research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{(E)-[4-(4-Hy­dr­oxy-3-meth­­oxy­phen­yl)butan-2-yl­­idene]amino}-1-phenyl­urea: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman, University College, 50932 Setapak, Kuala Lumpur, Malaysia, bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia, cDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS B2G 2W5, Canada, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 November 2017; accepted 2 December 2017; online 1 January 2018)

Two independent mol­ecules (A and B) comprise the asymmetric unit of the title compound, C18H21N3O3. The urea moiety is disubstituted with one amine being linked to a phenyl ring, which is twisted out of the plane of the CN2O urea core [dihedral angles = 25.57 (11) (A) and 29.13 (10)° (B)]. The second amine is connected to an imine (E conformation), which is linked in turn to an ethane bridge that links a disubstituted benzene ring. Intra­molecular amine-N—H⋯N(imine) and hydroxyl-O—H⋯O(meth­oxy) hydrogen bonds close S(5) loops in each case. The mol­ecules have twisted conformations with the dihedral angles between the outer rings being 38.64 (81) (A) and 48.55 (7)° (B). In the crystal, amide-N—H⋯O(amide) hydrogen bonds link the mol­ecules A and B via an eight-membered {⋯HNCO}2 synthon. Further associations between mol­ecules, leading to supra­molecular layers in the ac plane, are hydrogen bonds of the type hydroxyl-O—H⋯N(imine) and phenyl­amine-N—H⋯O(meth­oxy). Connections between layers, leading to a three-dimensional architecture, comprise benzene-C—H⋯O(hy­droxy) inter­actions. A detailed analysis of the calculated Hirshfeld surfaces shows mol­ecules A and B participate in very similar inter­molecular inter­actions and that any variations relate to conformational differences between the mol­ecules.

1. Chemical context

Semicarbazones belong to the general class of mol­ecules termed Schiff bases and are prepared from condensation of semicarbazides with aldehydes/ketones. They have attracted considerable attention due to their wide spectrum of bio­logical activities, including anti-convulsant (Pandey & Srivastava, 2010[Pandey, S. & Srivastava, R. S. (2010). Lett. Drug. Des. Discov. 7, 694-706.]), anti-tubercular (Sriram et al., 2004[Sriram, D., Yogeeswari, P. & Thirumurugan, R. (2004). Bioorg. Med. Chem. Lett. 14, 3923-3924.]), anti-cancer (Ali et al., 2012[Ali, S. M. M., Azad, M. A. K., Jesmin, M., Ahsan, S., Rahman, M. M., Khanam, J. A., Islam, M. N. & Shahriar, S. M. S. (2012). Asian Pac. J. Trop. Biomed. 2, 438-442.]) and anti-microbial (Beraldo & Gambino, 2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]). Actually, they have been investigated extensively for their anti-convulsant properties with 4-(4-fluoro­phen­oxy)benz­aldehyde semicarbazone, in particular, attracting attention as a potent anti-epileptic drug over the past 15 years (Pandeya, 2012[Pandeya, S. N. (2012). Acta Pharm. 62, 263-286.]). Recently, the crystal structures of related chalcone-derived thio­semicarbazones and their transition metal complexes have been reported (Tan et al., 2015[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o1047-o1048.], 2017[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001-1008.]). In this contribution, aryl semicarbazide is introduced with vanillyl­acetone, which led to the formation of the title compound. Vanillylacetone is one of the active components of ginger and possesses strong anti-oxidant and chemopreventive properties (Kıyak et al., 2015[Kıyak, B., Esenpınar, A. A. & Bulut, M. (2015). Polyhedron, 90, 183-196.]). The structural elucidation of such compounds has not been extensively investigated. In order to redress this, herein the crystal and mol­ecular structures of the title compound, (I)[link], are described along with an analysis of the calculated Hirshfeld surface in order to ascertain more details of the supra­molecular association operating in the crystal.

[Scheme 1]

2. Structural commentary

Two independent mol­ecules, A and B, comprise the asymmetric unit of (I)[link] and these are shown in Fig. 1[link]. Each mol­ecule features a disubstituted urea mol­ecule with one amine group connected to a phenyl ring and the other linked to a disubstituted imine group, with the longer side-chain carrying an ethane chain terminating with a disubstituted benzene ring. The four atoms comprising the urea core are strictly planar with an r.m.s. deviation of 0.0041 Å [0.0043 for the O4-mol­ecule, mol­ecule B]. The phenyl ring is inclined to this plane, forming a dihedral angle of 25.57 (11)° [29.13 (10)° for mol­ecule B]. Intra­molecular N—H⋯N hydrogen bonds are found within the urea residues, Table 1[link]. A significant kink in the mol­ecule occurs in the ethane bridge, as seen in the value of −157.88 (16)° for the C8—C9—C10—C11 torsion angle [C26—C27—C28—C29 = 162.93 (17)° for B]. As a result, the mol­ecule is twisted with the terminal rings inclined to each other, forming a (C2–C7)/(C11–C16) dihedral angle of 38.64 (8)° [(C20–C25)/(C29–C34) = 48.55 (7)° for B]. The latter represents the major difference between mol­ecules A and B, as illustrated in the overlay diagram shown in Fig. 2[link]. In each of the disubstituted benzene rings, the hydroxyl-H atom is orientated to allow the formation of intra­molecular O—H⋯O hydrogen bonds with the meth­oxy-O atom, Table 1[link]. The conformation about the imine bond [N3=C8 = 1.281 (2) and N6=C26 = 1.276 (2) Å] is E in each mol­ecule. Finally, each of the meth­oxy substituents is twisted out of the plane of the ring to which it is bonded [C18—O2—C13—C12 = 11.7 (3) and C36—O5—C31—C30 = −16.5 (3)°].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C29–C34 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.86 (2) 2.18 (2) 2.635 (2) 113 (2)
N4—H4N⋯N6 0.86 (2) 2.23 (2) 2.637 (2) 109 (1)
O3—H3O⋯O2 0.84 (2) 2.29 (3) 2.660 (2) 107 (2)
O6—H6O⋯O5 0.84 (2) 2.28 (2) 2.663 (2) 108 (2)
O3—H3O⋯N6i 0.84 (2) 2.19 (2) 2.994 (2) 161 (2)
O6—H6O⋯N3ii 0.84 (2) 2.22 (2) 3.013 (2) 157 (2)
N2—H2N⋯O4iii 0.88 (2) 2.01 (2) 2.873 (2) 170 (2)
N4—H4N⋯O2i 0.86 (2) 2.54 (2) 3.390 (2) 167 (2)
N5—H5N⋯O1iv 0.88 (2) 2.04 (2) 2.900 (2) 169 (2)
C33—H33⋯O6v 0.95 2.54 3.212 (2) 128
C15—H15⋯O3vi 0.95 2.63 3.166 (2) 113
C33—H33⋯O6i 0.95 2.54 3.212 (2) 128
C10—H10ACg1vii 0.99 2.80 3.774 (2) 168
C18—H18ACg2ii 0.98 2.66 3.603 (4) 161
C28—H28BCg3viii 0.99 2.75 3.720 (2) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y-1, -z+1; (vi) -x, -y+2, -z; (vii) x, y+1, z; (viii) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structures of the two independent mol­ecules comprising the asymmetric unit of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2]
Figure 2
Overlay diagram for (I)[link], with the O1-mol­ecule (red image) and O4-mol­ecule (blue image) superimposed so that the urea residues are coincident.

3. Supra­molecular features

Conventional O—H⋯N and N—H⋯O hydrogen bonding features significantly in the mol­ecular packing of (I)[link], Table 1[link], and this is highlighted in Fig. 3[link]a. The two mol­ecules comprising the asymmetric unit associate via an eight-membered amide synthon, {⋯OCNH}2. The hy­droxy-O—H groups at each end of the dimeric aggregate hydrogen bond to an imine-N atom of the other independent mol­ecule. The hydroxyl-O3—H⋯N6(imine) inter­action is incorporated within a 10-membered {⋯HOC2O⋯HNCNN} heterosynthon owing to the formation of a relatively weak phenyl­amine-N4—H⋯O2(meth­oxy) hydrogen bond. The putative phenyl­amine-N1—H⋯O5(meth­oxy) hydrogen bond is beyond the standard limits (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) as the H⋯O separation is 2.73 Å. As seen in Fig. 3[link]b, these hydrogen bonds extend laterally to from an array in (101). The most obvious connections between the supra­molecular layers are of the type benzene-C—H⋯O(hydrox­yl), which occur between centrosymmetrically related O6-benzene rings. A view of the unit-cell contents highlighting the stacking of layers is shown in Fig. 3[link]c. Other C—H⋯O and several C—H⋯π inter­actions occur in the crystal but within the layers stabilized by hydrogen bonding. These and other weak inter­actions are discussed in more detail in Analysis of the Hirshfeld surface (§4[link]).

[Figure 3]
Figure 3
The mol­ecular packing in (I)[link]: (a) a detail of the supra­molecular association sustained by O—H⋯N and N—H⋯O hydrogen bonding, shown as orange and blue dashed lines, respectively, (b) a view of the supra­molecular layer in the ac plane, and (c) a view of the unit-cell contents shown in projection down the b axis. The C—H⋯O inter­actions are shown as green dashed lines, and one layer is highlighted in space-filling mode.

4. Analysis of the Hirshfeld surface

The Hirshfeld surface was calculated for the individual O1- and O4-mol­ecules in (I)[link], i.e. mol­ecules A and B, and for overall (I)[link] in accord with a recent report on a related mol­ecule (Tan et al., 2017[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001-1008.]). These calculations provide additional information about the influence of weak inter­molecular C—H⋯O and C—H⋯π inter­actions, Table 1[link], along with short inter­atomic H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts, Table 2[link], on the mol­ecular packing in the crystal.

Table 2
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
H3⋯H21 2.16 [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
H28A⋯H35A 2.24 [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
O1⋯H22 2.50 [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
O2⋯H27B 2.56 1 − x, 1 − y, 1 − z
O3⋯H15 2.63 x, 2 − y, 1 − z
O3⋯C15 3.166 (2) x, 2 − y, 1 − z
O3⋯H23 2.58 1 − x, 2 − y, 1 − z
O4⋯H16 2.58 1 + x, −1 + y, z
O5⋯H9A 2.46 1 − x, −y, 1 − z
C6⋯H10A 2.63 x, −1 + y, z
C15⋯H36C 2.55 1 − x, 1 − y, 1 − z
C16⋯H36C 2.80 1 − x, 1 − y, 1 − z
C24⋯H28B 2.63 x, 1 + y, z
C32⋯H18A 2.76 1 − x, − y, 1 − z
C33⋯H18A 2.62 1 − x, − y, 1 − z
C34⋯H18A 2.78 1 − x, − y, 1 − z
C35⋯H18B 2.71 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
C36⋯H9A 2.80 1 − x, − y, 1 − z
C6⋯C6 3.210 (3) 1 − x, − y, 1 − z
C24⋯C24 3.300 (3) 2 − x, 1 − y, 1 − z

The bright-red spots appearing near the hydroxyl-H3O and H6O, and imine-N3 and N6 atoms on the Hirshfeld surfaces mapped over dnorm shown with labels `1' and `2' in Fig. 4[link] represent the donors and acceptors of inter­molecular hydroxyl-O—H⋯N(imine) hydrogen bonds, respectively, Table 1[link]. In the same way, the prominent red regions near the amide-H2N and H5N, and amide-O1 and O4 atoms, i.e. `3' and `4' in Fig. 4[link], indicate their participation in the inter­molecular N—H⋯O hydrogen bonds between the symmetry-related independent mol­ecules, Table 1[link]. The donors and acceptors of comparatively weak inter­molecular N—H⋯O and C—H⋯O inter­actions summarized in Table 1[link] are viewed as faint-red spots near the respective atoms on dnorm-mapped Hirshfeld surfaces with labels `57' in Fig. 4[link].

[Figure 4]
Figure 4
Views of the Hirshfeld surface for (I)[link] mapped over dnorm in the ranges (a) −0.150 to +1.462 au for the O1-containing mol­ecule and (b) −0.215 to + 1.462 au for the O4-mol­ecule.

The presence of diminutive red spots viewed near phenyl atoms C6 in Fig. 4[link]a and C24 in Fig. 4[link]b, of the independent mol­ecules, respectively, reflect short inter­atomic edge-to-edge C⋯C contacts, Table 2[link], although they contribute a very low contribution, i.e. 0.1%, to the Hirshfeld surface owing to the absence of ππ stacking between aromatic rings in the crystal, Table 3[link]. The faint-red spots appearing near the labelled H10A, H18A, C28, C6, C33 and C24 atoms in the images of Fig. 4[link] represent their participation in short inter­atomic C⋯H/H⋯C contacts, Table 2[link], and confirm the influence of the inter­molecular C—H⋯π inter­actions, Table 1[link], in the crystal. In addition to these short inter­atomic C⋯H/H⋯C contacts, the faint-red spots near the C15 O1, H9A and H18B atoms, Fig. 4[link]a, and O5, C35, H22 and H36C atoms, Fig. 4[link]b, indicate the contributions from the additional short inter­atomic C⋯H/H⋯C and O⋯H/H⋯O contacts, Table 2[link], to the mol­ecular packing.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the O1-mol­ecule, the O4-mol­ecule and for overall (I)

Contact Percentage contribution
  O1-mol­ecule O4-mol­ecule (I)
H⋯H 49.5 49.4 48.7
O⋯H/H⋯O 16.4 17.5 17.8
N⋯H/H⋯N 7.4 7.3 7.7
C⋯H/H⋯C 26.3 25.7 25.5
C⋯C 0.1 0.1 0.1
O⋯O 0.2 0.0 0.1
C⋯O/O⋯C 0.1 0.0 0.1

On the Hirshfeld surfaces mapped over the electrostatic potential for the independent mol­ecules of (I)[link], Fig. 5[link], the donors and acceptors of inter­molecular inter­actions are represented with blue and red regions corresponding to positive and negative electrostatic potentials, respectively. The views of Hirshfeld surfaces about reference independent mol­ecules of (I)[link] mapped within the shape-index property, Fig. 6[link], highlight the short inter­atomic C⋯H/H⋯C and C—H⋯π/π⋯H—C contacts operating in the crystal.

[Figure 5]
Figure 5
Views of the Hirshfeld surface for (I)[link] mapped over the electrostatic potential in the range −0.103 to + 0.141 au for the (a) O1-containing mol­ecule and (b) the O4-mol­ecule. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 6]
Figure 6
Views of the shape-indexed Hirshfeld surfaces about reference mol­ecules highlighting dominant short inter­atomic C—H/H—C and C—H⋯π/π⋯H—C inter­actions for the (a) O1-containing mol­ecule and (b) the O4-mol­ecule.

It is clear from the overall two-dimensional fingerprint plots for each independent mol­ecule and for the entire asymmetric unit of (I)[link] shown in Fig. 7[link] that the individual mol­ecules have common features in their inter­molecular O—H⋯N, N—H⋯O and C—H⋯π inter­actions. The small differences in the distribution of points in the fingerprint plots delineated into H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) in Fig. 7[link], are ascribed to the commented upon (§3[link]) conformational differences, i.e. the twisting of the meth­oxy substituents on the respective benzene rings and the inclination of these benzene rings with respect to the ethane bridges.

[Figure 7]
Figure 7
The full two-dimensional fingerprint plot and those delineated into H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C contacts for the (a) O1-containing mol­ecule, (b) the O4-mol­ecule and (c) (I)[link].

The fingerprint plot delineated into H⋯H contacts for mol­ecules A and B have almost the same percentage contribution to their respective Hirshfeld surfaces, Table 3[link], and the distinct distributions in the upper regions of the plots are due to the contributions from hydrogen atoms of their respective disubstituted benzene rings to the surfaces of mol­ecules A and B. The single short peaks at de + di ∼ 2.1 Å in the delineated plots for both the mol­ecules indicate the involvement of hydrogen atoms of both in short inter­atomic H⋯H contacts, Table 2[link]. The inter­molecular N—H⋯O and O—H⋯N hydrogen bonds in the crystal are characterized as the pairs of spikes with their tips at de + di ∼ 2.0 Å (inner region) and at ∼ 2.2 Å (outer region) in the fingerprint plots delineated into O⋯H/H⋯O and N⋯H/H⋯N contacts, respectively. The forceps-like distribution of points linked with the donor spike for mol­ecule A and the acceptor spike for mol­ecule B at de + di ∼ 2.5 Å in the fingerprint plots delineated into O⋯H/H⋯O contacts are due to weak inter­molecular C—H⋯O inter­actions and the short inter­atomic contacts summarized in Table 2[link]. The asymmetric forceps-like distribution of points with the tips at de + di ∼ 2.6 Å in the acceptor and donor regions of fingerprint plots delineated into C⋯H/H⋯C contacts for mol­ecules A and B, respectively, represent the involvement of these atoms in the short inter­atomic C⋯H/H⋯C contacts, Table 2[link], whereas the inter­molecular C—H⋯π inter­actions are viewed as the forceps-like tips at de + di ∼ 2.7 Å in the donor and acceptor regions of mol­ecules A and B, respectively. The other C⋯O/O⋯C, O⋯O and C⋯C inter­atomic contacts summarized in Table 3[link], having only small contributions to the Hirshfeld surface, have negligible directional impact on the mol­ecular packing.

5. Database survey

There are no direct precedents for the structure of (I)[link] in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). However, there are several precedents for the phenyl­semicarbazone residue with the imine-carbon atom incorporated within an all-carbon ring (Groth, 1980[Groth, P. (1980). Acta Chem. Scand. A34, 609-620.]; Hoek van den et al., 1980[Hoek, W. G. M. van den, Bokkers, G., Krabbendam, H., Spek, A. L. & Kroon, J. (1980). Z. Kristallogr. 152, 215-225.]), as exemplified in the cyclo­decane derivative (II) (Groth, 1980[Groth, P. (1980). Acta Chem. Scand. A34, 609-620.]; Hoek van den et al., 1980[Hoek, W. G. M. van den, Bokkers, G., Krabbendam, H., Spek, A. L. & Kroon, J. (1980). Z. Kristallogr. 152, 215-225.]), see Scheme 2[link] for the chemical diagram of (II). More exotic derivatives with cyclic residues at both ends of the semicarbazone core are also known (Behenna et al., 2011[Behenna, D. C., Mohr, J. T., Sherden, N. H., Marinescu, S. C., Harned, A. M., Tani, K., Seto, M., Ma, S., Novák, Z., Krout, M. R., McFadden, R. M., Roizen, J. L., Enquist, J. A. Jr, White, D. E., Levine, S. R., Petrova, K. V., Iwashita, A., Virgil, S. C. & Stoltz, B. M. (2011). Chem. Eur. J. 17, 14199-14223.]; Ma et al., 2014[Ma, S., Reeves, C. M., Craig, R. A. II & Stoltz, B. M. (2014). Tetrahedron, 70, 4208-4212.]), as exemplified by (III) (Ma et al., 2014[Ma, S., Reeves, C. M., Craig, R. A. II & Stoltz, B. M. (2014). Tetrahedron, 70, 4208-4212.]), Scheme 2[link].

[Scheme 2]

6. Synthesis and crystallization

Analytical grade reagents were used as procured without further purification. 4-Phenyl­semicarbazide (1.51 g, 0.01 mol) and vanillylacetone (1.94 g, 0.01 mol) were dissolved sep­arately in hot absolute ethanol (30 ml) and mixed with stirring. The reaction mixture was heated and stirred for 20 min., then stirred for another 30 min. at room temperature. The resulting white precipitate was filtered off, washed with cold absolute ethanol and dried in vacuo; yield: 75%. Light-yellow prisms of (I)[link] were grown at room temperature from slow evaporation of mixed solvents of ethanol and aceto­nitrile (1:1; v/v 20 ml). IR (cm−1): 3201 ν(N—H), 1670 ν(C=N), 1213 ν(C—N), 1026 ν(C=O). MS m/z: 327.25 [M+1]+

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The oxygen- and nitro­gen-bound H atoms were located in a difference-Fourier map but were refined with distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.5Ueq(O) and 1.2Ueq(N), respectively. The maximum and minimum residual electron density peaks of 0.60 and 0.26 e Å−3, respectively, were located 0.95 and 0.75 Å from atoms H10A and H36A, respectively.

Table 4
Experimental details

Crystal data
Chemical formula C18H21N3O3
Mr 327.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 16.5464 (4), 9.2184 (2), 22.3975 (4)
β (°) 100.494 (2)
V3) 3359.18 (13)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.73
Crystal size (mm) 0.25 × 0.16 × 0.06
 
Data collection
Diffractometer Oxford Diffraction Xcaliber Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.917, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23815, 6481, 5581
Rint 0.019
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.180, 1.05
No. of reflections 6481
No. of parameters 455
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.60, −0.26
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

3-{(E)-[4-(4-Hydroxy-3-methoxyphenyl)butan-2-ylidene]amino}-1-phenylurea top
Crystal data top
C18H21N3O3F(000) = 1392
Mr = 327.37Dx = 1.295 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 16.5464 (4) ÅCell parameters from 9245 reflections
b = 9.2184 (2) Åθ = 3.7–71.3°
c = 22.3975 (4) ŵ = 0.73 mm1
β = 100.494 (2)°T = 100 K
V = 3359.18 (13) Å3Prism (cut), light-yellow
Z = 80.25 × 0.16 × 0.06 mm
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
6481 independent reflections
Radiation source: fine-focus sealed tube5581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.1952 pixels mm-1θmax = 71.4°, θmin = 3.7°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1111
Tmin = 0.917, Tmax = 1.000l = 2627
23815 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1131P)2 + 1.5134P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6481 reflectionsΔρmax = 0.60 e Å3
455 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50355 (7)0.34300 (14)0.28183 (6)0.0292 (3)
O20.22012 (9)0.87251 (16)0.56672 (6)0.0386 (4)
O30.09139 (8)1.04987 (16)0.54412 (6)0.0350 (3)
H3O0.1190 (15)1.034 (3)0.5787 (7)0.053*
N10.40785 (9)0.29389 (16)0.34177 (6)0.0253 (3)
H1N0.3694 (10)0.337 (2)0.3564 (9)0.030*
N20.40724 (9)0.51144 (16)0.29066 (7)0.0256 (3)
H2N0.4313 (12)0.5727 (19)0.2696 (8)0.031*
N30.34334 (9)0.55389 (17)0.31934 (7)0.0284 (3)
C10.44364 (10)0.37902 (19)0.30419 (7)0.0238 (3)
C20.43316 (10)0.15426 (19)0.36316 (8)0.0259 (4)
C30.47454 (13)0.0593 (2)0.33074 (9)0.0360 (4)
H30.48840.08870.29320.043*
C40.49550 (13)0.0785 (2)0.35355 (10)0.0407 (5)
H40.52430.14250.33160.049*
C50.47517 (13)0.1240 (2)0.40757 (10)0.0419 (5)
H50.48940.21860.42270.050*
C60.43353 (14)0.0291 (2)0.43949 (10)0.0442 (5)
H60.41920.05940.47680.053*
C70.41258 (13)0.1094 (2)0.41765 (9)0.0368 (4)
H70.38420.17340.44000.044*
C80.29887 (11)0.6607 (2)0.29621 (8)0.0297 (4)
C90.23057 (11)0.7061 (2)0.32858 (9)0.0326 (4)
H9A0.23230.64550.36530.039*
H9B0.17690.69000.30160.039*
C100.23837 (13)0.8663 (2)0.34707 (9)0.0355 (4)
H10A0.29740.89050.35920.043*
H10B0.21580.92660.31130.043*
C110.19461 (12)0.9052 (2)0.39874 (8)0.0329 (4)
C120.22808 (13)0.8620 (2)0.45796 (9)0.0367 (4)
H120.27570.80240.46500.044*
C130.19215 (12)0.9056 (2)0.50660 (8)0.0307 (4)
C140.12349 (11)0.99627 (19)0.49664 (8)0.0261 (4)
C150.08828 (11)1.0335 (2)0.43795 (9)0.0302 (4)
H150.04001.09150.43070.036*
C160.12319 (11)0.9866 (2)0.38942 (8)0.0322 (4)
H160.09761.01080.34920.039*
C170.31178 (11)0.7458 (2)0.24149 (8)0.0329 (4)
H17A0.35950.80960.25260.049*
H17B0.26280.80430.22660.049*
H17C0.32140.67880.20950.049*
C180.30011 (18)0.8105 (4)0.58127 (11)0.0742 (10)
H18A0.29950.71330.56350.111*
H18B0.31670.80390.62550.111*
H18C0.33930.87180.56480.111*
O40.99721 (7)0.19097 (14)0.27509 (6)0.0296 (3)
O50.74121 (9)0.41262 (16)0.57259 (6)0.0389 (3)
O60.59792 (8)0.55085 (16)0.54521 (6)0.0355 (3)
H6O0.6277 (14)0.547 (3)0.5798 (7)0.053*
N40.90978 (8)0.23778 (16)0.34148 (6)0.0245 (3)
H4N0.8743 (10)0.198 (2)0.3602 (8)0.029*
N50.90487 (9)0.02044 (16)0.28954 (7)0.0263 (3)
H5N0.9267 (12)0.040 (2)0.2668 (8)0.032*
N60.84546 (9)0.02354 (17)0.32229 (7)0.0288 (3)
C190.94100 (10)0.15314 (18)0.30127 (7)0.0230 (3)
C200.93614 (10)0.37987 (19)0.35945 (8)0.0251 (4)
C210.96816 (12)0.4747 (2)0.32082 (8)0.0309 (4)
H210.97350.44400.28120.037*
C220.99218 (12)0.6136 (2)0.34046 (9)0.0350 (4)
H221.01460.67680.31420.042*
C230.98404 (12)0.6617 (2)0.39743 (9)0.0367 (4)
H231.00060.75710.41040.044*
C240.95139 (13)0.5686 (2)0.43530 (9)0.0384 (5)
H240.94510.60080.47450.046*
C250.92765 (12)0.4282 (2)0.41667 (8)0.0331 (4)
H250.90560.36530.44320.040*
C260.79860 (11)0.1278 (2)0.30028 (8)0.0292 (4)
C270.73558 (11)0.1766 (2)0.33697 (9)0.0330 (4)
H27A0.67970.15930.31340.040*
H27B0.74170.11890.37480.040*
C280.74571 (13)0.3380 (2)0.35290 (9)0.0364 (4)
H28A0.72380.39580.31630.044*
H28B0.80510.36000.36450.044*
C290.70304 (12)0.3848 (2)0.40393 (9)0.0327 (4)
C300.74324 (12)0.3697 (2)0.46427 (9)0.0342 (4)
H300.79570.32450.47290.041*
C310.70709 (12)0.4203 (2)0.51172 (8)0.0307 (4)
C320.63080 (11)0.49006 (19)0.49940 (8)0.0265 (4)
C330.58946 (11)0.5002 (2)0.44001 (9)0.0320 (4)
H330.53670.54430.43140.038*
C340.62477 (12)0.4461 (2)0.39286 (8)0.0326 (4)
H340.59510.45100.35240.039*
C350.80405 (11)0.2075 (2)0.24253 (8)0.0329 (4)
H35A0.81600.13830.21200.049*
H35B0.75160.25600.22740.049*
H35C0.84810.27990.25060.049*
C360.82787 (14)0.3844 (3)0.58750 (10)0.0481 (6)
H36A0.85720.45190.56520.072*
H36B0.84680.39760.63120.072*
H36C0.83880.28450.57620.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (6)0.0278 (6)0.0345 (7)0.0047 (5)0.0187 (5)0.0035 (5)
O20.0518 (8)0.0411 (8)0.0266 (7)0.0180 (6)0.0167 (6)0.0056 (5)
O30.0351 (7)0.0431 (8)0.0304 (7)0.0075 (6)0.0154 (5)0.0057 (6)
N10.0276 (7)0.0269 (7)0.0248 (7)0.0014 (6)0.0136 (6)0.0006 (6)
N20.0257 (7)0.0268 (7)0.0281 (7)0.0019 (6)0.0153 (6)0.0016 (6)
N30.0294 (7)0.0313 (8)0.0282 (8)0.0033 (6)0.0152 (6)0.0005 (6)
C10.0241 (8)0.0256 (8)0.0227 (8)0.0003 (6)0.0073 (6)0.0015 (6)
C20.0271 (8)0.0268 (9)0.0245 (8)0.0036 (7)0.0064 (6)0.0007 (7)
C30.0475 (11)0.0307 (10)0.0352 (10)0.0047 (8)0.0222 (9)0.0055 (8)
C40.0455 (11)0.0308 (10)0.0500 (12)0.0066 (8)0.0196 (9)0.0071 (9)
C50.0435 (11)0.0326 (10)0.0498 (12)0.0010 (8)0.0088 (9)0.0140 (9)
C60.0571 (13)0.0425 (12)0.0363 (11)0.0079 (10)0.0172 (9)0.0121 (9)
C70.0463 (11)0.0359 (10)0.0320 (10)0.0043 (8)0.0176 (8)0.0001 (8)
C80.0296 (9)0.0336 (9)0.0277 (9)0.0013 (7)0.0097 (7)0.0028 (7)
C90.0283 (9)0.0367 (10)0.0353 (10)0.0005 (7)0.0123 (7)0.0034 (8)
C100.0449 (11)0.0343 (10)0.0314 (10)0.0030 (8)0.0179 (8)0.0023 (8)
C110.0419 (10)0.0292 (9)0.0307 (9)0.0023 (8)0.0149 (8)0.0010 (7)
C120.0444 (11)0.0351 (10)0.0340 (10)0.0142 (8)0.0164 (8)0.0035 (8)
C130.0395 (10)0.0289 (9)0.0265 (9)0.0058 (7)0.0134 (7)0.0019 (7)
C140.0292 (9)0.0239 (8)0.0291 (9)0.0029 (6)0.0163 (7)0.0021 (6)
C150.0246 (8)0.0327 (9)0.0354 (10)0.0004 (7)0.0110 (7)0.0012 (7)
C160.0333 (9)0.0384 (10)0.0262 (9)0.0011 (8)0.0087 (7)0.0005 (7)
C170.0342 (9)0.0383 (10)0.0289 (9)0.0117 (8)0.0133 (7)0.0041 (7)
C180.0821 (19)0.111 (3)0.0325 (11)0.0655 (19)0.0182 (12)0.0211 (13)
O40.0312 (6)0.0265 (6)0.0362 (7)0.0032 (5)0.0200 (5)0.0031 (5)
O50.0459 (8)0.0460 (8)0.0266 (7)0.0145 (6)0.0118 (6)0.0018 (6)
O60.0317 (7)0.0471 (8)0.0312 (7)0.0050 (6)0.0152 (5)0.0059 (6)
N40.0245 (7)0.0272 (7)0.0244 (7)0.0009 (5)0.0116 (5)0.0008 (5)
N50.0271 (7)0.0279 (8)0.0279 (7)0.0029 (6)0.0159 (6)0.0030 (6)
N60.0296 (8)0.0313 (8)0.0296 (8)0.0042 (6)0.0166 (6)0.0001 (6)
C190.0223 (8)0.0250 (8)0.0230 (8)0.0008 (6)0.0075 (6)0.0015 (6)
C200.0223 (8)0.0286 (9)0.0249 (8)0.0030 (6)0.0057 (6)0.0027 (7)
C210.0371 (10)0.0287 (9)0.0297 (9)0.0013 (7)0.0140 (7)0.0046 (7)
C220.0376 (10)0.0287 (10)0.0421 (11)0.0032 (8)0.0162 (8)0.0037 (8)
C230.0379 (10)0.0301 (10)0.0431 (11)0.0004 (8)0.0104 (8)0.0121 (8)
C240.0458 (11)0.0394 (11)0.0313 (10)0.0059 (9)0.0103 (8)0.0108 (8)
C250.0384 (10)0.0346 (10)0.0286 (9)0.0039 (8)0.0125 (8)0.0005 (7)
C260.0275 (9)0.0306 (9)0.0311 (9)0.0004 (7)0.0098 (7)0.0036 (7)
C270.0293 (9)0.0332 (10)0.0395 (10)0.0004 (7)0.0144 (8)0.0038 (8)
C280.0450 (11)0.0340 (10)0.0345 (10)0.0026 (8)0.0186 (8)0.0026 (8)
C290.0403 (10)0.0281 (9)0.0326 (10)0.0010 (7)0.0143 (8)0.0029 (7)
C300.0373 (10)0.0318 (10)0.0361 (10)0.0073 (8)0.0131 (8)0.0007 (8)
C310.0375 (10)0.0296 (9)0.0270 (9)0.0041 (7)0.0111 (7)0.0026 (7)
C320.0288 (9)0.0249 (8)0.0299 (9)0.0034 (7)0.0165 (7)0.0012 (7)
C330.0241 (8)0.0377 (10)0.0357 (10)0.0035 (7)0.0095 (7)0.0007 (8)
C340.0341 (9)0.0365 (10)0.0280 (9)0.0043 (8)0.0077 (7)0.0021 (7)
C350.0330 (9)0.0400 (11)0.0267 (9)0.0114 (8)0.0076 (7)0.0018 (7)
C360.0474 (12)0.0608 (15)0.0358 (11)0.0236 (11)0.0064 (9)0.0054 (10)
Geometric parameters (Å, º) top
O1—C11.235 (2)O4—C191.237 (2)
O2—C131.376 (2)O5—C311.379 (2)
O2—C181.424 (3)O5—C361.436 (2)
O3—C141.365 (2)O6—C321.366 (2)
O3—H3O0.838 (10)O6—H6O0.840 (10)
N1—C11.363 (2)N4—C191.362 (2)
N1—C21.410 (2)N4—C201.416 (2)
N1—H1N0.862 (9)N4—H4N0.865 (9)
N2—C11.371 (2)N5—C191.366 (2)
N2—N31.3895 (19)N5—N61.3899 (19)
N2—H2N0.876 (9)N5—H5N0.878 (9)
N3—C81.281 (2)N6—C261.276 (2)
C2—C71.388 (2)C20—C251.388 (2)
C2—C31.394 (3)C20—C211.400 (3)
C3—C41.390 (3)C21—C221.389 (3)
C3—H30.9500C21—H210.9500
C4—C51.379 (3)C22—C231.380 (3)
C4—H40.9500C22—H220.9500
C5—C61.389 (3)C23—C241.384 (3)
C5—H50.9500C23—H230.9500
C6—C71.388 (3)C24—C251.394 (3)
C6—H60.9500C24—H240.9500
C7—H70.9500C25—H250.9500
C8—C171.503 (2)C26—C351.504 (3)
C8—C91.509 (2)C26—C271.509 (2)
C9—C101.533 (3)C27—C281.532 (3)
C9—H9A0.9900C27—H27A0.9900
C9—H9B0.9900C27—H27B0.9900
C10—C111.516 (2)C28—C291.512 (2)
C10—H10A0.9900C28—H28A0.9900
C10—H10B0.9900C28—H28B0.9900
C11—C161.383 (3)C29—C341.393 (3)
C11—C121.399 (3)C29—C301.400 (3)
C12—C131.392 (2)C30—C311.392 (3)
C12—H120.9500C30—H300.9500
C13—C141.395 (3)C31—C321.399 (3)
C14—C151.381 (3)C32—C331.384 (3)
C15—C161.389 (3)C33—C341.389 (3)
C15—H150.9500C33—H330.9500
C16—H160.9500C34—H340.9500
C17—H17A0.9800C35—H35A0.9800
C17—H17B0.9800C35—H35B0.9800
C17—H17C0.9800C35—H35C0.9800
C18—H18A0.9800C36—H36A0.9800
C18—H18B0.9800C36—H36B0.9800
C18—H18C0.9800C36—H36C0.9800
C13—O2—C18116.47 (15)C31—O5—C36116.80 (15)
C14—O3—H3O115 (2)C32—O6—H6O115 (2)
C1—N1—C2126.87 (14)C19—N4—C20125.70 (14)
C1—N1—H1N113.9 (15)C19—N4—H4N116.7 (15)
C2—N1—H1N118.8 (15)C20—N4—H4N117.3 (14)
C1—N2—N3119.30 (14)C19—N5—N6119.11 (14)
C1—N2—H2N117.9 (14)C19—N5—H5N118.1 (14)
N3—N2—H2N121.7 (14)N6—N5—H5N121.7 (15)
C8—N3—N2117.32 (15)C26—N6—N5117.01 (15)
O1—C1—N1124.55 (16)O4—C19—N4124.09 (15)
O1—C1—N2120.18 (15)O4—C19—N5120.13 (15)
N1—C1—N2115.26 (14)N4—C19—N5115.77 (14)
C7—C2—C3119.56 (17)C25—C20—C21118.93 (17)
C7—C2—N1117.72 (16)C25—C20—N4118.80 (16)
C3—C2—N1122.67 (15)C21—C20—N4122.24 (15)
C4—C3—C2119.74 (17)C22—C21—C20119.91 (17)
C4—C3—H3120.1C22—C21—H21120.0
C2—C3—H3120.1C20—C21—H21120.0
C5—C4—C3121.05 (19)C23—C22—C21121.23 (18)
C5—C4—H4119.5C23—C22—H22119.4
C3—C4—H4119.5C21—C22—H22119.4
C4—C5—C6118.92 (19)C22—C23—C24118.82 (18)
C4—C5—H5120.5C22—C23—H23120.6
C6—C5—H5120.5C24—C23—H23120.6
C7—C6—C5120.86 (19)C23—C24—C25120.83 (18)
C7—C6—H6119.6C23—C24—H24119.6
C5—C6—H6119.6C25—C24—H24119.6
C6—C7—C2119.87 (19)C20—C25—C24120.26 (18)
C6—C7—H7120.1C20—C25—H25119.9
C2—C7—H7120.1C24—C25—H25119.9
N3—C8—C17125.06 (16)N6—C26—C35124.91 (16)
N3—C8—C9116.39 (16)N6—C26—C27116.46 (16)
C17—C8—C9118.50 (16)C35—C26—C27118.58 (16)
C8—C9—C10111.32 (16)C26—C27—C28111.04 (15)
C8—C9—H9A109.4C26—C27—H27A109.4
C10—C9—H9A109.4C28—C27—H27A109.4
C8—C9—H9B109.4C26—C27—H27B109.4
C10—C9—H9B109.4C28—C27—H27B109.4
H9A—C9—H9B108.0H27A—C27—H27B108.0
C11—C10—C9113.94 (16)C29—C28—C27114.03 (16)
C11—C10—H10A108.8C29—C28—H28A108.7
C9—C10—H10A108.8C27—C28—H28A108.7
C11—C10—H10B108.8C29—C28—H28B108.7
C9—C10—H10B108.8C27—C28—H28B108.7
H10A—C10—H10B107.7H28A—C28—H28B107.6
C16—C11—C12118.52 (17)C34—C29—C30118.35 (17)
C16—C11—C10121.80 (17)C34—C29—C28121.90 (18)
C12—C11—C10119.66 (17)C30—C29—C28119.74 (17)
C13—C12—C11120.53 (18)C31—C30—C29120.59 (17)
C13—C12—H12119.7C31—C30—H30119.7
C11—C12—H12119.7C29—C30—H30119.7
O2—C13—C12125.91 (17)O5—C31—C30125.60 (17)
O2—C13—C14114.09 (15)O5—C31—C32114.27 (16)
C12—C13—C14119.94 (17)C30—C31—C32120.10 (17)
O3—C14—C15119.68 (16)O6—C32—C33119.97 (16)
O3—C14—C13120.88 (16)O6—C32—C31120.60 (16)
C15—C14—C13119.44 (16)C33—C32—C31119.41 (16)
C14—C15—C16120.25 (17)C32—C33—C34120.25 (17)
C14—C15—H15119.9C32—C33—H33119.9
C16—C15—H15119.9C34—C33—H33119.9
C11—C16—C15121.08 (17)C33—C34—C29121.09 (17)
C11—C16—H16119.5C33—C34—H34119.5
C15—C16—H16119.5C29—C34—H34119.5
C8—C17—H17A109.5C26—C35—H35A109.5
C8—C17—H17B109.5C26—C35—H35B109.5
H17A—C17—H17B109.5H35A—C35—H35B109.5
C8—C17—H17C109.5C26—C35—H35C109.5
H17A—C17—H17C109.5H35A—C35—H35C109.5
H17B—C17—H17C109.5H35B—C35—H35C109.5
O2—C18—H18A109.5O5—C36—H36A109.5
O2—C18—H18B109.5O5—C36—H36B109.5
H18A—C18—H18B109.5H36A—C36—H36B109.5
O2—C18—H18C109.5O5—C36—H36C109.5
H18A—C18—H18C109.5H36A—C36—H36C109.5
H18B—C18—H18C109.5H36B—C36—H36C109.5
C1—N2—N3—C8164.49 (16)C19—N5—N6—C26162.35 (16)
C2—N1—C1—O12.0 (3)C20—N4—C19—O40.0 (3)
C2—N1—C1—N2179.42 (15)C20—N4—C19—N5178.54 (15)
N3—N2—C1—O1175.81 (15)N6—N5—C19—O4175.95 (15)
N3—N2—C1—N15.6 (2)N6—N5—C19—N45.5 (2)
C1—N1—C2—C7154.49 (18)C19—N4—C20—C25151.84 (17)
C1—N1—C2—C328.1 (3)C19—N4—C20—C2130.1 (3)
C7—C2—C3—C40.7 (3)C25—C20—C21—C221.1 (3)
N1—C2—C3—C4178.00 (18)N4—C20—C21—C22179.19 (17)
C2—C3—C4—C50.8 (3)C20—C21—C22—C231.0 (3)
C3—C4—C5—C60.4 (3)C21—C22—C23—C240.1 (3)
C4—C5—C6—C70.0 (3)C22—C23—C24—C250.5 (3)
C5—C6—C7—C20.2 (3)C21—C20—C25—C240.5 (3)
C3—C2—C7—C60.2 (3)N4—C20—C25—C24178.64 (16)
N1—C2—C7—C6177.68 (18)C23—C24—C25—C200.3 (3)
N2—N3—C8—C171.6 (3)N5—N6—C26—C351.1 (3)
N2—N3—C8—C9179.23 (15)N5—N6—C26—C27178.73 (15)
N3—C8—C9—C10123.12 (19)N6—C26—C27—C28122.47 (19)
C17—C8—C9—C1054.7 (2)C35—C26—C27—C2855.3 (2)
C8—C9—C10—C11157.88 (16)C26—C27—C28—C29162.93 (17)
C9—C10—C11—C16108.0 (2)C27—C28—C29—C3495.8 (2)
C9—C10—C11—C1273.9 (2)C27—C28—C29—C3085.6 (2)
C16—C11—C12—C132.8 (3)C34—C29—C30—C312.6 (3)
C10—C11—C12—C13175.28 (18)C28—C29—C30—C31176.05 (18)
C18—O2—C13—C1211.7 (3)C36—O5—C31—C3016.5 (3)
C18—O2—C13—C14165.4 (2)C36—O5—C31—C32161.41 (18)
C11—C12—C13—O2178.72 (19)C29—C30—C31—O5179.33 (18)
C11—C12—C13—C141.7 (3)C29—C30—C31—C321.5 (3)
O2—C13—C14—O32.7 (3)O5—C31—C32—O63.6 (3)
C12—C13—C14—O3174.61 (17)C30—C31—C32—O6174.50 (17)
O2—C13—C14—C15178.04 (16)O5—C31—C32—C33177.97 (16)
C12—C13—C14—C154.6 (3)C30—C31—C32—C334.0 (3)
O3—C14—C15—C16176.25 (16)O6—C32—C33—C34176.20 (17)
C13—C14—C15—C163.0 (3)C31—C32—C33—C342.3 (3)
C12—C11—C16—C154.5 (3)C32—C33—C34—C291.9 (3)
C10—C11—C16—C15173.55 (18)C30—C29—C34—C334.4 (3)
C14—C15—C16—C111.6 (3)C28—C29—C34—C33174.28 (18)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C29–C34 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.86 (2)2.18 (2)2.635 (2)113 (2)
N4—H4N···N60.86 (2)2.23 (2)2.637 (2)109 (1)
O3—H3O···O20.84 (2)2.29 (3)2.660 (2)107 (2)
O6—H6O···O50.84 (2)2.28 (2)2.663 (2)108 (2)
O3—H3O···N6i0.84 (2)2.19 (2)2.994 (2)161 (2)
O6—H6O···N3ii0.84 (2)2.22 (2)3.013 (2)157 (2)
N2—H2N···O4iii0.88 (2)2.01 (2)2.873 (2)170 (2)
N4—H4N···O2i0.86 (2)2.54 (2)3.390 (2)167 (2)
N5—H5N···O1iv0.88 (2)2.04 (2)2.900 (2)169 (2)
C33—H33···O6v0.952.543.212 (2)128
C15—H15···O3vi0.952.633.166 (2)113
C33—H33···O6i0.952.543.212 (2)128
C10—H10A···Cg1vii0.992.803.774 (2)168
C18—H18A···Cg2ii0.982.663.603 (4)161
C28—H28B···Cg3viii0.992.753.720 (2)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+1, y1, z+1; (vi) x, y+2, z; (vii) x, y+1, z; (viii) x, y1, z.
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
H3···H212.163/2 - x, -1/2 + y, 1/2 - z
H28A···H35A2.243/2 - x, -1/2 + y, 1/2 - z
O1···H222.503/2 - x, -1/2 + y, 1/2 - z
O2···H27B2.561 - x, 1 - y, 1 - z
O3···H152.63-x, 2 - y, 1 - z
O3···C153.166 (2)-x, 2 - y, 1 - z
O3···H232.581 - x, 2 - y, 1 - z
O4···H162.581 + x, -1 + y, z
O5···H9A2.461 - x, -y, 1 - z
C6···H10A2.63x, -1 + y, z
C15···H36C2.551 - x, 1 - y, 1 - z
C16···H36C2.801 - x, 1 - y, 1 - z
C24···H28B2.63x, 1 + y, z
C32···H18A2.761 - x, - y, 1 - z
C33···H18A2.621 - x, - y, 1 - z
C34···H18A2.781 - x, - y, 1 - z
C35···H18B2.711/2 + x, 1/2 - y, -1/2 + z
C36···H9A2.801 - x, - y, 1 - z
C6···C63.210 (3)1 - x, - y, 1 - z
C24···C243.300 (3)2 - x, 1 - y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the O1-molecule, the O4-molecule and for overall (I) top
ContactPercentage contribution
O1-moleculeO4-molecule(I)
H···H49.549.448.7
O···H/H···O16.417.517.8
N···H/H···N7.47.37.7
C···H/H···C26.325.725.5
C···C0.10.10.1
O···O0.20.00.1
C···O/O···C0.10.00.1
 

Footnotes

Additional correspondence author, e-mail: thahira@upm.edu.my

Acknowledgements

We thank the staff of the University of Malaya's X-ray diffraction laboratory for the data collection.

Funding information

The authors are grateful for the support from Sunway University (INT-PRO-2017–096), Universiti Putra Malaysia (UPM), under the research University Grant Scheme (RUGS Nos 9199834 and 9174000), and from the Malaysian Ministry of Science, Technology and Innovation (grant No. 09–02–04–0752-EA001).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAli, S. M. M., Azad, M. A. K., Jesmin, M., Ahsan, S., Rahman, M. M., Khanam, J. A., Islam, M. N. & Shahriar, S. M. S. (2012). Asian Pac. J. Trop. Biomed. 2, 438–442.  CrossRef CAS PubMed Google Scholar
First citationBehenna, D. C., Mohr, J. T., Sherden, N. H., Marinescu, S. C., Harned, A. M., Tani, K., Seto, M., Ma, S., Novák, Z., Krout, M. R., McFadden, R. M., Roizen, J. L., Enquist, J. A. Jr, White, D. E., Levine, S. R., Petrova, K. V., Iwashita, A., Virgil, S. C. & Stoltz, B. M. (2011). Chem. Eur. J. 17, 14199–14223.  CSD CrossRef CAS PubMed Google Scholar
First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroth, P. (1980). Acta Chem. Scand. A34, 609–620.  CrossRef CAS Google Scholar
First citationHoek, W. G. M. van den, Bokkers, G., Krabbendam, H., Spek, A. L. & Kroon, J. (1980). Z. Kristallogr. 152, 215–225.  Google Scholar
First citationKıyak, B., Esenpınar, A. A. & Bulut, M. (2015). Polyhedron, 90, 183–196.  Google Scholar
First citationMa, S., Reeves, C. M., Craig, R. A. II & Stoltz, B. M. (2014). Tetrahedron, 70, 4208–4212.  CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPandeya, S. N. (2012). Acta Pharm. 62, 263–286.  CAS PubMed Google Scholar
First citationPandey, S. & Srivastava, R. S. (2010). Lett. Drug. Des. Discov. 7, 694–706.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P. & Thirumurugan, R. (2004). Bioorg. Med. Chem. Lett. 14, 3923–3924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001–1008.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, M. Y., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o1047–o1048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds