research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­ethyl 3,3′-[(2-fluoro­phen­yl)methyl­­idene]bis­­(1H-indole-2-carboxyl­ate)

CROSSMARK_Color_square_no_text.svg

aTargeted MRI Contrast Agents Laboratory of Jiangsu Province, Nanjing Polytechnic Institute, Geguan Road No.265 Nanjing, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 28 September 2017; accepted 25 October 2017; online 31 October 2017)

In the title compound, C29H25FN2O4, the mean planes of the two indole ring systems (r.m.s. deviations = 0.1392 and 0.0115 Å) are approximately perpendicular to one another, subtending a dihedral angle of 86.0 (5)°; the benzene ring is twisted with respect to the mean planes of the two indole ring systems by 83.3 (2) and 88.1 (4)°, respectively. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further linked by N—H⋯O hydrogen bonds into supra­molecular chains propagating along the [101] direction.

1. Chemical context

Bis(indol­yl)methane derivatives are abundantly present in various terrestrial and marine natural resources (Poter et al., 1977[Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]; Sundberg, 1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.]). They are important anti­biotics in the field of pharmaceuticals with diverse activities, such as anti­cancer, anti­leishmanial and anti­hyperlipidemic (Chang et al., 1999[Chang, Y.-C., Riby, J., Chang, G. H., Peng, G.-F., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825-834.]; Ge et al., 1999[Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199-3203.]). On the other hand, bis­(indoly)methane derivatives can also be used as precursors for MRI necrosis avid contrast agents (Ni, 2008[Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96-112.]). In recent years, we have reported the synthesis and crystal structures of some similar bis­(indoly)methane compounds (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.], 2015[Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140-1142.]; Li et al., 2014[Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259-261.]; Lu et al., 2014[Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593-595.]). Now we report herein another bis­(indoly)methane compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The two indole ring systems are nearly perpendicular to each other [dihedral angle = 86.0 (5)°] while the benzene ring (C24–C29) is tilted with respect to the N1/C2–C9 and N2/C13–C20 indole ring systems, making dihedral angles of 83.3 (2) and 88.1 (4)°, respectively. The carboxyl groups are approximately co-planar with the attached indole moieties, the dihedral angles between the carboxyl groups and the mean plane of the attached indole ring system being 9.5 (2) and 7.2 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, pairs of N1—H1A⋯O1 hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further connected by N2—H2A⋯O3 hydrogen bonds into supra­molecular zigzag chains propagating along the [101] direction (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.10 2.881 (4) 151
N2—H2A⋯O3ii 0.86 2.07 2.874 (3) 157
Symmetry codes: (i) -x-1, -y+2, -z+1; (ii) -x, -y+1, -z+2.
[Figure 2]
Figure 2
A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

4. Database survey

Several similar structures have been reported previously, i.e. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.]), dimethyl 3,3′-[(4-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2015[Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140-1142.]), dimethyl 3,3′-[(4-chloro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014[Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259-261.]) and 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2014[Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593-595.]).

5. Synthesis and crystallization

Ethyl indole-2-carboxyl­ate (1.88 g, 10 mmol) was dissolved in 20 ml ethanol; commercially available 2-fluoro­benzaldehyde (0.62 g, 5 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (0.5 ml) was added and the reaction was left for 1 h. After cooling, the white product was filtered off and washed thoroughly with ethanol. The reaction was monitored by TLC (AcOEt:hexane = 1:3). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution, yield 90%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H atoms and 1.2 for all others.

Table 2
Experimental details

Crystal data
Chemical formula C29H25FN2O4
Mr 484.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.8000 (18), 9.6610 (19), 15.369 (3)
α, β, γ (°) 75.68 (3), 85.44 (3), 83.68 (3)
V3) 1256.5 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.973, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 4947, 4621, 2648
Rint 0.037
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.186, 1.00
No. of reflections 4621
No. of parameters 325
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.29
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Diethyl 3,3'-[(2-fluorophenyl)methylidene]bis(1H-indole-2-carboxylate) top
Crystal data top
C29H25FN2O4Z = 2
Mr = 484.51F(000) = 508
Triclinic, P1Dx = 1.281 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8000 (18) ÅCell parameters from 25 reflections
b = 9.6610 (19) Åθ = 9–12°
c = 15.369 (3) ŵ = 0.09 mm1
α = 75.68 (3)°T = 293 K
β = 85.44 (3)°Block, colorless
γ = 83.68 (3)°0.30 × 0.20 × 0.10 mm
V = 1256.5 (4) Å3
Data collection top
Nonius CAD-4
diffractometer
2648 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.4°, θmin = 1.4°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.973, Tmax = 0.991l = 1818
4947 measured reflections3 standard reflections every 200 reflections
4621 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.090P)2]
where P = (Fo2 + 2Fc2)/3
4621 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.37 e Å3
2 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F0.1008 (3)1.1359 (3)0.64799 (15)0.0892 (8)
N10.4074 (3)1.1149 (3)0.58021 (16)0.0475 (7)
H1A0.45821.10740.53630.057*
O10.3400 (3)0.8585 (3)0.53292 (16)0.0649 (7)
C10.1205 (3)0.9767 (3)0.75362 (18)0.0355 (7)
H1B0.04730.92760.71720.043*
N20.1865 (3)0.6560 (3)0.93763 (16)0.0444 (7)
H2A0.15630.57440.97180.053*
O20.1486 (3)0.7970 (3)0.62507 (17)0.0638 (7)
C20.2422 (3)1.0600 (3)0.69080 (18)0.0380 (7)
O30.1216 (3)0.5759 (2)0.90831 (16)0.0634 (7)
C30.3183 (4)1.1998 (3)0.68783 (19)0.0417 (8)
O40.1394 (2)0.7613 (2)0.79087 (14)0.0507 (6)
C40.3137 (4)1.3049 (3)0.7359 (2)0.0529 (9)
H4A0.24881.28930.78300.064*
C50.4062 (4)1.4314 (4)0.7129 (2)0.0606 (10)
H5A0.40181.50150.74430.073*
C60.5063 (4)1.4570 (4)0.6435 (2)0.0605 (10)
H6A0.56801.54330.62990.073*
C70.5152 (4)1.3575 (4)0.5952 (2)0.0551 (9)
H7A0.58131.37510.54860.066*
C80.4223 (4)1.2284 (4)0.6177 (2)0.0467 (8)
C90.2988 (3)1.0132 (3)0.62295 (19)0.0393 (7)
C100.2664 (4)0.8840 (4)0.5891 (2)0.0467 (8)
C110.1055 (5)0.6707 (4)0.5897 (3)0.0861 (14)
H11A0.16340.59300.62340.103*
H11B0.13270.69210.52750.103*
C120.0510 (7)0.6258 (8)0.5943 (5)0.178 (3)
H12A0.07360.54380.56910.267*
H12B0.07780.60050.65590.267*
H12C0.10890.70210.56090.267*
C130.1830 (3)0.8604 (3)0.82871 (18)0.0353 (7)
C140.3323 (3)0.8555 (3)0.8754 (2)0.0405 (8)
C150.4693 (4)0.9485 (4)0.8693 (2)0.0479 (8)
H15A0.47631.03510.82610.057*
C160.5897 (4)0.9099 (4)0.9272 (2)0.0622 (10)
H16A0.67950.97110.92310.075*
C170.5836 (4)0.7812 (4)0.9929 (2)0.0620 (10)
H17A0.66850.75851.03180.074*
C180.4548 (4)0.6886 (4)1.0008 (2)0.0528 (9)
H18A0.45080.60231.04420.063*
C190.3295 (4)0.7259 (3)0.9426 (2)0.0422 (8)
C200.0989 (3)0.7352 (3)0.87031 (19)0.0376 (7)
C210.0629 (4)0.6816 (3)0.8594 (2)0.0418 (8)
C220.2998 (4)0.7133 (4)0.7765 (2)0.0571 (10)
H22A0.30980.61840.76490.069*
H22B0.35530.70940.82930.069*
C230.3614 (5)0.8187 (5)0.6976 (3)0.0827 (13)
H23A0.46760.79040.68580.124*
H23B0.35130.91200.71000.124*
H23C0.30530.82180.64600.124*
C240.0307 (3)1.0737 (3)0.7890 (2)0.0382 (7)
C250.0470 (4)1.0918 (3)0.8758 (2)0.0465 (8)
H25A0.11611.04000.91670.056*
C260.0363 (5)1.1848 (4)0.9036 (3)0.0654 (11)
H26A0.02061.19670.96200.078*
C270.1401 (5)1.2582 (4)0.8465 (3)0.0695 (11)
H27A0.19571.32090.86540.083*
C280.1636 (5)1.2406 (4)0.7610 (3)0.0780 (12)
H28A0.23701.28890.72160.094*
C290.0772 (4)1.1507 (4)0.7339 (2)0.0564 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.111 (2)0.0973 (18)0.0577 (14)0.0417 (15)0.0308 (13)0.0126 (13)
N10.0534 (18)0.0491 (17)0.0401 (15)0.0023 (14)0.0122 (13)0.0089 (13)
O10.0653 (16)0.0822 (19)0.0573 (15)0.0048 (14)0.0190 (13)0.0360 (14)
C10.0391 (17)0.0353 (16)0.0296 (15)0.0022 (14)0.0054 (13)0.0046 (13)
N20.0459 (16)0.0382 (15)0.0412 (15)0.0039 (13)0.0051 (13)0.0028 (12)
O20.0672 (17)0.0560 (15)0.0732 (17)0.0115 (13)0.0284 (14)0.0253 (13)
C20.0433 (18)0.0373 (17)0.0297 (16)0.0008 (14)0.0064 (14)0.0011 (13)
O30.0520 (15)0.0496 (14)0.0694 (16)0.0128 (12)0.0009 (13)0.0132 (12)
C30.0471 (19)0.0410 (18)0.0325 (16)0.0018 (15)0.0026 (14)0.0030 (14)
O40.0452 (14)0.0510 (14)0.0462 (13)0.0065 (11)0.0017 (11)0.0003 (11)
C40.063 (2)0.047 (2)0.0464 (19)0.0075 (18)0.0100 (17)0.0090 (16)
C50.075 (3)0.044 (2)0.060 (2)0.0071 (19)0.009 (2)0.0092 (17)
C60.062 (3)0.049 (2)0.060 (2)0.0139 (18)0.001 (2)0.0031 (19)
C70.049 (2)0.057 (2)0.048 (2)0.0079 (18)0.0100 (17)0.0050 (18)
C80.047 (2)0.047 (2)0.0386 (18)0.0018 (16)0.0059 (15)0.0017 (15)
C90.0410 (18)0.0382 (17)0.0355 (17)0.0015 (14)0.0061 (14)0.0039 (14)
C100.047 (2)0.055 (2)0.0384 (18)0.0085 (17)0.0013 (16)0.0107 (16)
C110.098 (4)0.056 (3)0.116 (4)0.008 (2)0.022 (3)0.044 (3)
C120.137 (6)0.164 (7)0.272 (10)0.044 (5)0.060 (6)0.135 (7)
C130.0357 (17)0.0361 (17)0.0333 (16)0.0020 (13)0.0032 (13)0.0072 (13)
C140.0410 (19)0.0422 (18)0.0381 (17)0.0016 (15)0.0077 (15)0.0082 (14)
C150.0401 (19)0.047 (2)0.051 (2)0.0038 (16)0.0063 (16)0.0036 (16)
C160.043 (2)0.068 (3)0.070 (3)0.0091 (19)0.0035 (19)0.014 (2)
C170.050 (2)0.075 (3)0.057 (2)0.009 (2)0.0058 (18)0.010 (2)
C180.048 (2)0.053 (2)0.053 (2)0.0056 (18)0.0059 (17)0.0028 (17)
C190.0422 (19)0.0435 (19)0.0398 (18)0.0041 (15)0.0044 (15)0.0071 (15)
C200.0380 (18)0.0335 (17)0.0381 (17)0.0039 (14)0.0022 (14)0.0024 (14)
C210.046 (2)0.0375 (18)0.0383 (18)0.0026 (15)0.0074 (15)0.0039 (15)
C220.044 (2)0.060 (2)0.063 (2)0.0032 (18)0.0058 (18)0.0133 (19)
C230.065 (3)0.091 (3)0.084 (3)0.011 (2)0.020 (2)0.013 (3)
C240.0384 (18)0.0332 (16)0.0377 (17)0.0026 (14)0.0060 (14)0.0000 (13)
C250.048 (2)0.046 (2)0.0441 (19)0.0018 (16)0.0078 (16)0.0071 (15)
C260.077 (3)0.055 (2)0.069 (3)0.000 (2)0.025 (2)0.022 (2)
C270.066 (3)0.062 (3)0.082 (3)0.014 (2)0.016 (2)0.014 (2)
C280.066 (3)0.064 (3)0.097 (3)0.023 (2)0.001 (3)0.000 (2)
C290.062 (2)0.057 (2)0.049 (2)0.0120 (19)0.0008 (18)0.0093 (18)
Geometric parameters (Å, º) top
F—C291.360 (4)C12—H12A0.9600
N1—C81.349 (4)C12—H12B0.9600
N1—C91.372 (4)C12—H12C0.9600
N1—H1A0.8600C13—C201.384 (4)
O1—C101.205 (4)C13—C141.446 (4)
C1—C241.511 (4)C14—C191.412 (4)
C1—C131.513 (4)C14—C151.417 (4)
C1—C21.522 (4)C15—C161.351 (4)
C1—H1B0.9800C15—H15A0.9300
N2—C201.365 (4)C16—C171.393 (5)
N2—C191.367 (4)C16—H16A0.9300
N2—H2A0.8600C17—C181.358 (5)
O2—C101.326 (4)C17—H17A0.9300
O2—C111.456 (4)C18—C191.384 (4)
C2—C91.380 (4)C18—H18A0.9300
C2—C31.432 (4)C20—C211.472 (4)
O3—C211.200 (3)C22—C231.486 (5)
C3—C41.402 (4)C22—H22A0.9700
C3—C81.424 (4)C22—H22B0.9700
O4—C211.325 (4)C23—H23A0.9600
O4—C221.453 (4)C23—H23B0.9600
C4—C51.376 (4)C23—H23C0.9600
C4—H4A0.9300C24—C291.374 (4)
C5—C61.395 (5)C24—C251.382 (4)
C5—H5A0.9300C25—C261.383 (5)
C6—C71.364 (5)C25—H25A0.9300
C6—H6A0.9300C26—C271.347 (5)
C7—C81.396 (4)C26—H26A0.9300
C7—H7A0.9300C27—C281.363 (6)
C9—C101.460 (4)C27—H27A0.9300
C11—C121.400 (6)C28—C291.372 (5)
C11—H11A0.9700C28—H28A0.9300
C11—H11B0.9700
C8—N1—C9109.5 (3)C14—C13—C1129.9 (3)
C8—N1—H1A125.2C19—C14—C15117.5 (3)
C9—N1—H1A125.2C19—C14—C13107.3 (3)
C24—C1—C13111.8 (2)C15—C14—C13135.1 (3)
C24—C1—C2112.5 (2)C16—C15—C14119.2 (3)
C13—C1—C2113.1 (2)C16—C15—H15A120.4
C24—C1—H1B106.3C14—C15—H15A120.4
C13—C1—H1B106.3C15—C16—C17122.1 (3)
C2—C1—H1B106.3C15—C16—H16A119.0
C20—N2—C19109.8 (2)C17—C16—H16A119.0
C20—N2—H2A125.1C18—C17—C16120.7 (3)
C19—N2—H2A125.1C18—C17—H17A119.7
C10—O2—C11116.5 (3)C16—C17—H17A119.7
C9—C2—C3106.3 (3)C17—C18—C19118.4 (3)
C9—C2—C1125.3 (3)C17—C18—H18A120.8
C3—C2—C1128.4 (3)C19—C18—H18A120.8
C4—C3—C8117.8 (3)N2—C19—C18130.4 (3)
C4—C3—C2135.7 (3)N2—C19—C14107.4 (3)
C8—C3—C2106.4 (3)C18—C19—C14122.2 (3)
C21—O4—C22116.5 (2)N2—C20—C13110.1 (3)
C5—C4—C3119.3 (3)N2—C20—C21117.4 (3)
C5—C4—H4A120.3C13—C20—C21132.3 (3)
C3—C4—H4A120.3O3—C21—O4122.5 (3)
C4—C5—C6121.6 (4)O3—C21—C20123.4 (3)
C4—C5—H5A119.2O4—C21—C20114.0 (3)
C6—C5—H5A119.2O4—C22—C23107.0 (3)
C7—C6—C5121.0 (3)O4—C22—H22A110.3
C7—C6—H6A119.5C23—C22—H22A110.3
C5—C6—H6A119.5O4—C22—H22B110.3
C6—C7—C8118.2 (3)C23—C22—H22B110.3
C6—C7—H7A120.9H22A—C22—H22B108.6
C8—C7—H7A120.9C22—C23—H23A109.5
N1—C8—C7129.9 (3)C22—C23—H23B109.5
N1—C8—C3108.1 (3)H23A—C23—H23B109.5
C7—C8—C3122.0 (3)C22—C23—H23C109.5
N1—C9—C2109.7 (3)H23A—C23—H23C109.5
N1—C9—C10116.5 (3)H23B—C23—H23C109.5
C2—C9—C10133.9 (3)C29—C24—C25115.3 (3)
O1—C10—O2122.7 (3)C29—C24—C1120.1 (3)
O1—C10—C9123.0 (3)C25—C24—C1124.6 (3)
O2—C10—C9114.3 (3)C24—C25—C26121.9 (3)
C12—C11—O2112.8 (4)C24—C25—H25A119.1
C12—C11—H11A109.0C26—C25—H25A119.1
O2—C11—H11A109.0C27—C26—C25120.3 (4)
C12—C11—H11B109.0C27—C26—H26A119.8
O2—C11—H11B109.0C25—C26—H26A119.8
H11A—C11—H11B107.8C26—C27—C28120.0 (4)
C11—C12—H12A109.5C26—C27—H27A120.0
C11—C12—H12B109.5C28—C27—H27A120.0
H12A—C12—H12B109.5C27—C28—C29118.9 (4)
C11—C12—H12C109.5C27—C28—H28A120.5
H12A—C12—H12C109.5C29—C28—H28A120.5
H12B—C12—H12C109.5F—C29—C28118.1 (4)
C20—C13—C14105.4 (2)F—C29—C24118.3 (3)
C20—C13—C1124.6 (3)C28—C29—C24123.6 (4)
C24—C1—C2—C9153.2 (3)C19—C14—C15—C160.0 (5)
C13—C1—C2—C979.0 (4)C13—C14—C15—C16178.2 (3)
C24—C1—C2—C325.5 (4)C14—C15—C16—C170.0 (6)
C13—C1—C2—C3102.3 (3)C15—C16—C17—C180.3 (6)
C9—C2—C3—C4179.3 (4)C16—C17—C18—C190.6 (5)
C1—C2—C3—C40.4 (6)C20—N2—C19—C18178.6 (3)
C9—C2—C3—C81.5 (3)C20—N2—C19—C140.1 (3)
C1—C2—C3—C8179.6 (3)C17—C18—C19—N2177.7 (3)
C8—C3—C4—C51.3 (5)C17—C18—C19—C140.6 (5)
C2—C3—C4—C5179.5 (3)C15—C14—C19—N2178.3 (3)
C3—C4—C5—C60.9 (5)C13—C14—C19—N20.3 (3)
C4—C5—C6—C70.6 (6)C15—C14—C19—C180.3 (5)
C5—C6—C7—C80.6 (5)C13—C14—C19—C18178.9 (3)
C9—N1—C8—C7178.2 (3)C19—N2—C20—C130.1 (4)
C9—N1—C8—C30.2 (4)C19—N2—C20—C21175.6 (3)
C6—C7—C8—N1178.8 (3)C14—C13—C20—N20.3 (3)
C6—C7—C8—C31.1 (5)C1—C13—C20—N2177.5 (3)
C4—C3—C8—N1179.6 (3)C14—C13—C20—C21174.5 (3)
C2—C3—C8—N11.1 (4)C1—C13—C20—C212.7 (5)
C4—C3—C8—C71.4 (5)C22—O4—C21—O30.8 (5)
C2—C3—C8—C7179.2 (3)C22—O4—C21—C20179.8 (3)
C8—N1—C9—C20.7 (4)N2—C20—C21—O32.8 (5)
C8—N1—C9—C10178.8 (3)C13—C20—C21—O3171.7 (3)
C3—C2—C9—N11.4 (3)N2—C20—C21—O4177.8 (3)
C1—C2—C9—N1179.7 (3)C13—C20—C21—O47.8 (5)
C3—C2—C9—C10178.0 (3)C21—O4—C22—C23179.5 (3)
C1—C2—C9—C100.9 (5)C13—C1—C24—C29157.1 (3)
C11—O2—C10—O13.4 (5)C2—C1—C24—C2974.4 (4)
C11—O2—C10—C9176.4 (3)C13—C1—C24—C2522.3 (4)
N1—C9—C10—O17.4 (5)C2—C1—C24—C25106.2 (3)
C2—C9—C10—O1173.2 (3)C29—C24—C25—C262.0 (5)
N1—C9—C10—O2172.4 (3)C1—C24—C25—C26178.5 (3)
C2—C9—C10—O27.0 (5)C24—C25—C26—C271.8 (5)
C10—O2—C11—C12150.0 (5)C25—C26—C27—C280.2 (6)
C24—C1—C13—C2080.3 (4)C26—C27—C28—C291.8 (6)
C2—C1—C13—C20151.4 (3)C27—C28—C29—F179.1 (3)
C24—C1—C13—C1496.1 (3)C27—C28—C29—C241.5 (6)
C2—C1—C13—C1432.1 (4)C25—C24—C29—F179.0 (3)
C20—C13—C14—C190.4 (3)C1—C24—C29—F0.5 (5)
C1—C13—C14—C19177.3 (3)C25—C24—C29—C280.4 (5)
C20—C13—C14—C15177.9 (3)C1—C24—C29—C28179.8 (3)
C1—C13—C14—C151.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.102.881 (4)151
N2—H2A···O3ii0.862.072.874 (3)157
Symmetry codes: (i) x1, y+2, z+1; (ii) x, y+1, z+2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Funding information

Funding for this research was provided by: University of Natural Science Foundation in Jiangsu Province (grant No. 17KJB320001); training program of Students innovation and entrepreneurship in Jiangsu Province (grant No. 201612920001Y, 201712920001Y); Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (grant No. PPZY2015B179); Qing Lan Project of Jiangsu Province.

References

First citationChang, Y.-C., Riby, J., Chang, G. H., Peng, G.-F., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834.  CrossRef PubMed CAS
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
First citationGe, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203.  Web of Science PubMed CAS
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationLi, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259–261.  CSD CrossRef IUCr Journals
First citationLu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593–595.  CSD CrossRef IUCr Journals
First citationNi, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.  Web of Science CrossRef CAS
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science
First citationPorter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140–1142.  CrossRef IUCr Journals
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.  CSD CrossRef IUCr Journals
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds