research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetonyltri­phenyl­phospho­nium 2,3,5-tri­phenyl­tetra­zolium tetra­chlorido­cuprate(II)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry and Biochemistry, University of Notre Dame, 246, Nieuwland, Science Hall, Notre Dame, IN 46557-5670, USA
*Correspondence e-mail: mouhamadoubdiop@gmail.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 21 November 2017; accepted 17 December 2017; online 1 January 2018)

The title compound, (C21H20OP)(C19H15N4)[CuCl4], was obtained by reacting CuCl2·2H2O with a mixture of one equivalent of acetonyltri­phenyl­phospho­nium chloride and one equivalent of 2,3,5-tri­phenyl­tetra­zolium chloride in aceto­nitrile. In the structure, the Cu centre in the dianion is bonded to four chloride ligands and adopts a distorted tetra­hedral geometry. The phospho­nium cation likewise adopts the expected tetra­hedral geometry. The tetra­zolium ring forms dihedral angles of 77.68 (10), 26.85 (11) and 66.48 (10)° with the planes of the benzene rings of the substituent groups. In the crystal, weak C—H⋯Cl hydrogen-bonding inter­actions involving both cations and the anion give rise to a three-dimensional supra­molecular structure.

1. Chemical context

Compounds containing the [CuCl4]2− tetra­hedral dianion with various cations have been widely studied (Wei & Willett, 2002[Wei, M. & Willett, R. D. (2002). J. Chem. Crystallogr. 32, 439-445.]; Elangovan et al., 2007[Elangovan, A., Thamaraichelvan, A., Ramu, A., Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. E63, m224-m226.]; Haddad & Al-Far, 2008[Haddad, S. F. & Al-Far, R. H. (2008). J. Chem. Crystallogr. 38, 663-669.]; Al-Ktaifani & Rukiah, 2012[Al-Ktaifani, M. & Rukiah, M. (2012). Acta Cryst. C68, m246-m250.]; Wikaira et al., 2013[Wikaira, J. L., Landee, C. P., Ludy, S. J. & Turnbull, M. M. (2013). Polyhedron, 52, 770-780.]; Laus et al., 2015[Laus, G., Kahlenberg, V. & Schottenberger, H. (2015). Acta Cryst. E71, m110-m111.]). Likewise, a few compounds with an acetonyl tri­phenyl­phospho­nium or 2,3,5-tri­phenyl­tetra­zolium cation have also been reported (Diop et al., 2013[Diop, T., Diop, L., Kučeráková, M. & Dušek, M. (2013). Acta Cryst. E69, o303.], 2015[Diop, M. B., Diop, L. & Oliver, A. G. (2015). Acta Cryst. E71, m209-m210.]; Zhang et al., 2007[Zhang, S.-F., Yang, X.-G., Liu, Z., Li, W.-H. & Hou, B.-R. (2007). Acta Cryst. E63, m1583.]). To expand on the available data on both the [CuCl4]2− anion as well as that on acetonyltri­phenyl­phospho­nium and 2,3,5-tri­phenyl­tetra­zolium cations, we have initiated in this work the study of the inter­actions between CuCl2·2H2O, acetonyl tri­phenyl­phospho­nium chloride and 2,3,5-tri­phenyl­tetra­zolium chloride, expecting the presence of both cations in the resulting compound. This has yielded the title complex salt, (C21H20OP)+·(C19H15N4)+·[CuCl4]2− whose crystal structure is reported herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title complex comprises an acetonyl tri­phenyl­phospho­nium cation, a 2,3,5-tri­phenyl­tetra­zolium cation and a tetra­chlorido­cuprate dianion (Fig. 1[link]). The environment around the CuII atom is distorted tetra­hedral with distances and angles [Cu—Cl = 2.2327 (6)–2.2540 (5) Å and Cl—Cu—Cl = 97.67 (2)–135.49 (2)°] in normal ranges for the [CuCl4]2− complex anion (Clay et al., 1975[Clay, R., Murray-Rust, J. & Murray-Rust, P. (1975). Acta Cryst. B31, 289-290.]; Laus et al., 2015[Laus, G., Kahlenberg, V. & Schottenberger, H. (2015). Acta Cryst. E71, m110-m111.]). The P—C distances within the acetonyl tri­phenyl­phospho­nium cation are similar to those reported for the same cation (Diop et al., 2013[Diop, T., Diop, L., Kučeráková, M. & Dušek, M. (2013). Acta Cryst. E69, o303.], 2015[Diop, M. B., Diop, L. & Oliver, A. G. (2015). Acta Cryst. E71, m209-m210.]). The range for the C—P—C angles [107.07 (9)–113.36 (10)°] indicate a small variation of the geometry for this cation. Present in the cation is a C21—H⋯O1 inter­action [3.147 (3) Å with C—H⋯O angle = 115°]. The N—C and N—N distances within the 2,3,5-triphenyl tetra­zolium cation are consistent with a π delocalization in the tetra­zolium ring, which forms dihedral angles of 77.68 (10), 26.85 (11) and 66.48 (10)° with the planes of the benzene rings of the substituent groups.

[Figure 1]
Figure 1
The mol­ecular components of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, inter-species C—H⋯Cl hydrogen bonds between aromatic, methyl­ene and methyl H atoms of the acetonyl tri­phenyl­phospho­nium cation and the [CuCl4]2− anions are present (Table 1[link]) together with weak C—H⋯Cl hydrogen-bonding inter­actions involving phenyl H atoms of the 2,3,5-triphenyl tetra­zolium cations. A three-dimensional supra­molecular structure is formed (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl2i 0.99 2.54 3.363 (2) 141
C1—H1B⋯Cl2ii 0.99 2.69 3.662 (2) 168
C3—H3B⋯Cl3ii 0.98 2.74 3.714 (2) 171
C3—H3C⋯Cl2i 0.98 2.90 3.630 (2) 132
C9—H9⋯Cl2ii 0.95 2.97 3.917 (2) 172
C24—H24⋯Cl3ii 0.95 2.99 3.783 (2) 142
C28—H28⋯Cl1 0.95 2.72 3.605 (2) 156
C30—H30⋯Cl3ii 0.95 2.87 3.683 (2) 144
C30—H30⋯Cl4ii 0.95 2.85 3.630 (2) 140
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the packing of the title compound viewed along [100], with hydrogen-bonding inter­actions shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. The acetonyltriphenylphosphonium cations form supramolecular dimers through pairs of centrosymmetric C—H⋯O interactions.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned hundreds and hundreds of different structures containing the [CuCl4]2− dianion. To date, only nine structures of acetonyl tri­phenyl­phospho­nium and seventeen structures of 2,3,5-tri­phenyl­tetra­zolium have been deposited in the CSD. No structure including both acetonyltri­phenyl­phospho­nium and 2,3,5-tri­phenyl­tetra­zolium species was found.

5. Synthesis and crystallization

All chemicals were purchased from Aldrich Company, Germany and used as received. Acetonyl tri­phenyl­phospho­nium chloride and 2,3,5-triphenyl tetra­zolium chloride were mixed in aceto­nitrile with CuCl2·2H2O in a 1:1:1 ratio: a yellow–orange solution was obtained. Orange crystals suitable for a single-crystal X-ray diffraction study were obtained after a slow solvent evaporation at room temperature (300 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.95 Å (aromatic), 0.99 Å (methyl­ene) or 0.98 Å (meth­yl), and with Uiso(H) = 1.2Ueq(aromatic or methyl­ene) or 1.5Ueq(meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula (C21H20OP)(C19H15N4)[CuCl4]
Mr 824.03
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 10.6868 (12), 26.421 (3), 13.5628 (15)
β (°) 90.709 (1)
V3) 3829.2 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.93
Crystal size (mm) 0.29 × 0.20 × 0.16
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.850, 0.939
No. of measured, independent and observed [I > 2σ(I)] reflections 86744, 9517, 7659
Rint 0.046
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.04
No. of reflections 9517
No. of parameters 461
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.31
Computer programs: APEX2 , SAINT and XP (Bruker, 2015[Bruker. (2015). APEX2, SAINT and XP. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and CIFTAB (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Bruker, 2015); software used to prepare material for publication: CIFTAB (Sheldrick, 2015b).

Acetonyltriphenylphosphonium 2,3,5-triphenyltetrazolium tetrachloridocuprate(II) top
Crystal data top
(C21H20OP)(C19H15N4)[CuCl4]F(000) = 1692
Mr = 824.03Dx = 1.429 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.6868 (12) ÅCell parameters from 9465 reflections
b = 26.421 (3) Åθ = 2.4–28.1°
c = 13.5628 (15) ŵ = 0.93 mm1
β = 90.709 (1)°T = 120 K
V = 3829.2 (7) Å3Irregular fragment, orange
Z = 40.29 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII
diffractometer
9517 independent reflections
Radiation source: fine-focus sealed tube7659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 1.5°
combination of ω and φ–scansh = 1414
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 3535
Tmin = 0.850, Tmax = 0.939l = 1818
86744 measured reflections
Refinement top
Refinement on F2Primary atom site location: real-space vector search
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0444P)2 + 2.8241P]
where P = (Fo2 + 2Fc2)/3
9517 reflections(Δ/σ)max = 0.003
461 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.18416 (2)0.83950 (2)0.46171 (2)0.01990 (7)
Cl10.37755 (5)0.83273 (2)0.40187 (4)0.03219 (12)
Cl20.18895 (5)0.92209 (2)0.50256 (4)0.03061 (12)
Cl30.00778 (4)0.83854 (2)0.39095 (4)0.02588 (11)
Cl40.17809 (5)0.76656 (2)0.54465 (4)0.03418 (13)
P10.62501 (5)0.46610 (2)0.76661 (4)0.02193 (11)
O10.35961 (15)0.49029 (6)0.72476 (11)0.0365 (4)
C10.51075 (18)0.48642 (8)0.85438 (14)0.0242 (4)
H1A0.49100.45780.89870.029*
H1B0.54710.51390.89530.029*
C20.38982 (18)0.50531 (8)0.80594 (15)0.0258 (4)
C30.3142 (2)0.54137 (8)0.86465 (16)0.0299 (4)
H3A0.23880.55080.82710.045*
H3B0.36390.57180.87880.045*
H3C0.29020.52530.92670.045*
C40.64250 (18)0.51654 (8)0.67895 (15)0.0242 (4)
C50.6371 (2)0.50811 (8)0.57820 (15)0.0286 (4)
H50.62530.47480.55340.034*
C60.6490 (2)0.54866 (9)0.51329 (16)0.0344 (5)
H60.64620.54300.44410.041*
C70.6650 (2)0.59706 (9)0.54977 (18)0.0363 (5)
H70.67300.62480.50560.044*
C80.6693 (2)0.60526 (9)0.65035 (18)0.0372 (5)
H80.68050.63860.67490.045*
C90.6576 (2)0.56546 (8)0.71550 (17)0.0333 (5)
H90.65990.57140.78460.040*
C100.76907 (18)0.45595 (8)0.83306 (15)0.0262 (4)
C110.8699 (2)0.48849 (10)0.82425 (19)0.0408 (6)
H110.86500.51720.78220.049*
C120.9787 (2)0.47832 (13)0.8783 (2)0.0576 (8)
H121.04870.50020.87250.069*
C130.9863 (2)0.43719 (12)0.9400 (2)0.0528 (7)
H131.06130.43070.97600.063*
C140.8858 (2)0.40559 (10)0.9494 (2)0.0450 (6)
H140.89080.37750.99300.054*
C150.7763 (2)0.41431 (9)0.89564 (18)0.0361 (5)
H150.70700.39200.90160.043*
C160.5878 (2)0.40659 (8)0.71009 (15)0.0268 (4)
C170.6791 (2)0.38438 (9)0.65135 (16)0.0355 (5)
H170.75540.40170.63960.043*
C180.6582 (3)0.33723 (9)0.61035 (18)0.0441 (6)
H180.71920.32230.56910.053*
C190.5484 (3)0.31196 (9)0.6296 (2)0.0500 (7)
H190.53460.27930.60220.060*
C200.4587 (3)0.33336 (9)0.6881 (2)0.0486 (7)
H200.38360.31540.70080.058*
C210.4772 (2)0.38109 (8)0.72871 (18)0.0355 (5)
H210.41480.39610.76870.043*
N10.41588 (15)0.68767 (6)0.64421 (12)0.0231 (3)
N20.46486 (15)0.72999 (6)0.67689 (12)0.0218 (3)
N30.38773 (14)0.75180 (6)0.74104 (12)0.0219 (3)
N40.28719 (15)0.72419 (6)0.75175 (12)0.0225 (3)
C220.30628 (17)0.68472 (7)0.69106 (14)0.0217 (4)
C230.58844 (18)0.74780 (7)0.65044 (15)0.0237 (4)
C240.68680 (19)0.73834 (8)0.71430 (16)0.0280 (4)
H240.67330.72410.77760.034*
C250.80653 (19)0.75032 (8)0.68297 (17)0.0318 (5)
H250.87650.74400.72510.038*
C260.8245 (2)0.77132 (9)0.59150 (18)0.0349 (5)
H260.90670.77930.57070.042*
C270.7234 (2)0.78090 (10)0.52971 (17)0.0389 (5)
H270.73670.79560.46680.047*
C280.6029 (2)0.76927 (9)0.55851 (16)0.0315 (5)
H280.53290.77580.51660.038*
C290.40967 (18)0.80011 (8)0.78841 (15)0.0243 (4)
C300.4634 (2)0.80027 (8)0.88116 (16)0.0315 (5)
H300.48890.76970.91220.038*
C310.4789 (2)0.84658 (9)0.92767 (18)0.0392 (5)
H310.51620.84810.99150.047*
C320.4403 (2)0.89058 (9)0.88143 (19)0.0376 (5)
H320.45050.92210.91410.045*
C330.3869 (3)0.88917 (9)0.7881 (2)0.0442 (6)
H330.36080.91970.75700.053*
C340.3714 (2)0.84312 (8)0.73976 (18)0.0373 (5)
H340.33560.84150.67540.045*
C350.21638 (18)0.64331 (7)0.67518 (14)0.0225 (4)
C360.0992 (2)0.64553 (9)0.71863 (17)0.0314 (5)
H360.07810.67330.75960.038*
C370.0135 (2)0.60693 (9)0.70173 (18)0.0371 (5)
H370.06650.60810.73140.045*
C380.0449 (2)0.56676 (9)0.64165 (17)0.0344 (5)
H380.01460.54080.62870.041*
C390.1622 (2)0.56409 (8)0.60035 (16)0.0322 (5)
H390.18370.53590.56050.039*
C400.24869 (19)0.60236 (8)0.61681 (15)0.0276 (4)
H400.32940.60050.58840.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01889 (12)0.01888 (12)0.02188 (12)0.00136 (8)0.00154 (8)0.00022 (9)
Cl10.0206 (2)0.0399 (3)0.0361 (3)0.0023 (2)0.00368 (19)0.0073 (2)
Cl20.0262 (2)0.0225 (2)0.0430 (3)0.00192 (19)0.0028 (2)0.0096 (2)
Cl30.0214 (2)0.0246 (2)0.0315 (2)0.00047 (17)0.00662 (18)0.00112 (19)
Cl40.0374 (3)0.0270 (3)0.0379 (3)0.0007 (2)0.0100 (2)0.0112 (2)
P10.0215 (2)0.0225 (2)0.0219 (2)0.00009 (19)0.00078 (18)0.00152 (19)
O10.0346 (8)0.0422 (9)0.0324 (8)0.0075 (7)0.0091 (7)0.0084 (7)
C10.0229 (9)0.0283 (10)0.0214 (9)0.0004 (8)0.0029 (7)0.0025 (8)
C20.0239 (9)0.0245 (10)0.0290 (10)0.0021 (8)0.0016 (8)0.0005 (8)
C30.0303 (11)0.0227 (10)0.0366 (11)0.0029 (8)0.0051 (9)0.0017 (9)
C40.0238 (9)0.0230 (10)0.0260 (10)0.0013 (7)0.0034 (7)0.0004 (8)
C50.0312 (11)0.0266 (11)0.0279 (10)0.0002 (8)0.0005 (8)0.0029 (8)
C60.0367 (12)0.0402 (13)0.0263 (11)0.0003 (10)0.0013 (9)0.0045 (9)
C70.0385 (12)0.0321 (12)0.0385 (12)0.0040 (10)0.0016 (10)0.0100 (10)
C80.0474 (14)0.0222 (11)0.0422 (13)0.0008 (10)0.0035 (10)0.0010 (9)
C90.0450 (13)0.0259 (11)0.0293 (11)0.0020 (9)0.0020 (9)0.0029 (9)
C100.0230 (9)0.0288 (11)0.0268 (10)0.0033 (8)0.0011 (7)0.0032 (8)
C110.0267 (11)0.0484 (15)0.0471 (14)0.0069 (10)0.0003 (10)0.0021 (11)
C120.0228 (12)0.078 (2)0.072 (2)0.0072 (13)0.0036 (12)0.0031 (17)
C130.0309 (13)0.0672 (19)0.0598 (17)0.0169 (13)0.0146 (12)0.0122 (15)
C140.0468 (15)0.0390 (14)0.0488 (15)0.0165 (11)0.0157 (12)0.0051 (11)
C150.0357 (12)0.0309 (12)0.0414 (13)0.0038 (9)0.0095 (10)0.0019 (10)
C160.0335 (11)0.0218 (10)0.0249 (10)0.0004 (8)0.0032 (8)0.0005 (8)
C170.0474 (13)0.0300 (12)0.0292 (11)0.0033 (10)0.0042 (10)0.0011 (9)
C180.0739 (19)0.0283 (12)0.0300 (12)0.0084 (12)0.0016 (12)0.0045 (9)
C190.078 (2)0.0225 (12)0.0493 (16)0.0013 (12)0.0186 (14)0.0061 (11)
C200.0479 (15)0.0266 (12)0.0709 (19)0.0099 (11)0.0150 (14)0.0003 (12)
C210.0342 (12)0.0270 (11)0.0452 (13)0.0009 (9)0.0055 (10)0.0008 (10)
N10.0213 (8)0.0232 (8)0.0247 (8)0.0005 (6)0.0019 (6)0.0004 (6)
N20.0208 (8)0.0220 (8)0.0225 (8)0.0013 (6)0.0011 (6)0.0002 (6)
N30.0190 (7)0.0237 (8)0.0228 (8)0.0030 (6)0.0006 (6)0.0000 (6)
N40.0199 (8)0.0236 (8)0.0240 (8)0.0001 (6)0.0017 (6)0.0026 (6)
C220.0205 (9)0.0227 (9)0.0219 (9)0.0018 (7)0.0015 (7)0.0039 (7)
C230.0207 (9)0.0227 (10)0.0277 (10)0.0007 (7)0.0031 (7)0.0026 (8)
C240.0261 (10)0.0290 (11)0.0288 (10)0.0021 (8)0.0004 (8)0.0015 (8)
C250.0226 (10)0.0316 (11)0.0411 (12)0.0017 (8)0.0005 (8)0.0031 (9)
C260.0296 (11)0.0316 (12)0.0438 (13)0.0066 (9)0.0111 (9)0.0080 (10)
C270.0420 (13)0.0451 (14)0.0300 (11)0.0077 (11)0.0124 (10)0.0028 (10)
C280.0318 (11)0.0367 (12)0.0260 (10)0.0025 (9)0.0008 (8)0.0019 (9)
C290.0227 (9)0.0232 (10)0.0270 (10)0.0004 (7)0.0027 (7)0.0026 (8)
C300.0374 (12)0.0273 (11)0.0298 (11)0.0035 (9)0.0021 (9)0.0011 (9)
C310.0462 (14)0.0373 (13)0.0339 (12)0.0017 (11)0.0022 (10)0.0083 (10)
C320.0379 (12)0.0277 (11)0.0472 (14)0.0023 (9)0.0065 (10)0.0092 (10)
C330.0549 (16)0.0244 (12)0.0531 (15)0.0043 (11)0.0057 (12)0.0016 (11)
C340.0471 (14)0.0284 (12)0.0361 (12)0.0035 (10)0.0086 (10)0.0017 (9)
C350.0215 (9)0.0220 (9)0.0239 (9)0.0004 (7)0.0022 (7)0.0033 (7)
C360.0251 (10)0.0324 (11)0.0368 (12)0.0023 (9)0.0049 (8)0.0037 (9)
C370.0284 (11)0.0386 (13)0.0446 (13)0.0076 (9)0.0072 (9)0.0040 (10)
C380.0356 (12)0.0298 (11)0.0379 (12)0.0109 (9)0.0009 (9)0.0005 (9)
C390.0391 (12)0.0257 (11)0.0320 (11)0.0035 (9)0.0021 (9)0.0016 (9)
C400.0275 (10)0.0256 (10)0.0299 (10)0.0009 (8)0.0047 (8)0.0013 (8)
Geometric parameters (Å, º) top
Cu1—Cl42.2327 (6)C19—H190.9500
Cu1—Cl12.2368 (6)C20—C211.389 (3)
Cu1—Cl22.2518 (6)C20—H200.9500
Cu1—Cl32.2540 (5)C21—H210.9500
P1—C161.792 (2)N1—N21.310 (2)
P1—C101.794 (2)N1—C221.342 (2)
P1—C41.797 (2)N2—N31.336 (2)
P1—C11.7979 (19)N2—C231.451 (2)
O1—C21.210 (3)N3—N41.308 (2)
C1—C21.526 (3)N3—C291.447 (3)
C1—H1A0.9900N4—C221.346 (3)
C1—H1B0.9900C22—C351.470 (3)
C2—C31.487 (3)C23—C241.377 (3)
C3—H3A0.9800C23—C281.380 (3)
C3—H3B0.9800C24—C251.390 (3)
C3—H3C0.9800C24—H240.9500
C4—C51.385 (3)C25—C261.375 (3)
C4—C91.393 (3)C25—H250.9500
C5—C61.393 (3)C26—C271.383 (3)
C5—H50.9500C26—H260.9500
C6—C71.381 (3)C27—C281.384 (3)
C6—H60.9500C27—H270.9500
C7—C81.381 (3)C28—H280.9500
C7—H70.9500C29—C341.374 (3)
C8—C91.380 (3)C29—C301.376 (3)
C8—H80.9500C30—C311.385 (3)
C9—H90.9500C30—H300.9500
C10—C111.385 (3)C31—C321.382 (3)
C10—C151.391 (3)C31—H310.9500
C11—C121.393 (4)C32—C331.383 (4)
C11—H110.9500C32—H320.9500
C12—C131.373 (4)C33—C341.391 (3)
C12—H120.9500C33—H330.9500
C13—C141.368 (4)C34—H340.9500
C13—H130.9500C35—C401.387 (3)
C14—C151.390 (3)C35—C361.391 (3)
C14—H140.9500C36—C371.388 (3)
C15—H150.9500C36—H360.9500
C16—C211.387 (3)C37—C381.382 (3)
C16—C171.396 (3)C37—H370.9500
C17—C181.381 (3)C38—C391.381 (3)
C17—H170.9500C38—H380.9500
C18—C191.378 (4)C39—C401.386 (3)
C18—H180.9500C39—H390.9500
C19—C201.373 (4)C40—H400.9500
Cl4—Cu1—Cl198.43 (2)C20—C19—H19119.6
Cl4—Cu1—Cl2135.49 (2)C18—C19—H19119.6
Cl1—Cu1—Cl298.54 (2)C19—C20—C21120.4 (3)
Cl4—Cu1—Cl399.95 (2)C19—C20—H20119.8
Cl1—Cu1—Cl3133.21 (2)C21—C20—H20119.8
Cl2—Cu1—Cl397.67 (2)C16—C21—C20119.0 (2)
C16—P1—C10105.55 (10)C16—C21—H21120.5
C16—P1—C4113.08 (9)C20—C21—H21120.5
C10—P1—C4110.33 (10)N2—N1—C22103.71 (16)
C16—P1—C1113.36 (10)N1—N2—N3109.96 (15)
C10—P1—C1107.31 (9)N1—N2—C23123.66 (16)
C4—P1—C1107.07 (9)N3—N2—C23126.28 (16)
C2—C1—P1113.02 (14)N4—N3—N2110.24 (15)
C2—C1—H1A109.0N4—N3—C29124.84 (16)
P1—C1—H1A109.0N2—N3—C29124.86 (16)
C2—C1—H1B109.0N3—N4—C22103.49 (15)
P1—C1—H1B109.0N1—C22—N4112.61 (17)
H1A—C1—H1B107.8N1—C22—C35123.14 (18)
O1—C2—C3123.83 (19)N4—C22—C35124.23 (17)
O1—C2—C1119.95 (18)C24—C23—C28123.34 (19)
C3—C2—C1116.22 (17)C24—C23—N2118.41 (18)
C2—C3—H3A109.5C28—C23—N2117.98 (18)
C2—C3—H3B109.5C23—C24—C25117.7 (2)
H3A—C3—H3B109.5C23—C24—H24121.1
C2—C3—H3C109.5C25—C24—H24121.1
H3A—C3—H3C109.5C26—C25—C24120.5 (2)
H3B—C3—H3C109.5C26—C25—H25119.8
C5—C4—C9120.24 (19)C24—C25—H25119.8
C5—C4—P1122.00 (16)C25—C26—C27120.3 (2)
C9—C4—P1117.72 (15)C25—C26—H26119.9
C4—C5—C6119.8 (2)C27—C26—H26119.9
C4—C5—H5120.1C26—C27—C28120.7 (2)
C6—C5—H5120.1C26—C27—H27119.6
C7—C6—C5119.8 (2)C28—C27—H27119.6
C7—C6—H6120.1C23—C28—C27117.5 (2)
C5—C6—H6120.1C23—C28—H28121.3
C6—C7—C8120.1 (2)C27—C28—H28121.3
C6—C7—H7120.0C34—C29—C30123.7 (2)
C8—C7—H7120.0C34—C29—N3118.08 (18)
C9—C8—C7120.7 (2)C30—C29—N3118.17 (18)
C9—C8—H8119.6C29—C30—C31117.7 (2)
C7—C8—H8119.6C29—C30—H30121.1
C8—C9—C4119.3 (2)C31—C30—H30121.1
C8—C9—H9120.3C32—C31—C30120.2 (2)
C4—C9—H9120.3C32—C31—H31119.9
C11—C10—C15120.4 (2)C30—C31—H31119.9
C11—C10—P1121.84 (17)C31—C32—C33120.7 (2)
C15—C10—P1117.74 (16)C31—C32—H32119.7
C10—C11—C12118.7 (3)C33—C32—H32119.7
C10—C11—H11120.7C32—C33—C34120.0 (2)
C12—C11—H11120.7C32—C33—H33120.0
C13—C12—C11121.1 (3)C34—C33—H33120.0
C13—C12—H12119.5C29—C34—C33117.6 (2)
C11—C12—H12119.5C29—C34—H34121.2
C14—C13—C12120.0 (2)C33—C34—H34121.2
C14—C13—H13120.0C40—C35—C36120.41 (19)
C12—C13—H13120.0C40—C35—C22119.82 (18)
C13—C14—C15120.4 (3)C36—C35—C22119.77 (18)
C13—C14—H14119.8C37—C36—C35119.6 (2)
C15—C14—H14119.8C37—C36—H36120.2
C14—C15—C10119.4 (2)C35—C36—H36120.2
C14—C15—H15120.3C38—C37—C36119.8 (2)
C10—C15—H15120.3C38—C37—H37120.1
C21—C16—C17120.2 (2)C36—C37—H37120.1
C21—C16—P1122.23 (17)C39—C38—C37120.4 (2)
C17—C16—P1117.39 (17)C39—C38—H38119.8
C18—C17—C16119.9 (2)C37—C38—H38119.8
C18—C17—H17120.1C38—C39—C40120.3 (2)
C16—C17—H17120.1C38—C39—H39119.9
C19—C18—C17119.6 (3)C40—C39—H39119.9
C19—C18—H18120.2C39—C40—C35119.39 (19)
C17—C18—H18120.2C39—C40—H40120.3
C20—C19—C18120.8 (2)C35—C40—H40120.3
C16—P1—C1—C273.90 (17)C22—N1—N2—C23176.44 (17)
C10—P1—C1—C2169.96 (14)N1—N2—N3—N40.2 (2)
C4—P1—C1—C251.51 (17)C23—N2—N3—N4176.19 (17)
P1—C1—C2—O125.5 (3)N1—N2—N3—C29177.26 (16)
P1—C1—C2—C3155.48 (15)C23—N2—N3—C296.4 (3)
C16—P1—C4—C54.8 (2)N2—N3—N4—C220.21 (19)
C10—P1—C4—C5113.14 (18)C29—N3—N4—C22177.20 (17)
C1—P1—C4—C5130.39 (17)N2—N1—C22—N40.1 (2)
C16—P1—C4—C9173.01 (17)N2—N1—C22—C35178.44 (17)
C10—P1—C4—C969.04 (19)N3—N4—C22—N10.2 (2)
C1—P1—C4—C947.43 (19)N3—N4—C22—C35178.33 (17)
C9—C4—C5—C61.1 (3)N1—N2—C23—C2497.3 (2)
P1—C4—C5—C6178.89 (16)N3—N2—C23—C2478.6 (3)
C4—C5—C6—C70.6 (3)N1—N2—C23—C2877.0 (2)
C5—C6—C7—C80.1 (4)N3—N2—C23—C28107.2 (2)
C6—C7—C8—C90.1 (4)C28—C23—C24—C251.2 (3)
C7—C8—C9—C40.6 (4)N2—C23—C24—C25172.68 (18)
C5—C4—C9—C81.1 (3)C23—C24—C25—C260.6 (3)
P1—C4—C9—C8178.98 (18)C24—C25—C26—C270.2 (3)
C16—P1—C10—C11130.83 (19)C25—C26—C27—C280.4 (4)
C4—P1—C10—C118.3 (2)C24—C23—C28—C271.0 (3)
C1—P1—C10—C11108.0 (2)N2—C23—C28—C27172.92 (19)
C16—P1—C10—C1550.06 (19)C26—C27—C28—C230.2 (4)
C4—P1—C10—C15172.54 (17)N4—N3—C29—C3490.4 (2)
C1—P1—C10—C1571.13 (19)N2—N3—C29—C3486.6 (2)
C15—C10—C11—C120.7 (4)N4—N3—C29—C3087.2 (2)
P1—C10—C11—C12179.8 (2)N2—N3—C29—C3095.8 (2)
C10—C11—C12—C130.5 (4)C34—C29—C30—C310.2 (3)
C11—C12—C13—C140.4 (5)N3—C29—C30—C31177.20 (19)
C12—C13—C14—C151.1 (4)C29—C30—C31—C320.5 (4)
C13—C14—C15—C101.0 (4)C30—C31—C32—C330.6 (4)
C11—C10—C15—C140.0 (3)C31—C32—C33—C340.1 (4)
P1—C10—C15—C14179.11 (18)C30—C29—C34—C330.8 (4)
C10—P1—C16—C21121.13 (19)N3—C29—C34—C33176.7 (2)
C4—P1—C16—C21118.17 (18)C32—C33—C34—C290.6 (4)
C1—P1—C16—C214.0 (2)N1—C22—C35—C406.5 (3)
C10—P1—C16—C1754.18 (19)N4—C22—C35—C40175.14 (18)
C4—P1—C16—C1766.53 (19)N1—C22—C35—C36173.36 (19)
C1—P1—C16—C17171.35 (16)N4—C22—C35—C365.0 (3)
C21—C16—C17—C181.1 (3)C40—C35—C36—C371.3 (3)
P1—C16—C17—C18176.46 (18)C22—C35—C36—C37178.6 (2)
C16—C17—C18—C191.5 (4)C35—C36—C37—C380.3 (4)
C17—C18—C19—C200.9 (4)C36—C37—C38—C391.7 (4)
C18—C19—C20—C210.1 (4)C37—C38—C39—C401.6 (4)
C17—C16—C21—C200.1 (3)C38—C39—C40—C350.0 (3)
P1—C16—C21—C20175.23 (19)C36—C35—C40—C391.4 (3)
C19—C20—C21—C160.5 (4)C22—C35—C40—C39178.46 (19)
C22—N1—N2—N30.02 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl2i0.992.543.363 (2)141
C1—H1B···Cl2ii0.992.693.662 (2)168
C3—H3B···Cl3ii0.982.743.714 (2)171
C3—H3C···Cl2i0.982.903.630 (2)132
C9—H9···Cl2ii0.952.973.917 (2)172
C24—H24···Cl3ii0.952.993.783 (2)142
C28—H28···Cl10.952.723.605 (2)156
C30—H30···Cl3ii0.952.873.683 (2)144
C30—H30···Cl4ii0.952.853.630 (2)140
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+3/2, z+1/2.
 

Funding information

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) and the University of Notre Dame (USA) for financial support and instrumentation use.

References

First citationAl-Ktaifani, M. & Rukiah, M. (2012). Acta Cryst. C68, m246–m250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker. (2015). APEX2, SAINT and XP. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClay, R., Murray-Rust, J. & Murray-Rust, P. (1975). Acta Cryst. B31, 289–290.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDiop, T., Diop, L., Kučeráková, M. & Dušek, M. (2013). Acta Cryst. E69, o303.  CSD CrossRef IUCr Journals Google Scholar
First citationDiop, M. B., Diop, L. & Oliver, A. G. (2015). Acta Cryst. E71, m209–m210.  CrossRef IUCr Journals Google Scholar
First citationElangovan, A., Thamaraichelvan, A., Ramu, A., Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. E63, m224–m226.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaddad, S. F. & Al-Far, R. H. (2008). J. Chem. Crystallogr. 38, 663–669.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLaus, G., Kahlenberg, V. & Schottenberger, H. (2015). Acta Cryst. E71, m110–m111.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWei, M. & Willett, R. D. (2002). J. Chem. Crystallogr. 32, 439–445.  Web of Science CSD CrossRef CAS Google Scholar
First citationWikaira, J. L., Landee, C. P., Ludy, S. J. & Turnbull, M. M. (2013). Polyhedron, 52, 770–780.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-F., Yang, X.-G., Liu, Z., Li, W.-H. & Hou, B.-R. (2007). Acta Cryst. E63, m1583.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds