research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a looped-chain CoII coordination polymer: catena-poly[[bis­­(nitrato-κO)cobalt(II)]bis­­[μ-bis­­(pyridin-3-ylmeth­yl)sulfane-κ2N:N′]]

CROSSMARK_Color_square_no_text.svg

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bMineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: joobeomi@kigam.re.kr, kmpark@gnu.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 14 October 2017; accepted 16 October 2017; online 20 October 2017)

The asymmetric unit of the title compound, [Co(NO3)2(C12H12N2S)2]n, contains a bis­(pyridin-3-ylmeth­yl)sulfane (L) ligand, an NO3 anion and half a CoII cation, which lies on an inversion centre. The CoII cation is six-coordinated, being bound to four pyridine N atoms from four symmetry-related L ligands. The remaining coordination sites are occupied by two O atoms from two symmetry-related nitrate anions in a monodentate manner. Thus, the CoII centre adopts a distorted octa­hedral geometry. Two symmetry-related L ligands are connected by two symmetry-related CoII cations, forming a 20-membered cyclic dimer, in which the CoII atoms are separated by 10.2922 (7) Å. The cyclic dimers are connected to each other by sharing CoII atoms, giving rise to the formation of an infinite looped chain propagating along the [101] direction. Inter­molecular C—H⋯π (H⋯ring centroid = 2.89 Å) inter­actions between one pair of corresponding L ligands and C—H⋯O hydrogen bonds between the L ligands and the nitrate anions occur in the looped chain. In the crystal, adjacent looped chains are connected by inter­molecular ππ stacking inter­actions [centroid-to-centroid distance = 3.8859 (14) Å] and C—H⋯π hydrogen bonds (H⋯ring centroid = 2.65 Å), leading to the formation of layers parallel to (101). These layers are further connected through C—H⋯O hydrogen bonds between the layers, resulting in the formation of a three-dimensional supra­molecular architecture.

1. Chemical context

Over the last two decades, numerous one-dimensional coord­ination polymers have been developed, not only because of their fascinating architectures but also their potential applications as functional materials (Furukawa et al., 2014[Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700-5734.]; Silva et al., 2015[Silva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774-6803.]). In this area of research, dipyridyl-type mol­ecules as organic building blocks have been widely used to construct diverse one-dimensional self-assembled coordination polymers with intriguing structural topologies (Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]; Wang et al., 2012[Wang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084-1104.]). Our group has also developed several one-dimensional coordination polymers with fascinating topologies such as zigzag (Lee et al., 2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]; Moon et al., 2016[Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513-1516.]), helical (Moon et al., 2014[Moon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507-509.], 2015[Moon, S.-H., Kang, Y. & Park, K.-M. (2015). Acta Cryst. E71, 1287-1289.]), double helical (Lee et al., 2015[Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532-1535.]), looped chain (Ju et al., 2014[Ju, H., Lee, E., Moon, S.-H., Lee, S. S. & Park, K.-M. (2014). Bull. Korean Chem. Soc. 35, 3658-3660.]) and ribbon-type double-stranded (Moon et al., 2017[Moon, S.-H., Kang, Y. & Park, K.-M. (2017). Acta Cryst. E73, 1587-1589.]; Park et al., 2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]) structures using dipyridyl-type ligands. In an extension of our research, the title compound was prepared by the reaction of cobalt(II) nitrate with bis­(pyridin-3-ylmeth­yl)sulfane (L) as a flexible dipyridyl-type ligand, synthesized using a literature procedure (Park et al., 2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]; Lee et al., 2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.]). Herein, we report the crystal structure of the title compound, which adopts a one-dimensional looped-chain structure.

[Scheme 1]

2. Structural commentary

As illustrated in Fig. 1[link], the asymmetric unit of the title compound consists of one CoII cation located on an inversion centre, one (pyridin-3-ylmeth­yl)sulfane ligand, L, and one NO3 anion. The CoII cation is coordinated by four pyridine N atoms from four symmetry-related L ligands. In addition, the CoII cation binds to two O atoms of two symmetry-related monodentate nitrate anions, forming a distorted octa­hedral CoN4O2 coordination. Selected bond lengths and angles around the Co1 atom are listed in Table 1[link]. The N1- and N2-pyridine rings coordinated to the CoII centre are tilted by 70.75 (7)° with respect to each other (Fig. 1[link]).

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.1414 (16) Co1—N2i 2.1907 (18)
Co1—N1 2.1571 (17)    
       
O1ii—Co1—O1 180.0 N1—Co1—N2i 92.32 (6)
O1—Co1—N1 85.34 (7) O1—Co1—N2iii 88.21 (7)
O1—Co1—N1ii 94.66 (7) N1—Co1—N2iii 87.68 (6)
N1—Co1—N1ii 180.0 N2i—Co1—N2iii 180.0
O1—Co1—N2i 91.79 (7)    
Symmetry codes: (i) x+1, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z.
[Figure 1]
Figure 1
View of the cyclic dimer structure of the title compound, showing the geometry around CoII centre and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Inter­molecular C—H⋯π and C—H⋯O hydrogen bonds are represented by yellow and black dashed lines, respectively [symmetry codes: (i) x + 1, y, z + 1; (ii) −x + 1, −y + 1, −z + 1; (iii) −x, −y + 1, −z; (iv) x − 1, y, z − 1].

Two symmetry-related L ligands bridge two CoII atoms, resulting in the formation of a 20-membered cyclic dimer with a Co⋯Co separation of 10.2922 (7) Å. The cyclic dimers are connected by sharing CoII atoms, leading to the formation of an infinite looped chain propagating along the [101] direction. An inter­molecular C7—H7BCg2i inter­actions [H⋯π = 2.89 Å; Table 2[link]; yellow dashed lines in Fig. 1[link]; Cg2 is the centroid of atoms N2/C8–C12; symmetry code: (i) −x, −y + 1, −z] between one pair of corresponding L ligands and several C—H⋯O hydrogen bonds between the L ligands and the NO3 anions (Table 2[link]; black dashed lines in Fig. 1[link]) contribute to the stabilization of the looped chain.

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N2/C8–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3iv 0.93 2.60 3.466 (3) 155
C5—H5⋯O2ii 0.93 2.30 3.171 (3) 157
C9—H9⋯O2ii 0.93 2.54 3.373 (3) 149
C11—H11⋯O1iii 0.93 2.43 3.032 (3) 122
C12—H12⋯O1v 0.93 2.53 3.134 (3) 123
C12—H12⋯O2v 0.93 2.59 3.219 (3) 125
C6—H6ACg2vi 0.97 2.65 3.546 (3) 154
C7—H7BCg2iii 0.97 2.89 3.565 (3) 127
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) -x+2, -y+1, -z+1; (v) x-1, y, z-1; (vi) -x, -y+2, -z.

3. Supra­molecular features

Adjacent looped chains in the structure are connected by inter­molecular ππ stacking inter­actions between the N1-pyridine rings [Cg1⋯Cg1ii = 3.8859 (14) Å; yellow dashed lines in Fig. 2[link]; Cg1 is the centroid of atoms N1/C1–C5; symmetry code: (ii) −x + 1, −y + 2, −z + 1] together with inter­molecular C6—H6ACg2iii hydrogen bonds [H⋯π = 2.65 Å; Table 2[link]; black dashed lines in Fig. 2[link]; symmetry code: (iii) −x, −y + 2, −z], generating layers parallel to (101). Neighboring layers are packed by C1—H1⋯O3iv hydrogen bonds [H⋯O = 2.60 Å; Table 2[link]; yellow dashed lines in Fig. 3[link]; symmetry code: (iv) −x + 2, −y + 1, −z + 1] between pyridine H atoms and nitro­gen O atoms, resulting in the formation of a three-dimensional supra­molecular architecture.

[Figure 2]
Figure 2
The supra­molecular layer formed by inter­molecular ππ stacking inter­actions (yellow dashed lines) and C—H⋯π hydrogen bonds (black dashed lines) between the looped chains. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
The three-dimensional supra­molecular network formed via inter­molecular C—H⋯O hydrogen bonds (yellow dashed lines) between the layers. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Synthesis and crystallization

The L ligand was synthesized according to a literature method (Park et al., 2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]; Lee et al., 2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.]). Crystals of the title compound were grown by slow evaporation of a methanol/H2O (2:1) solution of the L ligand with Co(NO3)2·6H2O in a 2:1 molar ratio.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined as riding: C—H = 0.93 Å for Csp2—H and 0.97 Å for methyl­ene C—H with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Co(NO3)2(C12H12N2S)2]
Mr 615.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 8.1620 (7), 8.8158 (8), 9.5078 (8)
α, β, γ (°) 98.531 (2), 109.218 (2), 92.062 (2)
V3) 636.22 (10)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.89
Crystal size (mm) 0.45 × 0.30 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.634, 0.896
No. of measured, independent and observed [I > 2σ(I)] reflections 3659, 2456, 2082
Rint 0.040
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.04
No. of reflections 2456
No. of parameters 178
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

catena-Poly[[bis(nitrato-κO)cobalt(II)]bis[µ-bis(pyridin-3-ylmethyl)sulfane-κ2N:N']] top
Crystal data top
[Co(NO3)2(C12H12N2S)2]Z = 1
Mr = 615.54F(000) = 317
Triclinic, P1Dx = 1.607 Mg m3
a = 8.1620 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8158 (8) ÅCell parameters from 3659 reflections
c = 9.5078 (8) Åθ = 2.3–26.0°
α = 98.531 (2)°µ = 0.89 mm1
β = 109.218 (2)°T = 298 K
γ = 92.062 (2)°Plate, violet
V = 636.22 (10) Å30.45 × 0.30 × 0.15 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
2082 reflections with I > 2σ(I)
φ and ω scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.0°, θmin = 2.3°
Tmin = 0.634, Tmax = 0.896h = 710
3659 measured reflectionsk = 1010
2456 independent reflectionsl = 117
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.1617P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2456 reflectionsΔρmax = 0.33 e Å3
178 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.02620 (13)
S10.20509 (7)0.89446 (7)0.01804 (7)0.03834 (17)
N10.5427 (2)0.7131 (2)0.42595 (19)0.0294 (4)
N20.3498 (2)0.5946 (2)0.2639 (2)0.0294 (4)
N30.8472 (2)0.3452 (2)0.4702 (2)0.0353 (4)
O10.7307 (2)0.4382 (2)0.4536 (2)0.0459 (4)
O20.9392 (2)0.3314 (3)0.5987 (2)0.0623 (6)
O30.8698 (3)0.2729 (2)0.3594 (2)0.0600 (5)
C10.7012 (3)0.7803 (3)0.4459 (3)0.0359 (5)
H10.79920.73780.50200.043*
C20.7239 (3)0.9093 (3)0.3867 (3)0.0419 (6)
H20.83560.95330.40410.050*
C30.5807 (3)0.9731 (3)0.3014 (3)0.0377 (5)
H30.59451.05950.25950.045*
C40.4158 (3)0.9065 (2)0.2792 (2)0.0293 (4)
C50.4044 (3)0.7788 (2)0.3446 (2)0.0288 (4)
H50.29390.73520.33160.035*
C60.2546 (3)0.9672 (3)0.1822 (3)0.0345 (5)
H6A0.27071.07880.19940.041*
H6B0.15660.93790.21190.041*
C70.1232 (3)0.6961 (3)0.0308 (3)0.0345 (5)
H7A0.15440.63120.10800.041*
H7B0.18020.66240.06480.041*
C80.0710 (3)0.6735 (2)0.0675 (2)0.0298 (5)
C90.1533 (3)0.7008 (3)0.0387 (3)0.0390 (5)
H90.08890.73440.14020.047*
C100.3334 (3)0.6773 (3)0.0089 (3)0.0425 (6)
H100.39150.69730.06030.051*
C110.4259 (3)0.6242 (3)0.1590 (3)0.0369 (5)
H110.54660.60820.18890.044*
C120.1752 (3)0.6202 (2)0.2167 (2)0.0292 (4)
H120.12050.60110.28850.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0226 (2)0.0291 (2)0.0237 (2)0.00094 (15)0.00236 (16)0.00769 (16)
S10.0360 (3)0.0407 (3)0.0324 (3)0.0055 (2)0.0012 (2)0.0141 (2)
N10.0260 (9)0.0313 (9)0.0286 (9)0.0012 (7)0.0049 (7)0.0082 (7)
N20.0280 (9)0.0285 (9)0.0279 (9)0.0005 (7)0.0039 (7)0.0067 (7)
N30.0288 (10)0.0424 (11)0.0357 (11)0.0022 (8)0.0122 (8)0.0074 (9)
O10.0323 (9)0.0589 (11)0.0496 (10)0.0161 (8)0.0135 (8)0.0168 (9)
O20.0407 (10)0.1040 (17)0.0441 (11)0.0230 (11)0.0094 (9)0.0258 (11)
O30.0686 (13)0.0642 (13)0.0510 (12)0.0086 (10)0.0314 (10)0.0046 (10)
C10.0243 (11)0.0422 (13)0.0367 (12)0.0025 (9)0.0023 (9)0.0114 (10)
C20.0292 (12)0.0469 (14)0.0478 (14)0.0051 (10)0.0093 (11)0.0133 (11)
C30.0368 (12)0.0334 (12)0.0398 (13)0.0066 (9)0.0077 (10)0.0113 (10)
C40.0308 (11)0.0282 (10)0.0247 (10)0.0002 (8)0.0044 (9)0.0040 (8)
C50.0238 (10)0.0331 (11)0.0274 (10)0.0003 (8)0.0056 (8)0.0067 (9)
C60.0337 (12)0.0285 (11)0.0370 (12)0.0035 (9)0.0042 (10)0.0100 (9)
C70.0305 (11)0.0330 (11)0.0311 (11)0.0001 (9)0.0008 (9)0.0047 (9)
C80.0315 (11)0.0254 (10)0.0276 (11)0.0008 (8)0.0027 (9)0.0071 (8)
C90.0440 (13)0.0419 (13)0.0249 (11)0.0050 (10)0.0051 (10)0.0037 (9)
C100.0441 (14)0.0520 (15)0.0334 (12)0.0032 (11)0.0181 (11)0.0039 (11)
C110.0321 (12)0.0444 (13)0.0347 (12)0.0005 (10)0.0117 (10)0.0083 (10)
C120.0294 (11)0.0279 (10)0.0282 (11)0.0004 (8)0.0072 (9)0.0052 (8)
Geometric parameters (Å, º) top
Co1—O1i2.1414 (16)C2—H20.9300
Co1—O12.1414 (16)C3—C41.386 (3)
Co1—N12.1571 (17)C3—H30.9300
Co1—N1i2.1571 (17)C4—C51.378 (3)
Co1—N2ii2.1907 (18)C4—C61.505 (3)
Co1—N2iii2.1907 (18)C5—H50.9300
S1—C61.820 (2)C6—H6A0.9700
S1—C71.822 (2)C6—H6B0.9700
N1—C11.346 (3)C7—C81.505 (3)
N1—C51.346 (3)C7—H7A0.9700
N2—C111.338 (3)C7—H7B0.9700
N2—C121.345 (3)C8—C91.384 (3)
N2—Co1iv2.1907 (17)C8—C121.392 (3)
N3—O31.219 (3)C9—C101.386 (3)
N3—O21.232 (3)C9—H90.9300
N3—O11.264 (2)C10—C111.376 (3)
C1—C21.374 (3)C10—H100.9300
C1—H10.9300C11—H110.9300
C2—C31.378 (3)C12—H120.9300
O1i—Co1—O1180.0C4—C3—H3120.5
O1i—Co1—N194.66 (7)C5—C4—C3117.63 (19)
O1—Co1—N185.34 (7)C5—C4—C6120.95 (19)
O1i—Co1—N1i85.34 (7)C3—C4—C6121.38 (19)
O1—Co1—N1i94.66 (7)N1—C5—C4124.37 (19)
N1—Co1—N1i180.0N1—C5—H5117.8
O1i—Co1—N2ii88.21 (7)C4—C5—H5117.8
O1—Co1—N2ii91.79 (7)C4—C6—S1112.23 (16)
N1—Co1—N2ii92.32 (6)C4—C6—H6A109.2
N1i—Co1—N2ii87.68 (6)S1—C6—H6A109.2
O1i—Co1—N2iii91.79 (7)C4—C6—H6B109.2
O1—Co1—N2iii88.21 (7)S1—C6—H6B109.2
N1—Co1—N2iii87.68 (6)H6A—C6—H6B107.9
N1i—Co1—N2iii92.32 (6)C8—C7—S1113.88 (15)
N2ii—Co1—N2iii180.0C8—C7—H7A108.8
C6—S1—C7101.13 (11)S1—C7—H7A108.8
C1—N1—C5116.71 (18)C8—C7—H7B108.8
C1—N1—Co1123.98 (14)S1—C7—H7B108.8
C5—N1—Co1119.10 (13)H7A—C7—H7B107.7
C11—N2—C12116.94 (19)C9—C8—C12117.5 (2)
C11—N2—Co1iv121.87 (15)C9—C8—C7124.0 (2)
C12—N2—Co1iv121.15 (14)C12—C8—C7118.5 (2)
O3—N3—O2120.9 (2)C8—C9—C10118.8 (2)
O3—N3—O1119.8 (2)C8—C9—H9120.6
O2—N3—O1119.3 (2)C10—C9—H9120.6
N3—O1—Co1145.89 (15)C11—C10—C9119.7 (2)
N1—C1—C2122.6 (2)C11—C10—H10120.2
N1—C1—H1118.7C9—C10—H10120.2
C2—C1—H1118.7N2—C11—C10122.9 (2)
C1—C2—C3119.8 (2)N2—C11—H11118.6
C1—C2—H2120.1C10—C11—H11118.6
C3—C2—H2120.1N2—C12—C8124.2 (2)
C2—C3—C4118.9 (2)N2—C12—H12117.9
C2—C3—H3120.5C8—C12—H12117.9
O3—N3—O1—Co1122.6 (3)C7—S1—C6—C473.67 (17)
O2—N3—O1—Co159.0 (4)C6—S1—C7—C891.15 (17)
C5—N1—C1—C20.2 (3)S1—C7—C8—C982.8 (2)
Co1—N1—C1—C2174.55 (18)S1—C7—C8—C1298.0 (2)
N1—C1—C2—C30.9 (4)C12—C8—C9—C101.4 (3)
C1—C2—C3—C41.0 (4)C7—C8—C9—C10179.4 (2)
C2—C3—C4—C50.1 (3)C8—C9—C10—C111.5 (4)
C2—C3—C4—C6177.6 (2)C12—N2—C11—C100.5 (3)
C1—N1—C5—C41.4 (3)Co1iv—N2—C11—C10177.10 (18)
Co1—N1—C5—C4173.66 (16)C9—C10—C11—N20.6 (4)
C3—C4—C5—N11.3 (3)C11—N2—C12—C80.6 (3)
C6—C4—C5—N1176.39 (19)Co1iv—N2—C12—C8177.01 (15)
C5—C4—C6—S195.4 (2)C9—C8—C12—N20.4 (3)
C3—C4—C6—S182.2 (2)C7—C8—C12—N2179.61 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N2/C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O3v0.932.603.466 (3)155
C5—H5···O2i0.932.303.171 (3)157
C9—H9···O2i0.932.543.373 (3)149
C11—H11···O1iii0.932.433.032 (3)122
C12—H12···O1iv0.932.533.134 (3)123
C12—H12···O2iv0.932.593.219 (3)125
C6—H6A···Cg2vi0.972.653.546 (3)154
C7—H7B···Cg2iii0.972.893.565 (3)127
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x1, y, z1; (v) x+2, y+1, z+1; (vi) x, y+2, z.
 

Funding information

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020410).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFurukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700–5734.  Web of Science CrossRef CAS PubMed
First citationJu, H., Lee, E., Moon, S.-H., Lee, S. S. & Park, K.-M. (2014). Bull. Korean Chem. Soc. 35, 3658–3660.  Web of Science CSD CrossRef CAS
First citationLee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535.  Web of Science CrossRef CAS
First citationLee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480.  Web of Science CSD CrossRef CAS
First citationLee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834–3837.  Web of Science CSD CrossRef CAS
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed
First citationMoon, B., Jeon, Y., Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, 507–509.  CSD CrossRef IUCr Journals
First citationMoon, S.-H., Kang, Y. & Park, K.-M. (2015). Acta Cryst. E71, 1287–1289.  Web of Science CSD CrossRef IUCr Journals
First citationMoon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1513–1516.  Web of Science CSD CrossRef IUCr Journals
First citationMoon, S.-H., Kang, Y. & Park, K.-M. (2017). Acta Cryst. E73, 1587–1589.  CSD CrossRef IUCr Journals
First citationPark, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148–4154.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSilva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774–6803.  Web of Science CrossRef CAS PubMed
First citationWang, C., Zhang, T. & Lin, W. (2012). Chem. Rev. 112, 1084–1104.  Web of Science CrossRef CAS PubMed
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds