), some of these diarsenates being also isotypic to diphosphates or disilicates. For several of the structures, the M+ cation is the relevant factor that determines which structure type is adopted, while a wide range of different M3+ cations are usually accepted. For example, the CaZrSi2O7 structure type (mineral gittinsite; Roelofsen-Ahl & Peterson, 1989[Roelofsen-Ahl, J. N. & Peterson, R. C. (1989). Can. Mineral. 27, 703-708.]) is formed by all Li members (and one Na member), with M3+ cations ranging from M = Al, Ga, Fe to Sc (Schwendtner & Kolitsch, 2007d[Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249-263.]; Wang et al., 1994[Wang, S.-L., Wu, C.-H. & Liu, S.-N. (1994). J. Solid State Chem. 113, 37-40.]). The inter­mediate-sized M+ cations Ag+ and Na+ generally form either of two structure types, the NaInAs2O7 type (Belam et al., 1997[Belam, W., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 5-7.]) or the NaAlAs2O7 type (Driss & Jouini, 1994[Driss, A. & Jouini, T. (1994). J. Solid State Chem. 112, 277-280.]). While the former is only known from the comparatively large M3+ cation In3+ (Belam et al., 1997[Belam, W., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 5-7.], ICDD-PDF 059-0058; Wohlschlaeger et al., 2007[Wohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2007). University of Vienna, Austria & ICDD Grant-in-Aid.]), the latter is adopted by the smaller M3+ representatives (M = Al, Fe, Ga) (Ouerfelli et al., 2004[Ouerfelli, N., Zid, M. F., Jouini, T. & Touati, A. M. (2004). J. Soc. Chim. Tunis. 6, 86-95.]; Schwendtner & Kolitsch, 2017b[Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 785-790.]). The larger M+ cations (M = K, Rb, Cs, Tl, NH4) favour three structure types, the stabilities of which seem to be determined mainly by the M3+ cations. While the RbAlAs2O7 type (Boughzala et al., 1993[Boughzala, H., Driss, A. & Jouini, T. (1993). Acta Cryst. C49, 425-427.]) is favoured by the smaller cations Al3+, Ga3+, Cr3+ and Fe3+ (Boughzala & Jouini, 1992[Boughzala, H. & Jouini, T. (1992). C. R. Acad. Sci. II, 314, 1419-1422.], 1995[Boughzala, H. & Jouini, T. (1995). Acta Cryst. C51, 179-181.]; Bouhassine & Boughzala, 2017[Bouhassine, M. A. & Boughzala, H. (2017). Acta Cryst. E73, 345-348.]; Lin & Lii, 1996[Lin, K.-J. & Lii, K.-H. (1996). Acta Cryst. C52, 2387-2389.]; Siegfried et al., 2004[Siegfried, A. M., Flowers, A. T., Wang, L. & Hwu, S.-J. (2004). 56th Southeast Regional Meeting of the American Chemical Society, p. 518. Research Triangle Park, NC, USA: American Chemical Society.]; Ouerfelli et al., 2007a[Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224-1229.]), the KAlP2O7 type (Ng & Calvo, 1973[Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613-2620.]), which is extremely common among M+M3+P2O7 compounds, is favoured by the somewhat larger Sc3+ cation (Baran et al., 2006[Baran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335-1340.]; Kolitsch, 2004[Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.]; Schwendtner & Kolitsch, 2004a[Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.]) and the CsCr member CsCrAs2O7 (Bouhassine & Boughzala, 2015[Bouhassine, M. A. & Boughzala, H. (2015). Acta Cryst. E71, 636-639.]). The third type, TlInAs2O7, is very closely related to the two former types and favoured by the large In3+ cation (Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]), with also one Fe member (KFeAs2O7; Ouerfelli et al., 2007b[Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942-2949.]). The title compound, KInAs2O7, is a new member of the latter structure type.

2. Structural commentary

KInAs2O7 crystallizes in space group P[\overline{1}] and adopts the TlInAs2O7 structure type (Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]), which is also known for RbInAs2O7 and NH4InAs2O7 (Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]) and KFeAs2O7 (Ouerfelli et al., 2007b[Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942-2949.]) (see comparison in Table 1[link]).

Table 1
Comparison of the unit-cell parameters of diarsenates isotypic with KInAs2O7 and closely related structure types

Compound a (Å) b (Å) c (Å) α (°) β (°) γ (°) V3)
TlInAs2O7 type1              
KInAs2O7 7.712 (2) 8.554 (2) 10.461 (2) 88.58 (3) 89.82 (3) 73.97 (3) 663.1 (3)
RbInAs2O71 7.845 (2) 8.678 (2) 10.492 (2) 88.85 (3) 89.93 (3) 74.38 (3) 687.5 (3)
TlInAs2O71 7.827 (2) 8.625 (2) 10.494 (2) 88.83 (3) 89.98 (3) 74.31 (3) 682.1 (3)
(NH4)InAs2O71 7.858 (2) 8.649 (2) 10.515 (2) 88.96 (3) 89.94 (3) 74.34 (3) 688.0 (3)
KFeAs2O72 7.662 (1) 8.402 (2) 10.100 (3) 89.58 (3) 89.74 (2) 73.61 (2) 623.8 (3)
KAlP2O7 type3              
RbScAs2O74 7.837 (2) 10.625 (2) 8.778 (2) 90.00 106.45 (3) 90.00 701.0 (3)
TlScAs2O75 7.814 (2) 10.613 (2) 8.726 (2) 90.00 106.31 (3) 90.00 694.5 (3)
CsCrAs2O76 7.908 (1) 10.0806 (10) 8.6371 (10) 90.00 105.841 (1) 90.00 662.38 (13)
(NH4)ScAs2O77 7.842 (2) 10.656 (2) 8.765 (2) 90.00 106.81 (3) 90.00 701.1 (3)
RbAlAs2O7 type8              
KGaAs2O79 6.271 (1) 6.376 (1) 8.169 (1) 96.45 (1) 103.86 (1) 103.87 (1) 302.84 (8)
KAlAs2O710 6.192 (4) 6.297 (3) 8.106 (1) 96.600 (8) 104.517 (8) 102.864 (7) 293.4
RbAlAs2O78 6.241 (5) 6.34 (2) 8.233 (5) 96.7 (1) 103.89 (7) 102.6 (1) 303.9
CsAlAs2O711 6.494 (8) 6.709 (7) 8.360 (8) 97.07 (9) 103.23 (9) 102.62 (8) 340.4
TlAlAs2O711 6.267 (4) 6.324 (4) 8.168 (8) 97.07 (7) 103.83 (8) 102.99 (8) 300.9
KCr0.25Al0.75 As2O712 6.243 (3) 6.349 (3) 8.153 (4) 96.57 (2) 104.45 (3) 103.08 (4) 299.8 (8)
TlFe0.22Al0.78As2O713 6.296 (2) 6.397 (2) 8.242 (2) 96.74 (2) 103.78 (2) 102.99 (3) 309.0 (2)
KCrAs2O714 6.316 (1) 6.420 (1) 8.179 (2) 96.29 (3) 104.27 (3) 103.66 (3) 307.4 (1)
Notes: (1) Schwendtner (2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]), P[\overline{1}], Z = 4; (2) Ouerfelli et al. (2007b[Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942-2949.]), transformed to reduced cell; (3) Ng & Calvo (1973[Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613-2620.]), P21/c, Z = 4; (4) Schwendtner & Kolitsch (2004a[Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.]); (5) Baran et al. (2006[Baran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335-1340.]); (6) Bouhassine & Boughzala (2015[Bouhassine, M. A. & Boughzala, H. (2015). Acta Cryst. E71, 636-639.]); (7) Kolitsch (2004[Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.]); (8) Boughzala et al. (1993[Boughzala, H., Driss, A. & Jouini, T. (1993). Acta Cryst. C49, 425-427.]), P[\overline{1}], Z = 2, transformed to reduced cell; (9) Lin & Lii (1996[Lin, K.-J. & Lii, K.-H. (1996). Acta Cryst. C52, 2387-2389.]); (10) Boughzala & Jouini (1995[Boughzala, H. & Jouini, T. (1995). Acta Cryst. C51, 179-181.]); (11) Boughzala & Jouini (1992[Boughzala, H. & Jouini, T. (1992). C. R. Acad. Sci. II, 314, 1419-1422.]), transformed to reduced cell; (12) Bouhassine & Boughzala (2017[Bouhassine, M. A. & Boughzala, H. (2017). Acta Cryst. E73, 345-348.]); (13) Ouerfelli et al. (2007a[Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224-1229.]); (14) Siegfried et al. (2004[Siegfried, A. M., Flowers, A. T., Wang, L. & Hwu, S.-J. (2004). 56th Southeast Regional Meeting of the American Chemical Society, p. 518. Research Triangle Park, NC, USA: American Chemical Society.]).

The asymmetric unit contains 22 atoms, all of which lie on general positions. Each InO6 octa­hedron shares corners with five different AsO4 tetra­hedra, thus creating a framework structure. Two of these connections are to two AsO4 tetra­hedra of the same As2O7 group (see Fig. 1[link]). The K+ cations are situated in small channels extending along [010] (see Fig. 2[link]) and have irregular coordination spheres, with ten (K1) and seven (K2) O atoms within 3.5 Å.

[Figure 1]
Figure 1
The principal building unit of KInAs2O7, shown as displacement ellipsoids at the 70% probability level. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, y + 1, z; (iii) x, y − 1, z; (iv) −x + 1, −y + 1, −z; (v) −x + 2, −y + 1, −z + 1; (vi) −x + 2, −y + 1, −z.]
[Figure 2]
Figure 2
The framework structure of KInAs2O7, viewed along [010]. The K+ cations are hosted in the channels extending along [010]. The unit cell is outlined.

The AsO4 tetra­hedra are strongly distorted, with bond-length distortion (Brown & Shannon, 1973[Brown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266-282.]) ranging from 0.0020 to 0.0024, while the average As—O distances (1.685, 1.687, 1.689 and 1.690 Å for As1–4, respectively, see Table 2[link]) are typical for As—O bond lengths in diarsenates [average = As—O 1.688 (6) Å; Schwendtner & Kolitsch, 2007d[Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249-263.]]. In addition, the elongated As—O bond lengths to the bridging O atoms (Table 2[link]), ranging from 1.7485 (16) to 1.7607 (16) Å, are typical for diarsenates [average As—Obridge distance is 1.755 (17); Schwendtner & Kolitsch, 2007d[Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249-263.]]. The As—Obridge—As angles are 120.04 (9) and 118.77 (9)°, and therefore very similar to those of the related TlIn, RbIn and NH4In compounds (Schwendtner 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]), but are smaller than the grand mean value in diarsenates, 124 (5)° (Schwendtner & Kolitsch, 2007d[Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249-263.]).

Table 2
Selected geometric parameters (Å, °)

K1—O6i 2.7321 (18) In2—O9iv 2.1243 (16)
K1—O2ii 2.7836 (18) In2—O13viii 2.1373 (16)
K1—O8 2.8150 (19) In2—O3 2.1419 (16)
K1—O6 2.892 (2) In2—O8 2.1551 (17)
K1—O13ii 3.060 (2) In2—O7 2.1560 (16)
K1—O14ii 3.109 (2) In2—O12iii 2.1666 (17)
K1—O10 3.1604 (19) As1—O1 1.6542 (17)
K1—O1 3.225 (2) As1—O2 1.6609 (16)
K1—O7 3.289 (2) As1—O3 1.6761 (16)
K1—O1i 3.405 (2) As1—O4 1.7485 (16)
K2—O10iii 2.6849 (19) As2—O5 1.6592 (16)
K2—O9iv 2.7016 (18) As2—O7 1.6647 (16)
K2—O3ii 2.7645 (19) As2—O6 1.6677 (17)
K2—O7 2.8609 (19) As2—O4 1.7549 (16)
K2—O12iv 2.930 (2) As3—O8 1.6550 (15)
K2—O9iii 3.244 (2) As3—O9 1.6708 (16)
K2—O5v 3.4261 (18) As3—O10 1.6763 (16)
In1—O5vi 2.0946 (17) As3—O11 1.7538 (16)
In1—O1 2.1036 (17) As4—O12 1.6579 (17)
In1—O14 2.1502 (17) As4—O13 1.6697 (16)
In1—O6i 2.1618 (16) As4—O14 1.6727 (16)
In1—O10 2.1643 (16) As4—O11 1.7607 (16)
In1—O2vii 2.1737 (16)    
       
As1—O4—As2 120.04 (9) As3—O11—As4 118.77 (9)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z; (v) -x+1, -y, -z+1; (vi) x, y+1, z; (vii) -x+2, -y+1, -z+1; (viii) -x+2, -y+1, -z.

The In1O6 octa­hedron is considerably more distorted than the In2-centred octa­hedron. In fact, the In1O6 octa­hedron shows the strongest distortion among all of the isotypic In compounds (Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]) that are so far known [bond-length distortion (Brown & Shannon, 1973[Brown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266-282.]): 0.0012 (In1), 0.0003 (In2); bond-angle distortion (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]): 66.93 (In1), 20.69 (In2)].

The bond-valence sums, calculated using recently refined parameters (Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]), amount to 0.94/0.88 (K1/K2), 3.01/2.96 (In1/In2), 5.05/5.03/4.99/4.98 (As1/As2/As3/As4) and 2.00/1.97/1.95/2.08/1.94/1.98/1.99/2.00/2.07/2.02/2.04/1.94/1.89/1.86 (O1–O14) valence units and are thus reasonably close to the theoretical values. As expected, the bridging O4 and O11 ligands are slightly overbonded.

The structure shares a practically identical connectivity with two related structure types, the main difference being differences in space-group symmetry and distortion of the structures. It is most closely related to that of KAlP2O7 (Ng & Calvo, 1973[Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613-2620.]), with many of the corresponding Sc-members crystallizing in this structure type. The main difference is a higher space-group symmetry (P21/c) of the KAlP2O7 type, which is lost in the In compounds due to the larger ionic radius of In3+ and a greater distortion of the structure. The second closely related structure type is that of RbAlAs2O7 (Boughzala et al., 1993[Boughzala, H., Driss, A. & Jouini, T. (1993). Acta Cryst. C49, 425-427.]). Many of the arsenates with large M+ and small M3+ cations crystallize in this structure type, which is also triclinic (P[\overline{1}]), but actually shows higher symmetry, as Z is halved and the two distinct positions for the As2O7 groups, M3+O6 and M+ present in the KAlP2O7 and TlInAs2O7 structure types are equivalent in the RbAlAs2O7 structure type. A more detailed comparison of these three related structure types is given in Schwendtner (2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]).

3. Synthesis and crystallization

KInAs2O7 was synthesized under mild hydro­thermal conditions at 493 K (7 d, autogeneous pressure, slow furnace cooling) using a Teflon-lined stainless steel autoclave with an approximate filling volume of 2 cm3. Reagent-grade K2CO3, In2O3 and H3AsO4·5H2O were used as starting reagents in approximate volume ratios of M+:M3+:As of 1:1:2. The vessel was filled with distilled water to about 70% of its inner volume. Initial and final pH was about 1. The reaction products were thoroughly washed with distilled water, filtered and dried at room temperature. KInAs2O7 grew as thick tabular crystals and was accompanied by about 5 vol.% of K(H2O)In(H1.5AsO4)2(H2AsO4) (Schwendtner & Kolitsch, 2007c[Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.]).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula KInAs2O7
Mr 415.76
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.712 (2), 8.554 (2), 10.461 (2)
α, β, γ (°) 88.58 (3), 89.82 (3), 73.97 (3)
V3) 663.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 14.09
Crystal size (mm) 0.15 × 0.10 × 0.09
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.226, 0.364
No. of measured, independent and observed [I > 2σ(I)] reflections 11497, 5787, 5467
Rint 0.017
(sin θ/λ)max−1) 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.043, 1.16
No. of reflections 5787
No. of parameters 200
Δρmax, Δρmin (e Å−3) 0.91, −0.80
Computer programs: COLLECT (Nonius, 2003[Nonius (2003). COLLECT.. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The largest residual electron densities in the final difference-Fourier map are below 1 e Å−3 and are located close to the In atoms.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2003); cell refinement: SCALEPACK (Otwinowski et al., 2003); data reduction: DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Potassium indium diarsenate(V) top
Crystal data top
KInAs2O7Z = 4
Mr = 415.76F(000) = 760
Triclinic, P1Dx = 4.165 Mg m3
a = 7.712 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.554 (2) ÅCell parameters from 5760 reflections
c = 10.461 (2) Åθ = 2.5–35.0°
α = 88.58 (3)°µ = 14.09 mm1
β = 89.82 (3)°T = 293 K
γ = 73.97 (3)°Thick tabular, colourless
V = 663.1 (3) Å30.15 × 0.10 × 0.09 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
5467 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
φ and ω scansθmax = 35.0°, θmin = 2.5°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 1212
Tmin = 0.226, Tmax = 0.364k = 1313
11497 measured reflectionsl = 1616
5787 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0098P)2 + 1.0091P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max = 0.002
S = 1.16Δρmax = 0.91 e Å3
5787 reflectionsΔρmin = 0.80 e Å3
200 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00818 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.34522 (8)0.53997 (7)0.32187 (5)0.02034 (10)
K20.31660 (7)0.05934 (7)0.17988 (6)0.02080 (10)
In10.73419 (2)0.73879 (2)0.40711 (2)0.00661 (3)
In20.73416 (2)0.23051 (2)0.10125 (2)0.00664 (3)
As10.94019 (3)0.32576 (2)0.35376 (2)0.00635 (4)
As20.66173 (3)0.14940 (2)0.42785 (2)0.00643 (4)
As30.62526 (3)0.66936 (2)0.10396 (2)0.00657 (4)
As40.95282 (3)0.79448 (2)0.13500 (2)0.00698 (4)
O10.7706 (2)0.49230 (19)0.36618 (17)0.0159 (3)
O21.1358 (2)0.3418 (2)0.40953 (15)0.0119 (3)
O30.9650 (2)0.2482 (2)0.20709 (14)0.0113 (3)
O40.8725 (2)0.1851 (2)0.45195 (15)0.0118 (3)
O50.6925 (2)0.03518 (19)0.49288 (15)0.0126 (3)
O60.5122 (2)0.29000 (18)0.50933 (15)0.0110 (3)
O70.6078 (2)0.1721 (2)0.27322 (14)0.0140 (3)
O80.5977 (2)0.48491 (18)0.12146 (15)0.0115 (3)
O90.5133 (2)0.78072 (19)0.01871 (14)0.0114 (3)
O100.5710 (2)0.78104 (19)0.23508 (14)0.0106 (3)
O110.8537 (2)0.65005 (19)0.07271 (15)0.0116 (3)
O120.8338 (2)0.97121 (19)0.07213 (16)0.0149 (3)
O131.1666 (2)0.7361 (2)0.08550 (15)0.0118 (3)
O140.9563 (2)0.7698 (2)0.29418 (15)0.0151 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0218 (2)0.0215 (2)0.0207 (2)0.0113 (2)0.00072 (19)0.00221 (18)
K20.0139 (2)0.0180 (2)0.0283 (3)0.00121 (18)0.00082 (19)0.00371 (19)
In10.00685 (6)0.00706 (6)0.00621 (5)0.00241 (4)0.00060 (4)0.00022 (4)
In20.00646 (6)0.00762 (6)0.00602 (5)0.00223 (4)0.00010 (4)0.00027 (4)
As10.00562 (8)0.00642 (8)0.00720 (8)0.00194 (6)0.00088 (6)0.00041 (6)
As20.00676 (8)0.00649 (8)0.00648 (8)0.00255 (6)0.00150 (6)0.00048 (6)
As30.00675 (8)0.00614 (8)0.00705 (8)0.00214 (6)0.00117 (6)0.00007 (6)
As40.00620 (8)0.00841 (8)0.00674 (8)0.00270 (7)0.00132 (6)0.00005 (6)
O10.0121 (7)0.0076 (6)0.0253 (8)0.0021 (5)0.0034 (6)0.0053 (6)
O20.0096 (6)0.0171 (7)0.0110 (6)0.0072 (6)0.0046 (5)0.0047 (5)
O30.0088 (6)0.0177 (7)0.0075 (6)0.0037 (5)0.0004 (5)0.0050 (5)
O40.0083 (6)0.0151 (7)0.0138 (7)0.0067 (5)0.0023 (5)0.0052 (5)
O50.0165 (7)0.0069 (6)0.0148 (7)0.0040 (5)0.0026 (6)0.0002 (5)
O60.0095 (6)0.0095 (6)0.0146 (7)0.0035 (5)0.0051 (5)0.0035 (5)
O70.0126 (7)0.0258 (8)0.0061 (6)0.0096 (6)0.0002 (5)0.0017 (6)
O80.0129 (7)0.0067 (6)0.0156 (7)0.0041 (5)0.0011 (5)0.0003 (5)
O90.0119 (6)0.0129 (7)0.0111 (6)0.0067 (5)0.0055 (5)0.0062 (5)
O100.0113 (6)0.0100 (6)0.0087 (6)0.0003 (5)0.0021 (5)0.0022 (5)
O110.0083 (6)0.0111 (6)0.0166 (7)0.0044 (5)0.0017 (5)0.0043 (5)
O120.0167 (7)0.0070 (6)0.0189 (7)0.0004 (6)0.0004 (6)0.0010 (5)
O130.0067 (6)0.0177 (7)0.0104 (6)0.0024 (5)0.0028 (5)0.0015 (5)
O140.0111 (7)0.0298 (9)0.0069 (6)0.0100 (6)0.0011 (5)0.0010 (6)
Geometric parameters (Å, º) top
K1—O6i2.7321 (18)In1—O142.1502 (17)
K1—O2ii2.7836 (18)In1—O6i2.1618 (16)
K1—O82.8150 (19)In1—O102.1643 (16)
K1—O62.892 (2)In1—O2vii2.1737 (16)
K1—O13ii3.060 (2)In2—O9iv2.1243 (16)
K1—O14ii3.109 (2)In2—O13viii2.1373 (16)
K1—O103.1604 (19)In2—O32.1419 (16)
K1—O13.225 (2)In2—O82.1551 (17)
K1—O73.289 (2)In2—O72.1560 (16)
K1—O1i3.405 (2)In2—O12iii2.1666 (17)
K1—As33.5000 (12)As1—O11.6542 (17)
K1—As23.6985 (16)As1—O21.6609 (16)
K2—O10iii2.6849 (19)As1—O31.6761 (16)
K2—O9iv2.7016 (18)As1—O41.7485 (16)
K2—O3ii2.7645 (19)As2—O51.6592 (16)
K2—O72.8609 (19)As2—O71.6647 (16)
K2—O12iv2.930 (2)As2—O61.6677 (17)
K2—O9iii3.244 (2)As2—O41.7549 (16)
K2—O5v3.4261 (18)As3—O81.6550 (15)
K2—As3iii3.6275 (15)As3—O91.6708 (16)
K2—As1ii3.6671 (15)As3—O101.6763 (16)
K2—As3iv3.8247 (13)As3—O111.7538 (16)
K2—As4iv3.8903 (14)As4—O121.6579 (17)
K2—As23.9601 (13)As4—O131.6697 (16)
In1—O5vi2.0946 (17)As4—O141.6727 (16)
In1—O12.1036 (17)As4—O111.7607 (16)
O6i—K1—O2ii120.26 (5)O2vii—In1—K1114.30 (5)
O6i—K1—O8102.77 (5)K1i—In1—K168.45 (3)
O2ii—K1—O8128.48 (5)O9iv—In2—O13viii89.55 (6)
O6i—K1—O678.11 (5)O9iv—In2—O3172.63 (6)
O2ii—K1—O663.78 (5)O13viii—In2—O397.43 (6)
O8—K1—O6102.93 (5)O9iv—In2—O884.32 (7)
O6i—K1—O13ii114.87 (5)O13viii—In2—O893.94 (7)
O2ii—K1—O13ii109.47 (5)O3—In2—O892.81 (7)
O8—K1—O13ii71.53 (5)O9iv—In2—O781.95 (6)
O6—K1—O13ii166.51 (5)O13viii—In2—O7170.02 (6)
O6i—K1—O14ii100.17 (6)O3—In2—O791.30 (6)
O2ii—K1—O14ii77.84 (5)O8—In2—O790.42 (7)
O8—K1—O14ii123.20 (5)O9iv—In2—O12iii87.43 (7)
O6—K1—O14ii132.49 (5)O13viii—In2—O12iii87.02 (7)
O13ii—K1—O14ii51.67 (5)O3—In2—O12iii95.25 (7)
O6i—K1—O1057.03 (5)O8—In2—O12iii171.69 (6)
O2ii—K1—O10176.42 (5)O7—In2—O12iii87.39 (7)
O8—K1—O1055.10 (5)O9iv—In2—K239.85 (4)
O6—K1—O10116.56 (5)O13viii—In2—K2125.79 (5)
O13ii—K1—O1070.97 (5)O3—In2—K2134.41 (5)
O14ii—K1—O10100.08 (5)O8—In2—K297.40 (5)
O6i—K1—O155.08 (5)O7—In2—K244.56 (5)
O2ii—K1—O1128.24 (5)O12iii—In2—K275.47 (5)
O8—K1—O156.90 (5)O9iv—In2—K2ix54.43 (5)
O6—K1—O165.27 (5)O13viii—In2—K2ix59.83 (5)
O13ii—K1—O1118.16 (5)O3—In2—K2ix131.59 (5)
O14ii—K1—O1149.48 (5)O8—In2—K2ix127.99 (5)
O10—K1—O152.91 (5)O7—In2—K2ix110.57 (5)
O6i—K1—O7113.18 (5)O12iii—In2—K2ix46.10 (5)
O2ii—K1—O777.31 (5)K2—In2—K2ix71.84 (3)
O8—K1—O759.57 (5)O9iv—In2—K176.25 (5)
O6—K1—O751.60 (5)O13viii—In2—K1130.97 (5)
O13ii—K1—O7116.67 (5)O3—In2—K197.27 (5)
O14ii—K1—O7145.31 (5)O8—In2—K138.84 (5)
O10—K1—O7105.77 (5)O7—In2—K151.90 (5)
O1—K1—O764.43 (5)O12iii—In2—K1137.44 (5)
O6i—K1—O1i64.20 (5)K2—In2—K166.80 (2)
O2ii—K1—O1i56.14 (5)K2ix—In2—K1130.47 (2)
O8—K1—O1i152.21 (5)O1—As1—O2114.49 (9)
O6—K1—O1i51.80 (5)O1—As1—O3114.04 (9)
O13ii—K1—O1i135.76 (5)O2—As1—O3110.79 (8)
O14ii—K1—O1i84.23 (5)O1—As1—O4102.79 (9)
O10—K1—O1i120.95 (5)O2—As1—O4107.73 (8)
O1—K1—O1i97.62 (5)O3—As1—O4106.13 (8)
O7—K1—O1i101.37 (5)O1—As1—K2x152.44 (7)
O6i—K1—As383.20 (4)O2—As1—K2x69.60 (6)
O2ii—K1—As3154.87 (4)O3—As1—K2x45.51 (6)
O8—K1—As327.77 (3)O4—As1—K2x101.41 (6)
O6—K1—As3118.04 (4)O5—As2—O7116.83 (9)
O13ii—K1—As362.61 (4)O5—As2—O6111.77 (8)
O14ii—K1—As3108.68 (4)O7—As2—O6109.04 (9)
O10—K1—As328.57 (3)O5—As2—O4102.19 (8)
O1—K1—As355.76 (4)O7—As2—O4109.84 (8)
O7—K1—As385.32 (4)O6—As2—O4106.52 (8)
O1i—K1—As3146.83 (4)O5—As2—K1148.49 (6)
O6i—K1—As291.93 (4)O7—As2—K162.78 (7)
O2ii—K1—As273.27 (4)O6—As2—K148.98 (6)
O8—K1—As278.71 (4)O4—As2—K1107.28 (6)
O6—K1—As225.79 (3)O5—As2—K1i111.45 (6)
O13ii—K1—As2143.34 (4)O7—As2—K1i130.87 (7)
O14ii—K1—As2150.96 (4)O6—As2—K1i40.86 (6)
O10—K1—As2108.62 (4)O4—As2—K1i66.62 (6)
O1—K1—As256.71 (4)K1—As2—K1i71.63 (3)
O7—K1—As226.75 (3)O5—As2—K289.90 (7)
O1i—K1—As277.42 (4)O7—As2—K238.85 (6)
As3—K1—As298.85 (3)O6—As2—K296.95 (6)
O10iii—K2—O9iv103.29 (6)O4—As2—K2146.96 (6)
O10iii—K2—O3ii148.68 (5)K1—As2—K271.29 (3)
O9iv—K2—O3ii108.00 (6)K1i—As2—K2136.85 (2)
O10iii—K2—O777.31 (6)O8—As3—O9115.24 (8)
O9iv—K2—O760.53 (5)O8—As3—O10113.16 (8)
O3ii—K2—O7119.83 (6)O9—As3—O10107.16 (8)
O10iii—K2—O12iv107.93 (6)O8—As3—O11108.46 (8)
O9iv—K2—O12iv75.74 (5)O9—As3—O11105.13 (8)
O3ii—K2—O12iv78.86 (6)O10—As3—O11107.11 (8)
O7—K2—O12iv135.65 (5)O8—As3—K152.42 (6)
O10iii—K2—O9iii53.02 (5)O9—As3—K1113.45 (6)
O9iv—K2—O9iii77.12 (5)O10—As3—K164.39 (6)
O3ii—K2—O9iii133.51 (5)O11—As3—K1141.33 (6)
O7—K2—O9iii103.15 (5)O8—As3—K2vi129.12 (6)
O12iv—K2—O9iii57.14 (5)O9—As3—K2vi63.41 (6)
O10iii—K2—O5v76.92 (6)O10—As3—K2vi43.92 (6)
O9iv—K2—O5v131.30 (5)O11—As3—K2vi121.20 (6)
O3ii—K2—O5v83.57 (6)K1—As3—K2vi80.29 (3)
O7—K2—O5v72.55 (5)O8—As3—K2iv135.36 (6)
O12iv—K2—O5v151.70 (5)O9—As3—K2iv37.63 (6)
O9iii—K2—O5v128.64 (5)O10—As3—K2iv109.87 (6)
O10iii—K2—As3iii25.66 (3)O11—As3—K2iv68.47 (6)
O9iv—K2—As3iii91.84 (5)K1—As3—K2iv149.98 (2)
O3ii—K2—As3iii148.57 (4)K2vi—As3—K2iv77.40 (3)
O7—K2—As3iii90.99 (5)O12—As4—O13114.01 (9)
O12iv—K2—As3iii82.93 (5)O12—As4—O14118.28 (9)
O9iii—K2—As3iii27.42 (3)O13—As4—O14107.10 (8)
O5v—K2—As3iii101.70 (4)O12—As4—O11104.77 (8)
O10iii—K2—As1ii135.28 (4)O13—As4—O11104.59 (8)
O9iv—K2—As1ii114.06 (5)O14—As4—O11106.99 (8)
O3ii—K2—As1ii25.63 (3)O12—As4—K1x151.68 (6)
O7—K2—As1ii99.90 (5)O13—As4—K1x53.94 (6)
O12iv—K2—As1ii104.49 (4)O14—As4—K1x55.64 (7)
O9iii—K2—As1ii156.93 (3)O11—As4—K1x103.26 (6)
O5v—K2—As1ii60.25 (4)O12—As4—K2iv43.87 (7)
As3iii—K2—As1ii154.03 (2)O13—As4—K2iv103.15 (6)
O10iii—K2—As3iv120.46 (5)O14—As4—K2iv149.68 (6)
O9iv—K2—As3iv22.19 (3)O11—As4—K2iv66.53 (6)
O3ii—K2—As3iv89.60 (5)K1x—As4—K2iv153.30 (2)
O7—K2—As3iv80.16 (4)As1—O1—In1137.71 (10)
O12iv—K2—As3iv58.83 (4)As1—O1—K1129.03 (8)
O9iii—K2—As3iv80.57 (4)In1—O1—K193.24 (6)
O5v—K2—As3iv143.46 (3)As1—O1—K1i100.72 (8)
As3iii—K2—As3iv102.60 (3)In1—O1—K1i84.15 (6)
As1ii—K2—As3iv102.46 (3)K1—O1—K1i82.38 (5)
O10iii—K2—As4iv130.07 (5)As1—O2—In1vii129.48 (9)
O9iv—K2—As4iv67.39 (4)As1—O2—K1x129.19 (8)
O3ii—K2—As4iv63.75 (4)In1vii—O2—K1x99.93 (6)
O7—K2—As4iv125.94 (4)As1—O3—In2120.25 (8)
O12iv—K2—As4iv23.09 (3)As1—O3—K2x108.86 (8)
O9iii—K2—As4iv77.51 (4)In2—O3—K2x126.82 (7)
O5v—K2—As4iv147.12 (4)As1—O4—As2120.04 (9)
As3iii—K2—As4iv104.51 (3)As2—O5—In1iii130.44 (9)
As1ii—K2—As4iv88.12 (3)As2—O5—K2v116.32 (8)
As3iv—K2—As4iv46.153 (19)In1iii—O5—K2v113.24 (6)
O10iii—K2—As271.17 (4)As2—O6—In1i125.62 (8)
O9iv—K2—As281.89 (4)As2—O6—K1i115.60 (8)
O3ii—K2—As2114.46 (4)In1i—O6—K1i107.02 (6)
O7—K2—As221.41 (3)As2—O6—K1105.23 (7)
O12iv—K2—As2156.80 (4)In1i—O6—K196.99 (6)
O9iii—K2—As2112.01 (4)K1i—O6—K1101.89 (5)
O5v—K2—As251.49 (3)As2—O7—In2135.63 (9)
As3iii—K2—As291.82 (3)As2—O7—K2119.75 (8)
As1ii—K2—As290.09 (3)In2—O7—K2103.52 (6)
As3iv—K2—As2100.84 (3)As2—O7—K190.47 (8)
As4iv—K2—As2145.27 (2)In2—O7—K197.04 (7)
O5vi—In1—O1166.27 (7)K2—O7—K192.93 (5)
O5vi—In1—O1493.20 (7)As3—O8—In2142.75 (9)
O1—In1—O1496.26 (8)As3—O8—K199.81 (8)
O5vi—In1—O6i90.56 (7)In2—O8—K1112.46 (7)
O1—In1—O6i81.66 (7)As3—O9—In2iv127.85 (8)
O14—In1—O6i170.49 (6)As3—O9—K2iv120.18 (8)
O5vi—In1—O10106.60 (7)In2iv—O9—K2iv109.90 (6)
O1—In1—O1083.61 (7)As3—O9—K2vi89.16 (7)
O14—In1—O1088.56 (6)In2iv—O9—K2vi93.39 (6)
O6i—In1—O1081.99 (6)K2iv—O9—K2vi102.88 (5)
O5vi—In1—O2vii80.65 (7)As3—O10—In1123.52 (8)
O1—In1—O2vii87.70 (7)As3—O10—K2vi110.42 (7)
O14—In1—O2vii101.65 (6)In1—O10—K2vi123.98 (7)
O6i—In1—O2vii87.57 (6)As3—O10—K187.04 (6)
O10—In1—O2vii167.27 (6)In1—O10—K193.87 (6)
O5vi—In1—K1i103.80 (5)K2vi—O10—K1103.39 (6)
O1—In1—K1i62.60 (6)As3—O11—As4118.77 (9)
O14—In1—K1i138.00 (5)As4—O12—In2vi145.24 (10)
O6i—In1—K1i48.79 (5)As4—O12—K2iv113.04 (8)
O10—In1—K1i121.39 (5)In2vi—O12—K2iv101.71 (7)
O2vii—In1—K1i45.94 (4)As4—O13—In2viii127.33 (9)
O5vi—In1—K1124.31 (5)As4—O13—K1x99.88 (7)
O1—In1—K154.63 (5)In2viii—O13—K1x132.34 (7)
O14—In1—K1130.46 (5)As4—O14—In1124.72 (9)
O6i—In1—K141.42 (4)As4—O14—K1x97.99 (8)
O10—In1—K152.98 (5)In1—O14—K1x122.74 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z; (v) x+1, y, z+1; (vi) x, y+1, z; (vii) x+2, y+1, z+1; (viii) x+2, y+1, z; (ix) x+1, y, z; (x) x+1, y, z.
Comparison of the unit-cell parameters of diarsenates isotypic with KInAs2O7 and closely related structure types top
Compounda (Å)b (Å)c (Å)α (°)β (°)γ (°)V3)
TlInAs2O7 type1
KInAs2O77.712 (2)8.554 (2)10.461 (2)88.58 (3)89.82 (3)73.97 (3)663.1 (3)
RbInAs2O717.845 (2)8.678 (2)10.492 (2)88.85 (3)89.93 (3)74.38 (3)687.5 (3)
TlInAs2O717.827 (2)8.625 (2)10.494 (2)88.83 (3)89.98 (3)74.31 (3)682.1 (3)
(NH4)InAs2O717.858 (2)8.649 (2)10.515 (2)88.96 (3)89.94 (3)74.34 (3)688.0 (3)
KFeAs2O727.662 (1)8.402 (2)10.100 (3)89.58 (3)89.74 (2)73.61 (2)623.8 (3)
KAlP2O7 type3
RbScAs2O747.837 (2)10.625 (2)8.778 (2)90.00106.45 (3)90.00701.0 (3)
TlScAs2O757.814 (2)10.613 (2)8.726 (2)90.00106.31 (3)90.00694.5 (3)
CsCrAs2O767.908 (1)10.0806 (10)8.6371 (10)90.00105.841 (1)90.00662.38 (13)
(NH4)ScAs2O777.842 (2)10.656 (2)8.765 (2)90.00106.81 (3)90.00701.1 (3)
RbAlAs2O7 type8
KGaAs2O796.271 (1)6.376 (1)8.169 (1)96.45 (1)103.86 (1)103.87 (1)302.84 (8)
KAlAs2O7106.192 (4)6.297 (3)8.106 (1)96.600 (8)104.517 (8)102.864 (7)293.4
RbAlAs2O786.241 (5)6.34 (2)8.233 (5)96.7 (1)103.89 (7)102.6 (1)303.9
CsAlAs2O7116.494 (8)6.709 (7)8.360 (8)97.07 (9)103.23 (9)102.62 (8)340.4
TlAlAs2O7116.267 (4)6.324 (4)8.168 (8)97.07 (7)103.83 (8)102.99 (8)300.9
KCr0.25Al0.75 As2O7126.243 (3)6.349 (3)8.153 (4)96.57 (2)104.45 (3)103.08 (4)299.8 (8)
TlFe0.22Al0.78As2O7136.296 (2)6.397 (2)8.242 (2)96.74 (2)103.78 (2)102.99 (3)309.0 (2)
KCrAs2O7146.316 (1)6.420 (1)8.179 (2)96.29 (3)104.27 (3)103.66 (3)307.4 (1)
Notes: (1) Schwendtner (2006), P1, Z = 4; (2) Ouerfelli et al. (2007b), transformed to reduced cell; (3) Ng & Calvo (1973), P21/c, Z = 4; (4) Schwendtner & Kolitsch (2004a); (5) Baran et al. (2006); (6) Bouhassine & Boughzala (2015); (7) Kolitsch (2004); (8) Boughzala et al. (1993), P1, Z = 2, transformed to reduced cell; (9) Lin & Lii (1996); (10) Boughzala & Jouini (1995); (11) Boughzala & Jouini (1992), transformed to reduced cell; (12) Bouhassine & Boughzala (2017); (13) Ouerfelli et al. (2007a); (14) Siegfried et al. (2004).
 

Acknowledgements

The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

Funding information

Funding for this research was provided by: Austrian Academy of Sciences, Doc fForte Fellowship to K. Schwendtner.

References

First citationBaran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335–1340.  Web of Science CrossRef CAS Google Scholar
First citationBelam, W., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 5–7.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoughzala, H., Driss, A. & Jouini, T. (1993). Acta Cryst. C49, 425–427.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoughzala, H. & Jouini, T. (1992). C. R. Acad. Sci. II, 314, 1419–1422.  CAS Google Scholar
First citationBoughzala, H. & Jouini, T. (1995). Acta Cryst. C51, 179–181.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBouhassine, M. A. & Boughzala, H. (2015). Acta Cryst. E71, 636–639.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouhassine, M. A. & Boughzala, H. (2017). Acta Cryst. E73, 345–348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266–282.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDriss, A. & Jouini, T. (1994). J. Solid State Chem. 112, 277–280.  CrossRef CAS Web of Science Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207–208.  CAS Google Scholar
First citationLin, K.-J. & Lii, K.-H. (1996). Acta Cryst. C52, 2387–2389.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMasquelier, C., d'Yvoire, F., Bretey, E., Berthet, P. & Peytour-Chansac, C. (1994a). Solid State Ionics, 67, 183–189.  CrossRef CAS Web of Science Google Scholar
First citationMasquelier, C., d'Yvoire, F. & Collin, G. (1994b). Solid State Ionic Materials: Proceedings of the 4th Asian Conference on Solid State Ionics, 4th, pp. 167–172.  Google Scholar
First citationMasquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33–42.  CrossRef CAS Web of Science Google Scholar
First citationMasquelier, C., d'Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584–1587.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228–234.  Web of Science CrossRef CAS Google Scholar
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, pp. 188–191.  Google Scholar
First citationMesa, J. L., Goñi, A., Brandl, A. L., Moreno, N. O., Barberis, G. E. & Rojo, T. (2000). J. Mater. Chem. 10, 2779–2785.  Web of Science CrossRef CAS Google Scholar
First citationNg, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613–2620.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2003). COLLECT.. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224–1229.  Web of Science CrossRef CAS Google Scholar
First citationOuerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41–i44.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOuerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942–2949.  Web of Science CrossRef CAS Google Scholar
First citationOuerfelli, N., Zid, M. F., Jouini, T. & Touati, A. M. (2004). J. Soc. Chim. Tunis. 6, 86–95.  Google Scholar
First citationPintard-Scrépel, M., d'Yvoire, F. & Bretey, E. (1983). Stud. Inorg. Chem. 3, 215–218.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRoelofsen-Ahl, J. N. & Peterson, R. C. (1989). Can. Mineral. 27, 703–708.  CAS Google Scholar
First citationRousse, G., Rodriguez-Carvajal, J., Wurm, C. & Masquelier, C. (2013). Phys. Rev. B Condens. Matter Mater. Phys. 88, 214433/214431–214433/214439.  Web of Science CrossRef Google Scholar
First citationSchwendtner, K. (2006). J. Alloys Compd. 421, 57–63.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79–i83.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84–i88.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249–263.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608.  CSD CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 785–790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiegfried, A. M., Flowers, A. T., Wang, L. & Hwu, S.-J. (2004). 56th Southeast Regional Meeting of the American Chemical Society, p. 518. Research Triangle Park, NC, USA: American Chemical Society.  Google Scholar
First citationWang, S.-L., Wu, C.-H. & Liu, S.-N. (1994). J. Solid State Chem. 113, 37–40.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2007). University of Vienna, Austria & ICDD Grant-in-Aid.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds