research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 1-benzene­sulfon­yl-2-methyl-3-(4-nitro­benzoyl)-2,3-di­hydro-1H-indole and 1-benzene­sulfon­yl-2-methyl-3-[(thio­phen-2-yl)carbon­yl]-2,3-di­hydro-1H-indole

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Misrimal Navajee Munoth Jain Engineering College, Chennai, 600 097, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai, 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 31 August 2017; accepted 6 September 2017; online 29 September 2017)

In the title indole derivatives, C22H16N2O5S, (I) and C20H15NO3S2, (II), the sulfonyl-bound phenyl rings are almost orthogonal to the indole ring system, subtending dihedral angles of 88.33 (10) and 87.58 (16)°, respectively. In both compounds, the sulfonyl S atom has a distorted tetra­hedral geometry [O—S—O = 119.98 (9) and N—S—C = 104.01 (8)° for compound (I) and O—S—O = 120.08 (18) and N—S—C = 104.91 (14)° for compound (II)] and the sum of the bond angles at N indicates sp2 hybridization. The mol­ecules of both (I) and (II) feature intra­molecular C—H⋯O hydrogen bonds that generate S(6) ring motifs with the sulfone O atom. In the crystals, mol­ecules of (I) are linked by C—H—O hydrogen bonds, forming R44(18) ring motifs while mol­ecules of (II) are linked by C—H—O and C—H—S hydrogen bonds, forming R22(12) ring motifs. Compound (II) was refined as an inversion twin.

1. Chemical context

Indole is the parent compound of a large number of important compounds in nature with significant biological activity (Kaushik et al., 2013[Kaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620-6662.]). Indole derivatives are known to exhibit anti-bacterial, anti-fungal (Singh et al., 2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173-176.]), anti-tumour (Andreani et al., 2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]), anti­depressant (Grinev et al., 1984[Grinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. & Mashkovskii, M. D. (1984). Khim. Farm. Zh. 18, 159-163.]), anti-inflammatory (Rodriguez et al., 1985[Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813-3823.]) and physiological (Porter et al., 1977[Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]; Sundberg, 1996[Sundberg, R. J. (1996). The Chemistry of Indoles, pp. 113 New York: Academic Press.]) properties. They are used as bioactive drugs (Stevenson et al., 2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2699.]) and have also been proven to display high aldose reductase inhibitory (Rajeswaran et al., 1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]) and anti­microbial activities (Amal Raj et al., 2003[Raj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]). Indole deriv­atives containing a phenyl­sulfonyl group exhibit insecticidal, germicidal and fungicidal activity (Wolf, 1999[Wolf, W. M. (1999). Acta Cryst. C55, 469-472.]). Against this background, the crystal structure determination of the title compounds was carried out to study their structural aspects and the results are presented here.

2. Structural commentary

The mol­ecular structure of compound (I)[link] is shown in Fig. 1[link]. The geometric parameters are in close agreement with those of similar structures. (Umadevi et al., 2015a[Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2015a). Acta Cryst. E71, 133-135.],b[Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2015b). Acta Cryst. E71, o86-o87.]). The sulfonyl-bound phenyl ring (C1–C6) is almost orthogonal to the indole ring system (N1/C7-C14) making a dihedral angle of 88.43 (10)°·The nitro­phenyl ring (C17–C22) forms a dihedral angle of 61.00 (8)° with the indole ring system. The dihedral angle between the phenyl rings is 77.97 (11)°. The C16—C13—C14—N1 torsion angle is 174.58 (16)°. The sum of the bond angles at N1 (357.7°) indicates sp2 hybridization (Beddoes et al., 1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

The mol­ecular structure of compound (II)[link] is shown in Fig. 2[link]. The geometric parameters of (II)[link] are in close agreement with those of similar structures (KamalaKumar et al., 2011[KamalaKumar, C., Dhayalan, V., Mohanakrishnan, A. K., Balasubramanian, V. & Manivannan, V. (2011). Acta Cryst. E67, o741.]). The sulfonyl-bound phenyl ring (C15–C20) is almost orthogonal to the indole ring system (N1/C1–C8), making a dihedral angle of 87.58 (16)°. The dihedral angle between the indole moiety (N1/C1–C8) and the thio­phene ring (S2 /C10–C13) is 56.05 (19)° while that between the thio­phene and phenyl rings is 54.0 (2)°. The C9—C7—C8—N1 torsion angles is 178.5 (3)°. The sum of the bond angles around N1 is 358.4°, indicating sp2 hybridization.

[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

In both compounds, the indole moiety is essentially planar with a maximum deviation of 0.021 (2) Å for both atom C10 in compound (I)[link] and atom C8 in compound (II)[link]. In both compounds, the variation in endocyclic angles [119.05 (16)° at C12 and 122.17 (17)° at C7 for compound (I)[link] and 119.7 (3)° at C6 and 121.5 (3)° at C1 for compound (II)] of the benzene ring of the indole ring system are due to the fusion of the five- and six -membered rings and the strain is taken up by the angular distortion rather than by bond-length distortion (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

Atom S1 has a distorted tetra­hedral configuration with angles O1—S1—O2 = 119.98 (9) and N1—S1—C6 = 104.01 (8)° for compound (I)[link] and O1—S1—O2 = 120.08 (18) and N1—S1—C20 = 104.91 (14)° for compound (II)[link], differing from the ideal tetra­hedral values attributing to the Thorpe–Ingold effect (Bassindale,1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). As a result of the electron-withdrawing character of the phenyl­sulfonyl group, in both compounds the N—C bond lengths [N1—C7 = 1.418 (2) and N1—C14 = 1.412 (2) Å for compound (I)[link] and N1—C1 = 1.413 (4) and N1—C8 = 1.421 (4) Å for compound (II)[link] are longer than the mean value of 1.355 (14) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). In both compounds, the mol­ecules are stabilized by intra­molecular C—H⋯O hydrogen bonds (Tables 1[link] and 2[link]), which generate S(6) ring motifs with the sulfone oxygen atoms.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.93 2.40 2.977 (3) 120
C8—H8⋯O4i 0.93 2.60 3.286 (2) 131
C15—H15A⋯O2 0.96 2.03 2.824 (3) 139
C19—H19⋯O2ii 0.93 2.64 3.388 (2) 138
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.39 2.954 (5) 119
C2—H2⋯O2i 0.93 2.65 3.394 (4) 138
C14—H14A⋯O2 0.96 2.00 2.806 (4) 140
C14—H14B⋯S2ii 0.96 2.93 3.822 (4) 156
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+2].

3. Supra­molecular features

In the crystal of (I)[link], the mol­ecules are linked via C8—H8⋯O4i and C19—H19⋯O2ii hydrogen bonds (Fig. 3[link]), forming [R_{4}^{4}](18) motifs (two-dimensional network). In the crystal of (II)[link], the mol­ecules are linked via C2—H2⋯O2i and C14—H14B⋯S2ii hydrogen bonds (Fig. 4[link]), forming [R_{2}^{2}](12) motifs (two-dimensional network). No significant ππ or C—H⋯π inter­actions are observed in either compound.

[Figure 3]
Figure 3
The crystal packing of compound (I)[link] viewed along the a axis, showing the inter­molecular C8—H8—O4 and C19—H19—O2 hydrogen bonds as dashed lines. Symmetry codes are as in Table 1[link].
[Figure 4]
Figure 4
The crystal packing of compound (II)[link] viewed along the b axis, showing the inter­molecular C2—H2—O2 and C14—H14B—S2 hydrogen bonds as dashed lines. Symmetry codes are as in Table 2[link].

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded 67 hits for the 1-phenyl­sulfonyl-1H-indole moiety and 49 hits for 2-methyl-1-phenyl­sulfonyl-1H-indole-3-yl). The compound (2-methyl-1-phen­ylsulfonyl-1H-indol-3-yl)(phen­yl)methanone (LOSMEN; Umadevi et al., 2015a[Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2015a). Acta Cryst. E71, 133-135.]), which crystallizes in the P212121 space group, is the closest analogue of compound (I). The compound (1-phen­ylsulfonyl-1H-indol-2-yl)(thio­phen-2-yl)methanone (ULINEJ; KamalaKumar et al., 2011[KamalaKumar, C., Dhayalan, V., Mohanakrishnan, A. K., Balasubramanian, V. & Manivannan, V. (2011). Acta Cryst. E67, o741.]), which crystallizes in space group P1, is the closest analogue of compound (II)[link]. The packing of compounds (I)[link] and (II)[link] feature C—H⋯O and C—H⋯S inter­actions, but the related structures exhibit C—H⋯O and C—H⋯π inter­actions. In the latter structures, the sulfonyl-bound phenyl ring is almost orthogonal to the indole ring system, making dihedral angles of 84.89 (7) and 54.91 (11)°, respectively, comparable with those observed in the title compounds.

5. Synthesis and crystallization

Compound (I)

To a solution of 4-nitro­benzoyl chloride (2.06 g, 11.07 mmol) in dry DCM (15 ml) at 273 K, SnCl4 (2.06 g, 11.07 mmol) was added slowly (5 min). To this, a solution of 1-phenyl­sulfonyl-2-methyl­indole (2 g, 7.38 mmol) in dry DCM (10 ml) was added (5 min) and allowed to stir at room temperature for 48 h. After completion of the reaction (monitored by TLC), it was poured into ice–water (50 ml) containing conc. HCl (10 ml). The organic layer was separated and the aqueous layer was extracted with DCM (2 × 20 ml). The combined organic layer was washed with water (3 × 25 ml) and dried (Na2SO4). The subsequent purification of the crude product either by washing with MeOH or column chromatography (silica gel, hexa­ne:ethyl acetate 8:2) furnished the first title compound as a colourless solid (1.92 g, 62%); m.p. 435–437 K.

Compound (II)

To a solution of thio­phene-2-carbonyl chloride (1.63 g, 11.07 mmol) and SnCl4 (2.88 g, 11.07 mmol) in dry DCM (20 ml) at 273 K, a solution of 1-phenyl­sulfonyl-2-methyl­indole (2 g, 7.38 mmol) in dry DCM (10 ml) was added slowly (5 min). Then, it was stirred at room temperature for 30 min. After completion of the reaction (monitored by TLC), it was poured into ice–water (50 ml) containing conc. HCl (10 ml). The organic layer was separated and the aqueous layer was extracted with DCM (2 × 20 ml). The combined organic extract was washed with water (3 × 25 ml) and dried (Na2SO4). Evaporation of the solvent followed by trituration of the crude product with MeOH (5 ml) gave the second title compound as a colourless solid (2.19 g, 78%); m.p. 379–381 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were localized from the difference electron-density maps and refined as riding atoms with C—H = 0.93 or 0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Compound (II) was refined as an inversion twin (BASF 0.03).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C22H16N2O5S C20H15NO3S2
Mr 420.43 381.45
Crystal system, space group Monoclinic, P21/n Orthorhombic, P212121
Temperature (K) 296 293
a, b, c (Å) 8.1358 (2), 23.8364 (7), 10.5983 (3) 8.9300 (2), 10.8141 (3), 18.6398 (5)
α, β, γ (°) 90, 110.210 (1), 90 90, 90, 90
V3) 1928.77 (9) 1800.04 (8)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 1.83 2.85
Crystal size (mm) 0.20 × 0.15 × 0.15 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.657, 0.754 0.599, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 30940, 3780, 3379 25415, 3538, 3314
Rint 0.042 0.043
(sin θ/λ)max−1) 0.619 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.07 0.039, 0.106, 1.06
No. of reflections 3780 3538
No. of parameters 271 236
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.39 0.24, −0.38
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.03 (3)
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 and SAINT (Bruker, 2016); data reduction: SAINT and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b).

1-Benzenesulfonyl-2-methyl-3-(4-nitrobenzoyl)-2,3-dihydro-1H-indole (I) top
Crystal data top
C22H16N2O5SF(000) = 872
Mr = 420.43Dx = 1.448 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 8.1358 (2) ÅCell parameters from 9895 reflections
b = 23.8364 (7) Åθ = 3.7–72.4°
c = 10.5983 (3) ŵ = 1.83 mm1
β = 110.210 (1)°T = 296 K
V = 1928.77 (9) Å3Block, colourless
Z = 40.20 × 0.15 × 0.15 mm
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
3780 independent reflections
Radiation source: micro-focus sealed tube3379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and φ scanθmax = 72.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.657, Tmax = 0.754k = 2929
30940 measured reflectionsl = 1312
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.7114P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3780 reflectionsΔρmax = 0.45 e Å3
271 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0703 (3)0.92527 (10)0.0217 (3)0.0560 (6)
H10.97590.93760.04480.067*
C21.2366 (3)0.94573 (12)0.0873 (3)0.0730 (8)
H21.25480.97200.15570.088*
C31.3757 (3)0.92775 (12)0.0526 (3)0.0662 (7)
H31.48690.94230.09620.079*
C41.3504 (3)0.88822 (12)0.0466 (2)0.0587 (6)
H41.44520.87560.06860.070*
C51.1860 (3)0.86712 (9)0.1135 (2)0.0446 (4)
H51.16870.84050.18100.054*
C61.0471 (2)0.88612 (7)0.07867 (18)0.0351 (4)
C70.8417 (2)0.79012 (7)0.03534 (17)0.0337 (4)
C80.8116 (3)0.82909 (8)0.1227 (2)0.0419 (4)
H80.78170.86600.09620.050*
C90.8278 (3)0.81092 (9)0.2498 (2)0.0464 (5)
H90.80630.83590.30970.056*
C100.8757 (3)0.75604 (9)0.2906 (2)0.0468 (5)
H100.88930.74520.37800.056*
C110.9033 (2)0.71729 (8)0.20276 (18)0.0406 (4)
H110.93440.68060.23020.049*
C120.8837 (2)0.73419 (7)0.07227 (17)0.0333 (4)
C130.9047 (2)0.70602 (7)0.04222 (18)0.0347 (4)
C140.8782 (2)0.74412 (7)0.14365 (18)0.0352 (4)
C150.8744 (3)0.73343 (9)0.2837 (2)0.0481 (5)
H15A0.85320.76800.33310.072*
H15B0.98490.71820.28060.072*
H15C0.78270.70720.32720.072*
C160.9371 (3)0.64522 (7)0.05201 (19)0.0387 (4)
C170.8454 (2)0.60596 (7)0.01248 (18)0.0365 (4)
C180.6765 (3)0.61765 (7)0.00916 (19)0.0406 (4)
H180.62050.65010.03300.049*
C190.5910 (3)0.58154 (8)0.06783 (19)0.0419 (4)
H190.47720.58870.06440.050*
C200.6803 (3)0.53438 (7)0.13178 (18)0.0402 (4)
C210.8460 (3)0.52090 (8)0.1341 (2)0.0460 (5)
H210.90090.48820.17540.055*
C220.9286 (3)0.55716 (8)0.07365 (19)0.0424 (4)
H221.04040.54890.07390.051*
N10.83594 (19)0.79620 (6)0.09917 (15)0.0355 (3)
N20.5943 (3)0.49781 (7)0.20229 (18)0.0523 (4)
O10.71132 (17)0.89267 (6)0.13460 (16)0.0512 (4)
O20.81830 (19)0.85052 (6)0.30381 (14)0.0496 (4)
O30.4452 (3)0.50868 (8)0.19518 (19)0.0681 (5)
O40.6773 (3)0.45810 (9)0.2654 (2)0.0889 (7)
O51.0299 (2)0.62677 (6)0.11082 (17)0.0579 (4)
S10.83727 (5)0.85977 (2)0.16730 (5)0.03710 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0467 (11)0.0513 (12)0.0793 (15)0.0074 (9)0.0336 (11)0.0216 (11)
C20.0570 (14)0.0802 (17)0.0873 (18)0.0211 (13)0.0319 (13)0.0427 (15)
C30.0393 (11)0.0891 (19)0.0686 (15)0.0184 (11)0.0167 (10)0.0237 (13)
C40.0322 (10)0.0888 (17)0.0585 (13)0.0028 (10)0.0199 (9)0.0153 (12)
C50.0365 (10)0.0551 (11)0.0444 (10)0.0004 (8)0.0167 (8)0.0068 (8)
C60.0323 (8)0.0303 (8)0.0453 (9)0.0006 (7)0.0166 (7)0.0042 (7)
C70.0295 (8)0.0317 (8)0.0423 (9)0.0037 (6)0.0154 (7)0.0008 (7)
C80.0414 (10)0.0321 (9)0.0542 (11)0.0022 (7)0.0189 (8)0.0067 (8)
C90.0445 (10)0.0476 (11)0.0519 (11)0.0070 (8)0.0228 (9)0.0153 (9)
C100.0484 (11)0.0541 (12)0.0405 (10)0.0078 (9)0.0189 (8)0.0039 (8)
C110.0427 (10)0.0380 (9)0.0431 (10)0.0019 (8)0.0175 (8)0.0037 (7)
C120.0313 (8)0.0298 (8)0.0416 (9)0.0031 (6)0.0161 (7)0.0007 (7)
C130.0360 (9)0.0297 (8)0.0425 (9)0.0019 (7)0.0190 (7)0.0007 (7)
C140.0344 (9)0.0312 (8)0.0432 (9)0.0021 (7)0.0173 (7)0.0004 (7)
C150.0574 (12)0.0472 (11)0.0438 (10)0.0036 (9)0.0227 (9)0.0021 (8)
C160.0436 (10)0.0318 (9)0.0438 (10)0.0023 (7)0.0191 (8)0.0000 (7)
C170.0441 (10)0.0280 (8)0.0385 (9)0.0001 (7)0.0159 (7)0.0022 (7)
C180.0443 (10)0.0284 (8)0.0488 (10)0.0026 (7)0.0158 (8)0.0038 (7)
C190.0449 (10)0.0340 (9)0.0493 (10)0.0017 (8)0.0194 (8)0.0044 (7)
C200.0552 (11)0.0307 (9)0.0366 (9)0.0085 (8)0.0182 (8)0.0024 (7)
C210.0581 (12)0.0315 (9)0.0473 (10)0.0061 (8)0.0169 (9)0.0073 (7)
C220.0475 (10)0.0325 (9)0.0491 (10)0.0057 (8)0.0192 (8)0.0002 (7)
N10.0379 (8)0.0283 (7)0.0434 (8)0.0017 (6)0.0178 (6)0.0021 (6)
N20.0705 (12)0.0409 (9)0.0492 (9)0.0120 (8)0.0254 (9)0.0000 (7)
O10.0350 (7)0.0394 (7)0.0815 (10)0.0079 (6)0.0229 (7)0.0124 (7)
O20.0500 (8)0.0494 (8)0.0436 (7)0.0066 (6)0.0086 (6)0.0116 (6)
O30.0760 (12)0.0623 (10)0.0812 (12)0.0144 (9)0.0462 (10)0.0014 (9)
O40.0938 (15)0.0723 (13)0.1039 (15)0.0029 (11)0.0386 (12)0.0502 (12)
O50.0761 (11)0.0427 (8)0.0738 (10)0.0102 (7)0.0499 (9)0.0026 (7)
S10.0300 (2)0.0314 (2)0.0490 (3)0.00052 (15)0.01240 (18)0.00904 (17)
Geometric parameters (Å, º) top
C1—C61.378 (3)C13—C161.483 (2)
C1—C21.379 (3)C14—N11.412 (2)
C1—H10.9300C14—C151.495 (3)
C2—C31.374 (4)C15—H15A0.9600
C2—H20.9300C15—H15B0.9600
C3—C41.373 (3)C15—H15C0.9600
C3—H30.9300C16—O51.216 (2)
C4—C51.374 (3)C16—C171.501 (2)
C4—H40.9300C17—C221.389 (3)
C5—C61.381 (3)C17—C181.391 (3)
C5—H50.9300C18—C191.382 (3)
C6—S11.7561 (18)C18—H180.9300
C7—C81.391 (2)C19—C201.382 (3)
C7—C121.398 (2)C19—H190.9300
C7—N11.418 (2)C20—C211.378 (3)
C8—C91.378 (3)C20—N21.473 (2)
C8—H80.9300C21—C221.381 (3)
C9—C101.390 (3)C21—H210.9300
C9—H90.9300C22—H220.9300
C10—C111.384 (3)N1—S11.6801 (14)
C10—H100.9300N2—O31.217 (3)
C11—C121.396 (2)N2—O41.219 (3)
C11—H110.9300O1—S11.4250 (14)
C12—C131.447 (2)O2—S11.4183 (15)
C13—C141.366 (2)
C6—C1—C2118.5 (2)N1—C14—C15123.86 (16)
C6—C1—H1120.8C14—C15—H15A109.5
C2—C1—H1120.8C14—C15—H15B109.5
C3—C2—C1120.7 (2)H15A—C15—H15B109.5
C3—C2—H2119.7C14—C15—H15C109.5
C1—C2—H2119.7H15A—C15—H15C109.5
C4—C3—C2120.0 (2)H15B—C15—H15C109.5
C4—C3—H3120.0O5—C16—C13123.12 (17)
C2—C3—H3120.0O5—C16—C17120.16 (16)
C3—C4—C5120.5 (2)C13—C16—C17116.71 (15)
C3—C4—H4119.7C22—C17—C18119.84 (17)
C5—C4—H4119.7C22—C17—C16119.77 (17)
C4—C5—C6118.84 (19)C18—C17—C16120.38 (16)
C4—C5—H5120.6C19—C18—C17120.68 (17)
C6—C5—H5120.6C19—C18—H18119.7
C1—C6—C5121.48 (18)C17—C18—H18119.7
C1—C6—S1120.22 (14)C20—C19—C18117.80 (18)
C5—C6—S1118.30 (14)C20—C19—H19121.1
C8—C7—C12122.17 (17)C18—C19—H19121.1
C8—C7—N1130.44 (16)C21—C20—C19122.93 (17)
C12—C7—N1107.38 (15)C21—C20—N2119.08 (18)
C9—C8—C7117.49 (18)C19—C20—N2117.98 (18)
C9—C8—H8121.3C20—C21—C22118.39 (17)
C7—C8—H8121.3C20—C21—H21120.8
C8—C9—C10121.45 (18)C22—C21—H21120.8
C8—C9—H9119.3C21—C22—C17120.29 (19)
C10—C9—H9119.3C21—C22—H22119.9
C11—C10—C9120.78 (18)C17—C22—H22119.9
C11—C10—H10119.6C14—N1—C7108.58 (13)
C9—C10—H10119.6C14—N1—S1127.66 (12)
C10—C11—C12119.00 (18)C7—N1—S1121.43 (12)
C10—C11—H11120.5O3—N2—O4123.39 (19)
C12—C11—H11120.5O3—N2—C20118.71 (18)
C11—C12—C7119.05 (16)O4—N2—C20117.9 (2)
C11—C12—C13133.69 (16)O2—S1—O1119.98 (9)
C7—C12—C13107.21 (15)O2—S1—N1106.48 (8)
C14—C13—C12108.61 (15)O1—S1—N1106.25 (8)
C14—C13—C16125.31 (16)O2—S1—C6110.14 (9)
C12—C13—C16125.96 (15)O1—S1—C6108.72 (9)
C13—C14—N1108.19 (15)N1—S1—C6104.01 (8)
C13—C14—C15127.68 (16)
C6—C1—C2—C30.4 (5)C22—C17—C18—C190.9 (3)
C1—C2—C3—C41.2 (5)C16—C17—C18—C19179.71 (17)
C2—C3—C4—C51.2 (4)C17—C18—C19—C201.3 (3)
C3—C4—C5—C60.4 (4)C18—C19—C20—C212.9 (3)
C2—C1—C6—C50.4 (4)C18—C19—C20—N2175.93 (17)
C2—C1—C6—S1178.8 (2)C19—C20—C21—C222.2 (3)
C4—C5—C6—C10.4 (3)N2—C20—C21—C22176.61 (17)
C4—C5—C6—S1178.80 (18)C20—C21—C22—C170.1 (3)
C12—C7—C8—C91.2 (3)C18—C17—C22—C211.6 (3)
N1—C7—C8—C9179.64 (17)C16—C17—C22—C21179.56 (18)
C7—C8—C9—C101.2 (3)C13—C14—N1—C71.69 (19)
C8—C9—C10—C112.0 (3)C15—C14—N1—C7176.00 (17)
C9—C10—C11—C120.5 (3)C13—C14—N1—S1164.34 (13)
C10—C11—C12—C71.8 (3)C15—C14—N1—S121.3 (3)
C10—C11—C12—C13178.71 (19)C8—C7—N1—C14179.50 (18)
C8—C7—C12—C112.7 (3)C12—C7—N1—C141.21 (18)
N1—C7—C12—C11177.97 (15)C8—C7—N1—S115.6 (3)
C8—C7—C12—C13179.66 (16)C12—C7—N1—S1165.15 (12)
N1—C7—C12—C130.30 (18)C21—C20—N2—O3177.00 (19)
C11—C12—C13—C14176.44 (18)C19—C20—N2—O34.1 (3)
C7—C12—C13—C140.7 (2)C21—C20—N2—O43.2 (3)
C11—C12—C13—C167.5 (3)C19—C20—N2—O4175.7 (2)
C7—C12—C13—C16175.30 (17)C14—N1—S1—O223.27 (17)
C12—C13—C14—N11.5 (2)C7—N1—S1—O2176.07 (13)
C16—C13—C14—N1174.58 (16)C14—N1—S1—O1152.25 (15)
C12—C13—C14—C15175.52 (17)C7—N1—S1—O147.09 (15)
C16—C13—C14—C150.6 (3)C14—N1—S1—C693.08 (16)
C14—C13—C16—O540.2 (3)C7—N1—S1—C667.58 (14)
C12—C13—C16—O5144.4 (2)C1—C6—S1—O2144.10 (17)
C14—C13—C16—C17138.39 (18)C5—C6—S1—O235.13 (18)
C12—C13—C16—C1737.0 (3)C1—C6—S1—O110.8 (2)
O5—C16—C17—C2236.7 (3)C5—C6—S1—O1168.46 (15)
C13—C16—C17—C22144.65 (18)C1—C6—S1—N1102.14 (18)
O5—C16—C17—C18142.2 (2)C5—C6—S1—N178.64 (16)
C13—C16—C17—C1836.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.402.977 (3)120
C8—H8···O4i0.932.603.286 (2)131
C15—H15A···O20.962.032.824 (3)139
C15—H15A···S10.962.843.307 (2)111
C19—H19···O2ii0.932.643.388 (2)138
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2.
1-Benzenesulfonyl-2-methyl-3-[(thiophen-2-yl)carbonyl]-2,3-dihydro-1H-indole (II) top
Crystal data top
C20H15NO3S2Dx = 1.408 Mg m3
Mr = 381.45Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9899 reflections
a = 8.9300 (2) Åθ = 4.7–72.4°
b = 10.8141 (3) ŵ = 2.85 mm1
c = 18.6398 (5) ÅT = 293 K
V = 1800.04 (8) Å3Block, colourless
Z = 40.25 × 0.20 × 0.15 mm
F(000) = 792
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
3538 independent reflections
Radiation source: micro-focus sealed tube3314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and φ scanθmax = 72.4°, θmin = 4.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1011
Tmin = 0.599, Tmax = 0.746k = 1313
25415 measured reflectionsl = 1922
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.446P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.24 e Å3
3538 reflectionsΔρmin = 0.38 e Å3
236 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.03 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9645 (4)0.1139 (3)0.89175 (17)0.0390 (6)
C20.8811 (4)0.2195 (3)0.8753 (2)0.0500 (8)
H20.87730.25080.82890.060*
C30.8044 (5)0.2755 (3)0.9311 (2)0.0595 (10)
H30.74770.34580.92180.071*
C40.8097 (5)0.2300 (4)0.9998 (3)0.0639 (11)
H40.75710.27031.03590.077*
C50.8917 (5)0.1255 (3)1.01619 (19)0.0537 (8)
H50.89360.09461.06270.064*
C60.9716 (4)0.0674 (3)0.96149 (16)0.0386 (6)
C71.0648 (4)0.0418 (3)0.95980 (16)0.0386 (6)
C81.1175 (3)0.0574 (3)0.89200 (15)0.0383 (6)
C91.0953 (4)0.1171 (3)1.02446 (16)0.0441 (7)
C101.0808 (4)0.2510 (3)1.02034 (18)0.0450 (7)
C111.0118 (4)0.3236 (3)0.9675 (2)0.0516 (8)
H110.96820.29360.92570.062*
C121.0188 (6)0.4502 (4)0.9878 (3)0.0834 (15)
H120.97950.51360.95980.100*
C131.0869 (6)0.4699 (4)1.0506 (4)0.0863 (17)
H131.10050.54811.07030.104*
C141.2277 (4)0.1503 (4)0.86485 (19)0.0513 (8)
H14A1.24270.13830.81430.077*
H14B1.32120.14010.88950.077*
H14C1.18990.23220.87320.077*
C151.2007 (5)0.3125 (4)0.7758 (2)0.0600 (10)
H151.10140.33570.76920.072*
C161.3106 (6)0.4008 (4)0.7866 (2)0.0718 (12)
H161.28480.48410.78730.086*
C171.4559 (6)0.3669 (5)0.7961 (2)0.0726 (14)
H171.52880.42700.80330.087*
C181.4952 (5)0.2442 (6)0.7951 (3)0.0783 (14)
H181.59490.22150.80110.094*
C191.3879 (5)0.1545 (4)0.7853 (2)0.0647 (10)
H191.41420.07130.78550.078*
C201.2414 (4)0.1891 (3)0.77510 (15)0.0438 (7)
N11.0537 (3)0.0363 (3)0.84821 (14)0.0412 (6)
O10.9748 (3)0.1284 (3)0.73280 (14)0.0634 (7)
O21.1698 (3)0.0325 (3)0.73361 (13)0.0601 (7)
O31.1254 (4)0.0666 (3)1.08138 (13)0.0700 (8)
S11.10413 (10)0.07464 (8)0.76447 (4)0.0452 (2)
S21.14511 (13)0.33973 (11)1.09014 (6)0.0702 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0334 (14)0.0344 (14)0.0491 (16)0.0031 (12)0.0043 (12)0.0011 (12)
C20.0415 (18)0.0382 (15)0.070 (2)0.0011 (15)0.0045 (16)0.0110 (15)
C30.056 (2)0.0360 (16)0.087 (3)0.0061 (16)0.0090 (19)0.0058 (18)
C40.060 (2)0.054 (2)0.077 (3)0.0106 (19)0.000 (2)0.0211 (19)
C50.061 (2)0.0490 (17)0.0506 (17)0.0023 (18)0.0018 (17)0.0108 (14)
C60.0402 (15)0.0315 (13)0.0440 (15)0.0060 (13)0.0057 (12)0.0036 (12)
C70.0416 (16)0.0340 (14)0.0401 (14)0.0023 (12)0.0068 (12)0.0029 (11)
C80.0354 (15)0.0352 (14)0.0445 (15)0.0016 (13)0.0072 (11)0.0008 (11)
C90.0473 (17)0.0420 (15)0.0428 (15)0.0018 (14)0.0068 (13)0.0017 (13)
C100.0398 (17)0.0424 (16)0.0527 (18)0.0019 (14)0.0013 (14)0.0067 (14)
C110.052 (2)0.0382 (16)0.065 (2)0.0033 (16)0.0012 (17)0.0038 (15)
C120.079 (3)0.043 (2)0.128 (5)0.013 (2)0.021 (3)0.013 (3)
C130.082 (3)0.050 (2)0.127 (4)0.020 (2)0.034 (3)0.038 (3)
C140.0507 (19)0.053 (2)0.0501 (17)0.0134 (17)0.0032 (15)0.0014 (15)
C150.059 (2)0.053 (2)0.068 (2)0.0083 (17)0.0067 (18)0.0122 (18)
C160.089 (3)0.057 (2)0.070 (2)0.022 (2)0.007 (2)0.003 (2)
C170.081 (3)0.084 (3)0.052 (2)0.045 (3)0.0029 (19)0.001 (2)
C180.052 (3)0.106 (4)0.076 (3)0.020 (3)0.004 (2)0.000 (3)
C190.049 (2)0.068 (2)0.078 (2)0.002 (2)0.0010 (19)0.005 (2)
C200.0480 (17)0.0508 (18)0.0327 (14)0.0072 (15)0.0005 (12)0.0012 (13)
N10.0394 (14)0.0424 (14)0.0418 (13)0.0013 (12)0.0022 (10)0.0064 (11)
O10.0593 (15)0.0759 (17)0.0551 (14)0.0082 (14)0.0233 (13)0.0150 (13)
O20.0798 (18)0.0567 (14)0.0438 (12)0.0059 (13)0.0013 (13)0.0136 (11)
O30.109 (2)0.0565 (14)0.0448 (13)0.0037 (17)0.0234 (14)0.0046 (11)
S10.0493 (4)0.0498 (4)0.0366 (3)0.0066 (3)0.0083 (3)0.0014 (3)
S20.0630 (6)0.0727 (7)0.0750 (6)0.0103 (5)0.0035 (5)0.0337 (5)
Geometric parameters (Å, º) top
C1—C61.395 (4)C12—C131.337 (8)
C1—C21.397 (4)C12—H120.9300
C1—N11.413 (4)C13—S21.672 (6)
C2—C31.385 (6)C13—H130.9300
C2—H20.9300C14—H14A0.9600
C3—C41.372 (6)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—C51.381 (6)C15—C201.383 (5)
C4—H40.9300C15—C161.384 (6)
C5—C61.394 (5)C15—H150.9300
C5—H50.9300C16—C171.360 (8)
C6—C71.446 (4)C16—H160.9300
C7—C81.359 (4)C17—C181.373 (8)
C7—C91.480 (4)C17—H170.9300
C8—N11.421 (4)C18—C191.376 (6)
C8—C141.494 (5)C18—H180.9300
C9—O31.224 (4)C19—C201.374 (6)
C9—C101.455 (5)C19—H190.9300
C10—C111.402 (5)C20—S11.753 (3)
C10—S21.716 (3)N1—S11.677 (3)
C11—C121.421 (6)O1—S11.421 (3)
C11—H110.9300O2—S11.421 (3)
C6—C1—C2121.5 (3)C12—C13—H13123.4
C6—C1—N1107.2 (3)S2—C13—H13123.4
C2—C1—N1131.3 (3)C8—C14—H14A109.5
C3—C2—C1117.2 (3)C8—C14—H14B109.5
C3—C2—H2121.4H14A—C14—H14B109.5
C1—C2—H2121.4C8—C14—H14C109.5
C4—C3—C2121.8 (3)H14A—C14—H14C109.5
C4—C3—H3119.1H14B—C14—H14C109.5
C2—C3—H3119.1C20—C15—C16118.7 (4)
C3—C4—C5121.2 (4)C20—C15—H15120.6
C3—C4—H4119.4C16—C15—H15120.6
C5—C4—H4119.4C17—C16—C15120.6 (5)
C4—C5—C6118.6 (4)C17—C16—H16119.7
C4—C5—H5120.7C15—C16—H16119.7
C6—C5—H5120.7C16—C17—C18120.2 (4)
C5—C6—C1119.7 (3)C16—C17—H17119.9
C5—C6—C7132.8 (3)C18—C17—H17119.9
C1—C6—C7107.5 (3)C17—C18—C19120.4 (5)
C8—C7—C6108.7 (3)C17—C18—H18119.8
C8—C7—C9128.7 (3)C19—C18—H18119.8
C6—C7—C9122.5 (3)C20—C19—C18119.3 (4)
C7—C8—N1107.9 (3)C20—C19—H19120.4
C7—C8—C14128.8 (3)C18—C19—H19120.4
N1—C8—C14123.3 (3)C19—C20—C15120.8 (4)
O3—C9—C10120.6 (3)C19—C20—S1119.2 (3)
O3—C9—C7120.1 (3)C15—C20—S1119.9 (3)
C10—C9—C7119.2 (3)C1—N1—C8108.7 (2)
C11—C10—C9129.3 (3)C1—N1—S1122.6 (2)
C11—C10—S2111.5 (3)C8—N1—S1127.1 (2)
C9—C10—S2119.1 (3)O2—S1—O1120.08 (18)
C10—C11—C12109.5 (4)O2—S1—N1106.61 (15)
C10—C11—H11125.2O1—S1—N1105.64 (16)
C12—C11—H11125.2O2—S1—C20109.46 (17)
C13—C12—C11114.0 (5)O1—S1—C20109.02 (17)
C13—C12—H12123.0N1—S1—C20104.91 (14)
C11—C12—H12123.0C13—S2—C1091.9 (2)
C12—C13—S2113.2 (3)
C6—C1—C2—C30.7 (5)C20—C15—C16—C170.2 (7)
N1—C1—C2—C3180.0 (3)C15—C16—C17—C180.0 (7)
C1—C2—C3—C40.2 (6)C16—C17—C18—C190.7 (7)
C2—C3—C4—C50.3 (6)C17—C18—C19—C201.2 (7)
C3—C4—C5—C60.9 (6)C18—C19—C20—C151.1 (6)
C4—C5—C6—C11.4 (5)C18—C19—C20—S1178.7 (3)
C4—C5—C6—C7179.0 (3)C16—C15—C20—C190.4 (6)
C2—C1—C6—C51.3 (5)C16—C15—C20—S1178.0 (3)
N1—C1—C6—C5179.2 (3)C6—C1—N1—C80.8 (3)
C2—C1—C6—C7179.4 (3)C2—C1—N1—C8178.6 (3)
N1—C1—C6—C71.0 (3)C6—C1—N1—S1167.3 (2)
C5—C6—C7—C8179.6 (4)C2—C1—N1—S112.1 (5)
C1—C6—C7—C82.6 (3)C7—C8—N1—C12.5 (3)
C5—C6—C7—C91.1 (6)C14—C8—N1—C1175.2 (3)
C1—C6—C7—C9178.9 (3)C7—C8—N1—S1168.2 (2)
C6—C7—C8—N13.1 (3)C14—C8—N1—S19.5 (4)
C9—C7—C8—N1178.5 (3)C1—N1—S1—O2170.3 (3)
C6—C7—C8—C14174.4 (3)C8—N1—S1—O225.8 (3)
C9—C7—C8—C144.0 (6)C1—N1—S1—O141.5 (3)
C8—C7—C9—O3134.4 (4)C8—N1—S1—O1154.7 (3)
C6—C7—C9—O343.8 (5)C1—N1—S1—C2073.7 (3)
C8—C7—C9—C1049.0 (5)C8—N1—S1—C2090.2 (3)
C6—C7—C9—C10132.8 (3)C19—C20—S1—O228.5 (3)
O3—C9—C10—C11162.0 (4)C15—C20—S1—O2153.8 (3)
C7—C9—C10—C1114.7 (6)C19—C20—S1—O1161.7 (3)
O3—C9—C10—S214.0 (5)C15—C20—S1—O120.7 (3)
C7—C9—C10—S2169.4 (3)C19—C20—S1—N185.5 (3)
C9—C10—C11—C12177.2 (4)C15—C20—S1—N192.1 (3)
S2—C10—C11—C121.0 (4)C12—C13—S2—C101.1 (4)
C10—C11—C12—C130.2 (6)C11—C10—S2—C131.2 (3)
C11—C12—C13—S20.7 (6)C9—C10—S2—C13177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.392.954 (5)119
C2—H2···O2i0.932.653.394 (4)138
C14—H14A···O20.962.002.806 (4)140
C14—H14A···S10.962.773.261 (4)112
C14—H14B···S2ii0.962.933.822 (4)156
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+2.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science
First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787.
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGrinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. & Mashkovskii, M. D. (1984). Khim. Farm. Zh. 18, 159–163.  CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationKamalaKumar, C., Dhayalan, V., Mohanakrishnan, A. K., Balasubramanian, V. & Manivannan, V. (2011). Acta Cryst. E67, o741.  CrossRef IUCr Journals
First citationKaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620–6662.  Web of Science CrossRef CAS PubMed
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationPorter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.  CrossRef CAS Web of Science
First citationRaj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science CrossRef PubMed CAS
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS
First citationRodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813–3823.  CSD CrossRef CAS Web of Science
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173–176.  Web of Science CrossRef CAS
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2699.  Web of Science CrossRef PubMed CAS
First citationSundberg, R. J. (1996). The Chemistry of Indoles, pp. 113 New York: Academic Press.
First citationUmadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2015a). Acta Cryst. E71, 133–135.  CrossRef IUCr Journals
First citationUmadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2015b). Acta Cryst. E71, o86–o87.  CrossRef IUCr Journals
First citationWolf, W. M. (1999). Acta Cryst. C55, 469–472.  Web of Science CSD CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds