research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­methyl 1-oxo-2,4-di­phenyl-1,2-di­hydro­naphthalene-2,3-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Jeppiaar Engineering College, Jeppiaar Nagar, OMR, Chennai 600 119, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: g.jagan85@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 1 January 2018; accepted 9 February 2018; online 13 February 2018)

In the title compound, C26H20O5, a 1,2-di­hydro­naphthalene derivative, the cyclo­hexa-1,3-diene ring of the 1,2-di­hydro­naphthalene ring system adopts a half-chair conformation. The mean plane of the 1,2-di­hydro­napthalene ring system makes dihedral angles of 86.23 (6) and 64.80 (7)° with two phenyl rings. The carbonyl O atom attached to the di­hydro­naphthalene ring system deviates from the mean plane of the 1,2-di­hydro­naphthalene ring system by 0.618 (1) Å. In the crystal, the mol­ecules are linked into layers parallel to the bc plane via two kinds of C—H⋯O inter­actions, one of which forms a C(10) chain motif running along the c-axis direction and the other forms an R22(6) ring motif. Adjacent layers are further connected by C—H⋯π and offset ππ inter­actions [centroid–centroid distance = 3.6318 (9) Å].

1. Chemical context

Naphthalene derivatives have manifested applications in many fields, for example, as colorants, explosives, disinfectants, insecticides and the plant hormone auxin. Naphthalene is believed to play a role in the chemical defence against biological enemies (Wiltz et al., 1998[Wiltz, B. A., Henderson, G. & Chen, J. (1998). Environ. Entomol. 27, 936-940.]; Wright et al., 2000[Wright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42-45.]). Naphthalene derivatives have been identified as a new range of potent anti-microbials that are effective against a wide range of human pathogens and have diverse and inter­esting anti­biotic properties with minimum toxicity (Rokade & Sayyed, 2009[Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972-980.]; Upadhayaya et al., 2010[Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 45, 1854-1867.]). Compounds with non-coplanarly accumulated aromatic rings have received attention from organic chemists and materials chemists as unique structural building blocks, because they provide characteristic optical and electronic properties originating from their structural features. For example, biphenyl and binaphthyl are applied to optically active mol­ecular catalysts and polymer materials on the basis of their axial chiralities (Deria et al., 2013[Deria, P., Von Bargen, C. D., Olivier, J. H., Kumbhar, A. S., Saven, J. G. & Therien, M. J. (2013). J. Am. Chem. Soc. 135, 16220-16234.]). The structures of similar 1-oxo-1,2-di­hydro­naphtalene derivatives, namely, dimethyl 4-(4-meth­oxy­phen­yl)-2-(4-methyl­phen­yl)-1-oxo-1,2-di­hydro­naphthalene-2,3-di­carboxyl­ate, dimethyl 1-oxo-2-(pyren-4-yl)-4-(thio­phen-2-yl)-1,2-di­hydro­naphthalene-2,3-di­carboxyl­ate and ethyl 1-oxo-2-phen­yl-2,4-bis­(thio­phen-2-yl)-1,2-di­hydro­naphthalene-3-carboxyl­ate, have been reported by Gopinath et al. (2017[Gopinath, S., Narayanan, P., Sethusankar, K., Karunakaran, J., Nandakumar, M. & Mohanakrishnan, A. K. (2017). Acta Cryst. E73, 177-182.]).

2. Structural commentary

In the title compound (Fig. 1[link]), the 1,2-di­hydro­naphthalene C1–C10 ring system is not strictly planar and the cyclo­hexa-1,3-diene C5–C10 ring adopts a half-chair conformation with puckering and smallest displacement parameters q2 = 0.3091 (14) Å, q3 = 0.1461 (14) Å, φ2 = 155.9 (3)° and θ = 64.7 (2)° and ΔCs = 4.41 (19). The dihedral angle between the C1–C6 and C5–C10 rings is 10.15 (6)°. The C11–C16 phenyl ring is almost perpendicular to the 1,2-di­hydro­naphthalene C1–C10 ring system with a dihedral angle of 83.83 (7)° between them. The other phenyl ring (C21–C26) makes dihedral angles of 64.80 (7) and 29.06 (8)° with the mean plane of C1–C10 ring system and the C11–C16 phenyl ring, respectively. Atom O1 of the carbonyl group deviates from the mean plane of the 1,2-di­hydro­naphthalene ring system by 0.647 (1) Å.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radii.

3. Supra­molecular features

In the crystal, the mol­ecules are linked via C—H⋯O hydrogen bonds (C24—H24⋯O2i; symmetry code as in Table 1[link]), which generates C(10) zigzag chains running along the c-axis direction (Fig. 2[link]). In addition, the chains are linked via pairs of C—H⋯O inter­actions (C20—H20B⋯O5ii; Table 2[link]) with an R22(6) ring motif (Fig. 3[link]), forming layers parallel to the bc plane. Between the layers there are also C—H⋯π (C3—H3⋯Cg3iii; Table 1[link]) and ππ stacking inter­actions (Fig. 4[link]) [Cg1⋯Cg1iii = 3.6318 (9) Å, inter­planar distance = 3.343 (1) Å and offset distance = 1.419 (1) Å; symmetry code: (iii) −x, 1 − y, −z; Cg1 and Cg3 are the centroids of the C1–C6 and C11–C16 rings, respectively].

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the phenyl C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O2i 0.93 2.59 3.449 (3) 155
C20—H20B⋯O5ii 0.96 2.59 3.430 (2) 146
C3—H3⋯Cg3iii 0.93 2.77 3.6338 (16) 154
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z.

Table 2
Experimental details

Crystal data
Chemical formula C26H20O5
Mr 412.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 15.8021 (8), 7.4706 (4), 17.8599 (9)
β (°) 96.581 (2)
V3) 2094.49 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.969, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 21819, 4614, 3375
Rint 0.028
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.03
No. of reflections 4614
No. of parameters 283
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).
[Figure 2]
Figure 2
A packing diagram of the title compound, showing a C(10) zigzag chain along to the c axis formed via C—H⋯O hydrogen bonds (dashed lines). The H atoms not involved in the hydrogen bonding have been excluded for clarity. [Symmetry code: (i) x, [{3\over 2}] − y, −[{1\over 2}] + z.]
[Figure 3]
Figure 3
A part of the crystal packing of the title compound, showing an R22(6) inversion dimer formed via a pair of C—H⋯O hydrogen bonds (dashed lines). The H atoms not involved in the hydrogen bonding have been excluded for clarity. [Symmetry code: (ii) 1 − x, 1 − y, −z.]
[Figure 4]
Figure 4
A packing diagram of the title compound, showing C—H⋯π and ππ inter­actions (dashed lines), where Cg1 and Cg3 are the centroids of the phenyl C1–C6 and C11–C16 rings, respectively. [Symmetry code: (iii) −x, 1 − y, −z.]

4. Synthesis and crystallization

To a solution of 1,3-di­phenyl­isobenzo­furan (1 g, 3.70 mmol) in dry di­chloro­methane, dimethyl acetyl­enedi­carboxyl­ate (0.58 g, 4.07 mmol) was added and the reaction mixture was stirred at room temperature for 1 h. Removal of solvent followed by column chromatographic purification (silica gel; 15% ethyl acetate in hexa­ne) afforded isobenzo­furan­dimethyl acetyl­enedi­carboxyl­ate adduct as a colourless solid (1.10 g, 72%). To a solution of the adduct (0.50 g, 1.21 mmol) in dry di­chloro­methane, BF3·OEt2 (0.075 g, 0.52 mmol) was added and the reaction mixture was stirred at room temperature for 5 min. Removal of solvent followed by column chromatographic purification (silica gel; 15% ethyl acetate in hexa­ne) gave the title compound as a colourless solid (0.45 g, 94%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of an ethyl acetate solution of the title compound at room temperature (m.p. = 454–456 K).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were localized in a difference-Fourier map and then were treated as riding atoms, with C—H = 0.93 and 0.96 Å for aryl and methyl groups, respectively, and with Uiso(H) = 1.2Ueq(aryl C) and 1.5Ueq(methyl C), allowing for free rotation of the methyl groups.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Dimethyl 1-oxo-2,4-diphenyl-1,2-dihydronaphthalene-2,3-dicarboxylate top
Crystal data top
C26H20O5F(000) = 864
Mr = 412.42Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3375 reflections
a = 15.8021 (8) Åθ = 2.3–27.1°
b = 7.4706 (4) ŵ = 0.09 mm1
c = 17.8599 (9) ÅT = 296 K
β = 96.581 (2)°Block, colourless
V = 2094.49 (19) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
4614 independent reflections
Radiation source: fine-focus sealed tube3375 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω & φ scansθmax = 27.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2013
Tmin = 0.969, Tmax = 0.978k = 98
21819 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.4036P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.017
4614 reflectionsΔρmax = 0.22 e Å3
283 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05662 (10)0.2111 (2)0.01264 (8)0.0463 (4)
H10.03880.11350.03910.056*
C20.00596 (10)0.2750 (2)0.04963 (8)0.0512 (4)
H20.04640.22170.06480.061*
C30.03304 (10)0.4172 (2)0.08905 (8)0.0488 (4)
H30.00110.46000.13110.059*
C40.11058 (9)0.4978 (2)0.06695 (7)0.0433 (3)
H40.12840.59320.09470.052*
C50.16244 (8)0.43761 (18)0.00354 (7)0.0354 (3)
C60.13411 (8)0.29249 (18)0.03586 (7)0.0368 (3)
C70.18723 (9)0.22355 (19)0.10317 (7)0.0384 (3)
C80.24887 (8)0.35947 (17)0.14498 (6)0.0338 (3)
C90.28722 (8)0.48058 (18)0.08927 (7)0.0336 (3)
C100.24565 (8)0.52183 (18)0.02146 (7)0.0338 (3)
C110.19360 (8)0.46192 (18)0.19635 (6)0.0344 (3)
C120.18236 (8)0.64551 (18)0.19151 (7)0.0368 (3)
H120.21100.71100.15800.044*
C130.12938 (9)0.7325 (2)0.23568 (8)0.0447 (3)
H130.12280.85600.23190.054*
C140.08630 (10)0.6384 (2)0.28520 (8)0.0530 (4)
H140.04990.69710.31450.064*
C150.09745 (11)0.4569 (3)0.29111 (9)0.0595 (5)
H150.06910.39260.32520.071*
C160.15022 (10)0.3687 (2)0.24720 (8)0.0505 (4)
H160.15680.24530.25170.061*
C170.31896 (9)0.24874 (19)0.19065 (8)0.0430 (3)
C180.44438 (13)0.0867 (3)0.17834 (12)0.0857 (7)
H18A0.47430.15520.21850.129*
H18B0.48200.06030.14120.129*
H18C0.42460.02310.19820.129*
C190.37168 (9)0.55771 (19)0.11799 (7)0.0387 (3)
C200.50781 (11)0.6419 (3)0.08805 (11)0.0783 (6)
H20A0.50190.76710.09830.117*
H20B0.54290.62680.04800.117*
H20C0.53380.58250.13250.117*
C210.27693 (8)0.6601 (2)0.02840 (7)0.0398 (3)
C220.28407 (11)0.8357 (2)0.00451 (10)0.0593 (4)
H220.27080.86590.04330.071*
C230.31073 (13)0.9673 (3)0.05105 (14)0.0824 (6)
H230.31561.08510.03440.099*
C240.33002 (12)0.9242 (4)0.12164 (13)0.0846 (7)
H240.34741.01270.15310.102*
C250.32355 (11)0.7507 (4)0.14553 (9)0.0723 (6)
H250.33750.72140.19320.087*
C260.29671 (9)0.6184 (3)0.10003 (8)0.0531 (4)
H260.29180.50100.11730.064*
O10.18036 (7)0.07330 (14)0.12689 (6)0.0561 (3)
O20.32467 (8)0.21704 (16)0.25637 (6)0.0629 (3)
O30.37245 (7)0.18860 (15)0.14387 (6)0.0548 (3)
O40.38995 (7)0.60087 (17)0.18244 (5)0.0600 (3)
O50.42502 (6)0.56566 (15)0.06595 (5)0.0508 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0517 (8)0.0388 (8)0.0475 (8)0.0064 (7)0.0016 (6)0.0088 (6)
C20.0441 (8)0.0553 (10)0.0514 (8)0.0034 (7)0.0068 (7)0.0165 (7)
C30.0473 (8)0.0566 (10)0.0394 (7)0.0071 (7)0.0084 (6)0.0076 (7)
C40.0447 (8)0.0500 (9)0.0340 (7)0.0043 (7)0.0011 (6)0.0003 (6)
C50.0384 (7)0.0373 (8)0.0300 (6)0.0046 (6)0.0016 (5)0.0049 (5)
C60.0422 (7)0.0334 (7)0.0338 (6)0.0010 (6)0.0006 (5)0.0076 (5)
C70.0466 (8)0.0326 (8)0.0359 (7)0.0017 (6)0.0044 (6)0.0022 (6)
C80.0398 (7)0.0326 (7)0.0281 (6)0.0019 (5)0.0006 (5)0.0004 (5)
C90.0361 (6)0.0361 (7)0.0288 (6)0.0026 (5)0.0041 (5)0.0029 (5)
C100.0362 (6)0.0370 (7)0.0285 (6)0.0045 (6)0.0052 (5)0.0026 (5)
C110.0385 (7)0.0366 (8)0.0275 (6)0.0022 (6)0.0013 (5)0.0001 (5)
C120.0380 (7)0.0380 (8)0.0342 (6)0.0032 (6)0.0041 (5)0.0007 (5)
C130.0464 (8)0.0421 (9)0.0454 (8)0.0010 (6)0.0047 (6)0.0078 (6)
C140.0490 (9)0.0658 (12)0.0463 (8)0.0050 (8)0.0146 (7)0.0155 (8)
C150.0701 (11)0.0657 (12)0.0475 (9)0.0119 (9)0.0272 (8)0.0014 (8)
C160.0668 (10)0.0416 (9)0.0452 (8)0.0066 (7)0.0155 (7)0.0035 (7)
C170.0506 (8)0.0381 (8)0.0383 (7)0.0050 (6)0.0036 (6)0.0008 (6)
C180.0694 (13)0.0904 (16)0.0951 (15)0.0431 (11)0.0000 (11)0.0129 (12)
C190.0384 (7)0.0431 (8)0.0344 (7)0.0035 (6)0.0030 (5)0.0026 (6)
C200.0424 (9)0.1093 (17)0.0855 (13)0.0188 (10)0.0176 (9)0.0311 (12)
C210.0363 (7)0.0489 (9)0.0343 (7)0.0033 (6)0.0039 (5)0.0079 (6)
C220.0679 (11)0.0505 (11)0.0622 (10)0.0009 (8)0.0191 (8)0.0096 (8)
C230.0831 (14)0.0603 (13)0.1064 (17)0.0032 (10)0.0224 (12)0.0306 (12)
C240.0596 (12)0.1074 (19)0.0883 (15)0.0008 (12)0.0150 (10)0.0621 (14)
C250.0470 (9)0.128 (2)0.0429 (9)0.0034 (11)0.0090 (7)0.0312 (11)
C260.0438 (8)0.0809 (12)0.0347 (7)0.0026 (8)0.0045 (6)0.0059 (7)
O10.0767 (8)0.0338 (6)0.0554 (6)0.0059 (5)0.0029 (5)0.0052 (5)
O20.0806 (8)0.0670 (8)0.0383 (6)0.0193 (6)0.0058 (5)0.0116 (5)
O30.0531 (6)0.0581 (7)0.0521 (6)0.0213 (5)0.0011 (5)0.0005 (5)
O40.0472 (6)0.0932 (9)0.0387 (5)0.0121 (6)0.0013 (4)0.0186 (6)
O50.0362 (5)0.0741 (8)0.0430 (5)0.0041 (5)0.0081 (4)0.0076 (5)
Geometric parameters (Å, º) top
C1—C21.379 (2)C14—H140.9300
C1—C61.3873 (19)C15—C161.376 (2)
C1—H10.9300C15—H150.9300
C2—C31.370 (2)C16—H160.9300
C2—H20.9300C17—O21.1905 (16)
C3—C41.381 (2)C17—O31.3328 (18)
C3—H30.9300C18—O31.4456 (19)
C4—C51.3942 (17)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.3940 (19)C18—H18C0.9600
C5—C101.4796 (18)C19—O41.1985 (15)
C6—C71.4777 (18)C19—O51.3256 (17)
C7—O11.2090 (17)C20—O51.4399 (19)
C7—C81.5397 (18)C20—H20A0.9600
C8—C91.5212 (18)C20—H20B0.9600
C8—C171.5392 (17)C20—H20C0.9600
C8—C111.5408 (18)C21—C221.380 (2)
C9—C101.3457 (16)C21—C261.3867 (19)
C9—C191.4897 (18)C22—C231.384 (2)
C10—C211.4852 (18)C22—H220.9300
C11—C121.3844 (19)C23—C241.369 (3)
C11—C161.3866 (19)C23—H230.9300
C12—C131.3774 (19)C24—C251.365 (3)
C12—H120.9300C24—H240.9300
C13—C141.371 (2)C25—C261.377 (3)
C13—H130.9300C25—H250.9300
C14—C151.369 (2)C26—H260.9300
C2—C1—C6120.04 (15)C14—C15—C16120.74 (15)
C2—C1—H1120.0C14—C15—H15119.6
C6—C1—H1120.0C16—C15—H15119.6
C3—C2—C1119.74 (14)C15—C16—C11120.65 (15)
C3—C2—H2120.1C15—C16—H16119.7
C1—C2—H2120.1C11—C16—H16119.7
C2—C3—C4120.68 (13)O2—C17—O3124.69 (13)
C2—C3—H3119.7O2—C17—C8126.72 (14)
C4—C3—H3119.7O3—C17—C8108.57 (11)
C3—C4—C5120.74 (14)O3—C18—H18A109.5
C3—C4—H4119.6O3—C18—H18B109.5
C5—C4—H4119.6H18A—C18—H18B109.5
C6—C5—C4117.90 (12)O3—C18—H18C109.5
C6—C5—C10120.27 (11)H18A—C18—H18C109.5
C4—C5—C10121.82 (12)H18B—C18—H18C109.5
C1—C6—C5120.89 (12)O4—C19—O5123.97 (13)
C1—C6—C7119.35 (13)O4—C19—C9122.85 (13)
C5—C6—C7119.76 (12)O5—C19—C9113.11 (11)
O1—C7—C6122.90 (12)O5—C20—H20A109.5
O1—C7—C8121.30 (11)O5—C20—H20B109.5
C6—C7—C8115.69 (11)H20A—C20—H20B109.5
C9—C8—C17110.48 (11)O5—C20—H20C109.5
C9—C8—C7110.63 (10)H20A—C20—H20C109.5
C17—C8—C7106.22 (10)H20B—C20—H20C109.5
C9—C8—C11112.92 (10)C22—C21—C26118.68 (14)
C17—C8—C11111.96 (10)C22—C21—C10119.79 (12)
C7—C8—C11104.24 (10)C26—C21—C10121.49 (14)
C10—C9—C19123.16 (12)C21—C22—C23120.60 (17)
C10—C9—C8122.34 (11)C21—C22—H22119.7
C19—C9—C8114.40 (10)C23—C22—H22119.7
C9—C10—C5119.96 (12)C24—C23—C22120.1 (2)
C9—C10—C21122.49 (12)C24—C23—H23119.9
C5—C10—C21117.40 (10)C22—C23—H23119.9
C12—C11—C16117.97 (13)C25—C24—C23119.64 (18)
C12—C11—C8122.16 (11)C25—C24—H24120.2
C16—C11—C8119.81 (12)C23—C24—H24120.2
C13—C12—C11120.92 (13)C24—C25—C26120.94 (18)
C13—C12—H12119.5C24—C25—H25119.5
C11—C12—H12119.5C26—C25—H25119.5
C14—C13—C12120.45 (14)C25—C26—C21120.02 (18)
C14—C13—H13119.8C25—C26—H26120.0
C12—C13—H13119.8C21—C26—H26120.0
C15—C14—C13119.25 (14)C17—O3—C18115.77 (13)
C15—C14—H14120.4C19—O5—C20117.16 (12)
C13—C14—H14120.4
C6—C1—C2—C31.0 (2)C9—C8—C11—C16176.27 (12)
C1—C2—C3—C40.1 (2)C17—C8—C11—C1658.27 (16)
C2—C3—C4—C50.8 (2)C7—C8—C11—C1656.13 (14)
C3—C4—C5—C61.0 (2)C16—C11—C12—C130.28 (18)
C3—C4—C5—C10179.82 (13)C8—C11—C12—C13176.90 (12)
C2—C1—C6—C50.8 (2)C11—C12—C13—C140.3 (2)
C2—C1—C6—C7179.38 (13)C12—C13—C14—C151.0 (2)
C4—C5—C6—C10.2 (2)C13—C14—C15—C161.0 (2)
C10—C5—C6—C1179.37 (12)C14—C15—C16—C110.4 (2)
C4—C5—C6—C7179.65 (12)C12—C11—C16—C150.2 (2)
C10—C5—C6—C70.44 (18)C8—C11—C16—C15177.00 (13)
C1—C6—C7—O121.7 (2)C9—C8—C17—O2138.57 (16)
C5—C6—C7—O1158.09 (14)C7—C8—C17—O2101.40 (17)
C1—C6—C7—C8154.54 (12)C11—C8—C17—O211.8 (2)
C5—C6—C7—C825.65 (18)C9—C8—C17—O342.97 (14)
O1—C7—C8—C9145.22 (13)C7—C8—C17—O377.06 (14)
C6—C7—C8—C938.46 (15)C11—C8—C17—O3169.76 (11)
O1—C7—C8—C1725.29 (17)C10—C9—C19—O4140.82 (15)
C6—C7—C8—C17158.39 (11)C8—C9—C19—O435.58 (19)
O1—C7—C8—C1193.12 (15)C10—C9—C19—O542.04 (18)
C6—C7—C8—C1183.21 (13)C8—C9—C19—O5141.56 (12)
C17—C8—C9—C10146.53 (12)C9—C10—C21—C2262.17 (19)
C7—C8—C9—C1029.18 (17)C5—C10—C21—C22113.49 (15)
C11—C8—C9—C1087.22 (15)C9—C10—C21—C26120.02 (15)
C17—C8—C9—C1937.04 (15)C5—C10—C21—C2664.33 (17)
C7—C8—C9—C19154.38 (11)C26—C21—C22—C230.2 (2)
C11—C8—C9—C1989.22 (13)C10—C21—C22—C23178.11 (15)
C19—C9—C10—C5179.15 (12)C21—C22—C23—C240.3 (3)
C8—C9—C10—C54.73 (19)C22—C23—C24—C250.6 (3)
C19—C9—C10—C215.3 (2)C23—C24—C25—C260.9 (3)
C8—C9—C10—C21170.82 (12)C24—C25—C26—C210.9 (2)
C6—C5—C10—C911.87 (19)C22—C21—C26—C250.6 (2)
C4—C5—C10—C9168.95 (13)C10—C21—C26—C25178.39 (13)
C6—C5—C10—C21172.36 (12)O2—C17—O3—C183.7 (2)
C4—C5—C10—C216.82 (18)C8—C17—O3—C18177.83 (14)
C9—C8—C11—C120.86 (16)O4—C19—O5—C204.2 (2)
C17—C8—C11—C12124.60 (13)C9—C19—O5—C20178.73 (14)
C7—C8—C11—C12121.00 (12)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the phenyl C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C24—H24···O2i0.932.593.449 (3)155
C20—H20B···O5ii0.962.593.430 (2)146
C3—H3···Cg3iii0.932.773.6338 (16)154
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z; (iii) x, y+1, z.
 

Acknowledgements

The authors thank Dr P. K. Sudhadevi Antharjanam, Technical Officer, SAIF, IIT Madras, Chennai, India, for the data collection. GJ thanks Jeppiaar Engineering College, Rajiv Gandhi Salai, Chennai, India for their support.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeria, P., Von Bargen, C. D., Olivier, J. H., Kumbhar, A. S., Saven, J. G. & Therien, M. J. (2013). J. Am. Chem. Soc. 135, 16220–16234.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGopinath, S., Narayanan, P., Sethusankar, K., Karunakaran, J., Nandakumar, M. & Mohanakrishnan, A. K. (2017). Acta Cryst. E73, 177–182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972–980.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 45, 1854–1867.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWiltz, B. A., Henderson, G. & Chen, J. (1998). Environ. Entomol. 27, 936–940.  Web of Science CrossRef CAS Google Scholar
First citationWright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42–45.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds