

Received 17 May 2017 Accepted 29 September 2017

Edited by M. Nieger, University of Helsinki, Finland

Keywords: hybrid material; crystal structure; hydrogen bonding.

CCDC reference: 1577164

Supporting information: this article has supporting information at journals.iucr.org/e

Hybrid organic-inorganic crystal structure of 4-(dimethylamino)pyridinium dimethylammonium tetrachloridolead(II)

Cassidy A. Benson,^a Gage Bateman,^a Jordan M. Cox^a and Jason B. Benedict^{b*}

^a730 Natural Sciences Complex, Buffalo, 14260-3000, USA, and ^b771 Natural Sciences Complex, Buffalo, 14260-3000, USA. *Correspondence e-mail: jbb6@buffalo.edu

The title compound, $(C_2H_8N)(C_7H_{11}N_2)$ [PbCl₄], is a hybrid organic–inorganic material. It crystallizes in the space group *C*2/*c* and contains one half of a molecule of lead chloride, 4-(dimethylamino)pyridinium, and dimethyl-ammonium in the asymmetric unit. The crystal structure exhibits chains of lead chloride capped by 4-(dimethylamino)pyridinium and dimethylammoium by hydrogen bonding. This creates a one-dimensional zipper-like structure down the *a* axis. The crystal structure is examined and compared to a similar structure containing lead chloride and dimethylbenzene-1,4-diaminium.

1. Chemical context

Hybrid organic-inorganic materials have been gaining attention due to their interesting optical properties and for their applications as semiconductors (Dobrzycki & Woźniak, 2008). Early materials such as lead halogen perovskites have been identified as having intrinsic white-light emission (Dohner et al., 2014) and as an inexpensive and high conversion material for solar cells (Baikie et al., 2013; Zhao & Zhu, 2014). By changing the size and structure of the organic portions of these materials, one can begin to assess the impact of these groups on the resulting crystal structures (Gillon et al., 2000). For organic cations containing groups capable of hydrogen bonding, these interactions may form the basis for deliberate crystal engineering of next generation materials. Herein we report the structure of a new hybrid organic-inorganic material that contains 1-D lead chloride chains capped by dimethylammonium (DMA) and 4-(dimethylamino)pyridinium (4DAP) groups through extensive hydrogenbonding interactions.

OPEN 3 ACCESS

2. Structural commentary

This structure crystallizes in the centrosymmetric space group C2/c with half of a molecule of DMA, half of a $[PbCl_4]^{2-}$ anion,

research communications

Figure 1

The expanded asymmetric unit of the title crystal structure, showing the naming scheme. The asymmetric unit contains half of each component: dimethylammonium, 4-(dimethylamino)pyridinium, and [PbCl₄]²⁻. Displacement ellipsoids are drawn at the 50% probability level. Atom colors: carbon (gray), nitrogen (blue), hydrogen (white), lead (dark blue) and chlorine (green). [Symmetry operators: $(\$1) x, 1 - y, -\frac{1}{2} + z;$ ($\$2) 2 - x, y, \frac{1}{2} - z;$ (\$3) 2 - x, 1 - y, 1 - z; ($\$4) 1 - x, y, \frac{3}{2} - z;$ ($\$5) 1 - x, y, \frac{1}{2} - z.$]

and half of a molecule of 4DAP in the asymmetric unit, shown in Fig. 1. The point groups of the two cations are C_2 . The lead metal center, with its six chloride ligands, exhibits a slightly distorted octahedral coordination geometry (formally C_2 symmetry). Of the two crystallographically unique Cl atoms, Cl1 and its symmetry equivalent produced through a C_2 rotation are the two terminal atoms [Pb-Cl = 2.8499 (4) Å]. The other crystallographically unique Cl atom, Cl2, produces the four bridging atoms through a C_2 rotation and inversion operation that results in an additional two unique Pb-Cl bonds [2.9015 (5) and 2.9041 (5) Å]. These bridging ligands form one-dimensional chains of [PbCl₄]²⁻ anions which extend approximately along the [001] direction. The net negative two charge of the lead chloride anion is balanced by the positive charges of the DMA and 4DAP cations.

3. Supramolecular features

The one-dimensional lead chloride chains are capped in the [010] direction by 4DAP and DMA molecules *via* hydrogen bonds (Table 1), which form between the NH groups on the 4DAP and DMA molecules and the terminal chloride ligands on each lead atom. The hydrogen-bond donor on the 4DAP forms a hydrogen bond with each of the two terminal chlorides on the nearest Pb atom, while each donor on the DMA forms a hydrogen bond with one terminal chloride on Pb atoms that are separated in the chain by one additional Pb. The hydrogen-bonding network of the title structure is shown in

Figure 2

Hydrogen-bonding network in a single $PbCl_4$ chain viewed down [100]. Displacement ellipsoids are drawn at the 50% probability level. Atom colors: carbon (gray), nitrogen (blue), hydrogen (white), lead (dark blue) and chlorine (green).

Fig. 2. The chains are packed together along the [010] direction by intercalation of the peripheral 4DAP ligands, as shown in Fig. 3, to form sheets which lie in the (100) plane. These sheets are held together primarily by weak intermolecular interactions, although one $CH \cdots Cl$ contact (2.788 Å) does exist that is 0.162 Å less than the sum of the van der Waals radii for these atoms.

Figure 3

Space-filling model of intercalated $PbCl_4$ chains viewed down [100]. (Left) $PbCl_4$ chain colored by element. (Center and right) Intercalation illustrated by chains coloured in blue and orange..

4. Database survey

The crystal structure of $[PbCl_4]^{2-}$ and dimethylbenzene-1,4 diaminium was reported in 2008 (Dobrzycki & Woźniak, 2008). This compound crystallizes in the centrosymmetric space group $P2_1/n$, and the structure contains two-dimensional lead chloride sheets that run parallel to [001]. Like in the title structure, each Pb center possesses approximately octahedral symmetry (formally C_1) and is coordinated to two terminal and four bridging chloride atoms. Two of the bridging atoms are crystallographically unique and each give rise to a symmetry-related atom to yield four bonds to the Pb center (Pb-Cl2 = 2.945 and 2.927 Å; Pb-Cl3 = 3.095 and 2.765 Å).In this compound, hydrogen bonding occurs between the terminal chloride ligands and the protons on the diaminium groups of the organic cation, as shown in Fig. 4. Both structures are similarly charge-balanced in that the respective anionic PbCl₄ sheet or chain is balanced by the positive charge from organic cation molecules. The major difference between these two compounds is that the title structure contains onedimensional chains while this structure contains two-dimensional sheets.

5. Synthesis and crystallization

To a 20 mL scintillation vial was added 4DAP (1.008 g, 8.25 \times 10^{-3} mol) and concentrated hydrochloric acid (2 ml) creating an acidic solution. To a 23 mL screw-top thick-walled vial was added PbCl₂ (0.5040 g, 1.81×10^{-3} mol), DMF (1 ml), and the 4DAP acid solution (1 ml). The thick-walled vial was placed in the oven for 11 days at 373 K. Clear, colorless crystals of the title compound that were suitable for single-crystal X-ray diffraction were obtained. The DMA is present in the lattice due to the in situ degradation of DMF, which can occur at the reaction temperature (Burrows et al., 2008).

Figure 4

Hydrogen-bonding network in [PbCl₄]²⁻·dimethylbenzene-1,4-diaminium. Displacement ellipsoids are drawn at the 50% probability level. Atom colors: carbon (gray), nitrogen (blue), hydrogen (white), lead (dark blue) and chlorine (green).

Table	1			
Hydrog	gen-bond	geometry	(Å,	°).

		-		
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{l} N1 - H1 \cdots Cl1^{i} \\ N2 - H2 \cdots Cl1^{i} \\ N2 - H2 \cdots Cl1^{ii} \end{array}$	0.87 (2) 0.88 0.88	2.47 (1) 2.63 2.63	3.1844 (6) 3.2901 (18) 3.2901 (18)	139 (2) 133 133

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The position of the ammonium hydrogen atom was determined from the difference-Fourier map, and all other hydrogen atoms were placed in idealized positions with bond lengths set to 0.98 Å for alkyl C-H protons, 0.95 Å for aliphatic C-H protons, and 0.88 Å for the pyridinium proton. These hydrogen atoms were refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(N,C)$ for all N-H and aliphatic protons and 1.5 $U_{eq}(C)$ for methyl group protons. To appropriately model the ammonium hydrogen atom, which is complicated by the site of symmetry on which the nitrogen atom resides, the distance between the hydrogen atom and its symmetry-equivalent was restrained to 1.4 (2) Å. No other constraints were applied to the refinement model.

Table 2 Experimental details.	
Crystal data	
Chemical formula	$(C_2H_8N)(C_7H_{11}N_2)[PbCl_4]$
M _r	518.26
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	90
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.0965 (11), 19.120 (2), 7.5453 (8)
β (°)	91.0813 (19)
$V(Å^3)$	1600.6 (3)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	11.19
Crystal size (mm)	$0.12 \times 0.10 \times 0.04$
Data collection	
Diffractometer	Bruker SMART APEXII area detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.291, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14318, 2461, 2398
Rint	0.030
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.716
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.013, 0.034, 1.04
No. of reflections	2461
No. of parameters	85
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.68, -0.76

Computer programs: APEX2 and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), SHELXL2016 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Funding information

This material is based upon work supported by the National Science Foundation under grant No. DMR-1455039.

References

- Baikie, T., Fang, Y., Kadro, J. M., Schreyer, M., Wei, F., Mhaisalkar, S. G., Graetzel, M. & White, T. J. (2013). *J. Mater. Chem. A*, 1, 5628– 5641.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.

- Bruker (2016). *APEX3*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burrows, A. D., Cassar, K., Düren, T., Friend, R. M. W., Mahon, M. F., Rigby, S. P. & Savarese, T. L. (2008). *Dalton Trans.* pp. 2465–2474.
- Dobrzycki, L. & Woźniak, K. (2008). CrystEngComm, 10, 577-589.
- Dohner, E. R., Jaffe, A., Bradshaw, L. R. & Karunadasa, H. I. (2014). J. Am. Chem. Soc. 136, 13154–13157.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gillon, A. L., Lewis, G. R., Orpen, A. G., Rotter, S., Starbuck, J., Wang, X.-M., Rodríguez-Martín, Y. & Ruiz-Pérez, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3897–3905.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Zhao, Y. & Zhu, K. (2014). J. Phys. Chem. C, 118, 9412-9418.

supporting information

Acta Cryst. (2017). E73, 1670-1673 [https://doi.org/10.1107/S2056989017014062]

Hybrid organic-inorganic crystal structure of 4-(dimethylamino)pyridinium dimethylammonium tetrachloridolead(II)

Cassidy A. Benson, Gage Bateman, Jordan M. Cox and Jason B. Benedict

Computing details

Data collection: *APEX2* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *olex2.solve* (Bourhis *et al.*, 2015); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

F(000) = 976 $D_x = 2.151 \text{ Mg m}^{-3}$

 $\theta = 3.4-30.6^{\circ}$ $\mu = 11.19 \text{ mm}^{-1}$ T = 90 KPlate, colourless $0.12 \times 0.10 \times 0.04 \text{ mm}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 9977 reflections

4-Dimethylaminopyridinium dimethylammonium tetrachloridolead(II)

Crystal data

$(C_2H_8N)(C_7H_{11}N_2)[PbCI_4]$
$M_r = 518.26$
Monoclinic, $C2/c$
a = 11.0965 (11) Å
b = 19.120 (2) Å
c = 7.5453 (8) Å
$\beta = 91.0813 \ (19)^{\circ}$
V = 1600.6 (3) Å ³
Z = 4

Data collection

Durlean SMADT ADEVIL and detector	T = 0.201 T = 0.746
Bruker SWART APEAN area delector	$I_{\rm min} = 0.291, \ I_{\rm max} = 0.740$
diffractometer	14318 measured reflections
Radiation source: microfocus rotating anode,	2461 independent reflections
Incoatec I μ s	2398 reflections with $I > 2\sigma(I)$
Mirror optics monochromator	$R_{\rm int} = 0.030$
Detector resolution: 7.9 pixels mm ⁻¹	$\theta_{\rm max} = 30.6^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
ω and φ scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan	$k = -27 \rightarrow 27$
(SADABS; Bruker, 2016)	$l = -10 \rightarrow 10$
Refinement	

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.013$ $wR(F^2) = 0.034$

S = 1.042461 reflections 85 parameters 1 restraint Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0197P)^2 + 0.6272P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.68 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.76 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	<i>x</i>	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Pb1	1.000000	0.44266 (2)	0.250000	0.00845 (3)
Cl2	0.86249 (4)	0.44764 (2)	0.57303 (6)	0.01412 (8)
Cl1	0.85512 (3)	0.33250 (2)	0.10684 (5)	0.01280 (7)
N1	0.500000	0.18730 (13)	0.250000	0.0181 (4)
H1	0.4713 (19)	0.1598 (13)	0.3311 (18)	0.022*
N3	0.500000	0.52247 (11)	0.750000	0.0121 (4)
N2	0.500000	0.30724 (11)	0.750000	0.0138 (4)
H2	0.499998	0.261213	0.750000	0.017*
C4	0.500000	0.45287 (12)	0.750000	0.0103 (4)
C2	0.40384 (16)	0.34254 (9)	0.6811 (2)	0.0138 (3)
H2A	0.337557	0.317062	0.632503	0.017*
C3	0.40049 (14)	0.41371 (9)	0.6802 (2)	0.0121 (3)
Н3	0.331759	0.437346	0.633026	0.015*
C5	0.39118 (18)	0.56252 (9)	0.7039 (3)	0.0165 (4)
H5A	0.320144	0.537848	0.747178	0.025*
H5B	0.384567	0.567587	0.574804	0.025*
H5C	0.396086	0.608909	0.758791	0.025*
C1	0.5973 (2)	0.23118 (11)	0.3336 (3)	0.0238 (4)
H1A	0.641230	0.255783	0.240978	0.036*
H1B	0.653055	0.201124	0.400987	0.036*
H1C	0.561169	0.265369	0.413504	0.036*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.00920 (5)	0.00796 (5)	0.00818 (5)	0.000	0.00013 (3)	0.000
Cl2	0.01194 (18)	0.01588 (19)	0.01458 (19)	-0.00345 (13)	0.00121 (15)	-0.00144 (13)
Cl1	0.01214 (16)	0.01147 (16)	0.01476 (17)	-0.00031 (13)	-0.00059 (13)	-0.00139 (13)
N1	0.0206 (11)	0.0187 (11)	0.0151 (10)	0.000	0.0012 (8)	0.000
N3	0.0089 (8)	0.0123 (9)	0.0149 (9)	0.000	-0.0014 (7)	0.000
N2	0.0176 (10)	0.0103 (9)	0.0136 (9)	0.000	0.0019 (7)	0.000
C4	0.0102 (10)	0.0123 (10)	0.0085 (10)	0.000	0.0009 (8)	0.000
C2	0.0132 (7)	0.0152 (8)	0.0131 (7)	-0.0030 (6)	0.0011 (6)	-0.0018 (6)
C3	0.0098 (6)	0.0143 (7)	0.0121 (7)	-0.0003 (6)	0.0002 (5)	-0.0003 (6)
C5	0.0131 (8)	0.0165 (8)	0.0200 (9)	0.0044 (6)	-0.0016 (7)	0.0015 (6)
C1	0.0315 (10)	0.0156 (8)	0.0247 (9)	-0.0080 (7)	0.0084 (8)	-0.0049 (7)

Geometric parameters (Å, °)

Pb1—Cl2	2.9015 (5)	N2—C2	1.358 (2)
Pb1—Cl2 ⁱ	2.9041 (5)	N2	1.358 (2)
Pb1—Cl2 ⁱⁱ	2.9015 (5)	C4—C3 ^v	1.427 (2)
Pb1—Cl2 ⁱⁱⁱ	2.9041 (5)	C4—C3	1.427 (2)
Pb1—Cl1 ⁱⁱ	2.8500 (4)	C2—H2A	0.9500
Pb1—Cl1	2.8499 (4)	C2—C3	1.361 (2)
N1—H1 ^{iv}	0.872 (17)	С3—Н3	0.9500
N1—H1	0.872 (17)	С5—Н5А	0.9800
N1-C1 ^{iv}	1.497 (2)	С5—Н5В	0.9800
N1-C1	1.497 (2)	С5—Н5С	0.9800
N3—C4	1.331 (3)	C1—H1A	0.9800
N3—C5 ^v	1.466 (2)	C1—H1B	0.9800
N3—C5	1.466 (2)	C1—H1C	0.9800
N2—H2	0.8800		
Cl2—Pb1—Cl2 ⁱⁱ	176.237 (16)	C2—N2—H2	119.8
Cl2 ⁱⁱ —Pb1—Cl2 ⁱⁱⁱ	94.728 (14)	C2 ^v —N2—H2	119.8
Cl2—Pb1—Cl2 ⁱⁱⁱ	82.538 (14)	C2 ^v —N2—C2	120.4 (2)
Cl2—Pb1—Cl2 ⁱ	94.728 (14)	N3-C4-C3 ^v	121.65 (10)
$Cl2^{iii}$ —Pb1— $Cl2^{i}$	87.519 (19)	N3—C4—C3	121.66 (10)
Cl2 ⁱⁱ —Pb1—Cl2 ⁱ	82.539 (14)	C3 ^v —C4—C3	116.7 (2)
Cl1—Pb1—Cl2 ⁱⁱ	90.441 (13)	N2—C2—H2A	119.3
Cl1 ⁱⁱ —Pb1—Cl2	90.442 (13)	N2—C2—C3	121.33 (16)
Cl1—Pb1—Cl2 ⁱ	94.115 (15)	C3—C2—H2A	119.3
Cl1 ⁱⁱ —Pb1—Cl2 ⁱⁱ	92.339 (12)	C4—C3—H3	119.9
Cl1—Pb1—Cl2	92.340 (13)	C2—C3—C4	120.13 (16)
Cl1—Pb1—Cl2 ⁱⁱⁱ	174.742 (12)	С2—С3—Н3	119.9
Cl1 ⁱⁱ —Pb1—Cl2 ⁱⁱⁱ	94.116 (15)	N3—C5—H5A	109.5
$Cl1^{ii}$ —Pb1— $Cl2^{i}$	174.741 (12)	N3—C5—H5B	109.5
Cl1—Pb1—Cl1 ⁱⁱ	84.698 (18)	N3—C5—H5C	109.5
Pb1—Cl2—Pb1 ⁱⁱⁱ	97.462 (14)	H5A—C5—H5B	109.5
H1—N1—H1 iv	106 (3)	H5A—C5—H5C	109.5
$C1^{iv}$ — $N1$ — $H1^{iv}$	108.2 (15)	H5B—C5—H5C	109.5
C1-N1-H1 ^{iv}	111.3 (15)	N1—C1—H1A	109.5
C1 ^{iv} —N1—H1	111.3 (15)	N1—C1—H1B	109.5
C1—N1—H1	108.2 (15)	N1—C1—H1C	109.5
C1 ^{iv} —N1—C1	111.8 (2)	H1A—C1—H1B	109.5
C4—N3—C5	121.49 (10)	H1A—C1—H1C	109.5
C4—N3—C5 ^v	121.49 (10)	H1B—C1—H1C	109.5
C5 ^v —N3—C5	117.0 (2)		
N3—C4—C3—C2	179.51 (11)	C5—N3—C4—C3 ^v	-170.46 (13)
N2—C2—C3—C4	1.0 (2)	C5 ^v —N3—C4—C3 ^v	9.54 (13)

C2 ^v —N2—C2—C3	-0.51 (12)	C5 ^v —N3—C4—C3	-170.46 (13)
C3 ^v —C4—C3—C2	-0.49 (11)	C5—N3—C4—C3	9.54 (13)

Symmetry codes: (i) x, -y+1, z-1/2; (ii) -x+2, y, -z+1/2; (iii) -x+2, -y+1, -z+1; (iv) -x+1, y, -z+1/2; (v) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
N1—H1···Cl1 ^{vi}	0.87 (2)	2.47 (1)	3.1844 (6)	139 (2)
N2—H2···Cl1 ^{vi}	0.88	2.63	3.2901 (18)	133
N2—H2…Cl1 ^{vii}	0.88	2.63	3.2901 (18)	133

Symmetry codes: (vi) *x*-1/2, -*y*+1/2, *z*+1/2; (vii) -*x*+3/2, -*y*+1/2, -*z*+1.