research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of aqua­chlorido­(nitrato-κ2O,O′)[1-(pyridin-2-yl-κN)-2-(pyridin-2-yl­methyl­­idene-κN)hydrazine-κN2]manganase(II)

CROSSMARK_Color_square_no_text.svg

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cCentre de Recherche e Gif, Institut de Chimie des Substances Naturelles, CNRS-UPR2301, 1 Avenue la Terasse, 91198 Gif sur Yvette, France
*Correspondence e-mail: mlgayeastou@yahoo.fr

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 17 January 2018; accepted 28 February 2018; online 6 March 2018)

The search for novel manganese(II) compounds having inter­esting magnetic properties, using 1-(pyridin-2-yl)-2-(pyridin-2-yl­methyl­idene)hydrazine (HL) as a tridendate ligand, led to the preparation of the title mononuclear material, [MnCl(NO3)(C11H10N4)(H2O)], and the determination of its structure by XRD. The asymmetric unit comprises a discrete mol­ecule in which the cation MnII is hepta­coordinated. The environment around the cation is an almost perfect penta­gonal bipyramid. The base is defined by the two N atoms of the pyridine rings, the N atom of the imino function of the ligand and the two O atoms of the chelating bidentate nitrate ligand. The apical positions are occupied by a Cl atom and a water mol­ecule. In the crystal, there are numerous hydrogen bonds of the types Ow—H⋯ONO2 and C—H⋯ONO2, which generate layers parallel to the bc plane in which the ligands in the axial positions point into the inter­layer space. These axial ligands give rise to hydrogen bonds of the types Ow—H⋯ONO2, Ow—H⋯Cl, N—H⋯Cl and C—H⋯Cl, leading to a three-dimensional framework. The chain bridging the two pyridine rings is disordered over two sets of sites in a 0.53 (2):0.47 (2) ratio.

1. Chemical context

Although very much studied, the coordination chemistry of manganese remains very inter­esting as this metal can have several degrees of oxidation and its complexes can display different coordination numbers and geometries that are not always easily predicted (Chiswell et al., 1987[Chiswell, B., McKenzie, E. D. & Lindoy, L. F. (1987). Comprehensive Coordination Chemistry, Vol. 4, ch. 41, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, pp. 1-122. New York: Pergamon.]; Baldeau et al., 2004[Baldeau, S. M., Slinn, C. H., Krebs, B. & Rompel, A. (2004). Inorg. Chim. Acta, 357, 3295-3303.]; Mikuriya et al., 1997[Mikuriya, M., Hatano, Y. & Asato, E. (1997). Bull. Chem. Soc. Jpn, 70, 2495-2507.]). Although the coordination numbers four and six are the most common in the coordin­ation chemistry of manganese, the coordination numbers five, seven and eight are also observed (Louloudi et al., 1999[Louloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun. 2, 479-483.]). As a result of the multiple degrees of oxidation of this metal, inter­est in the coordination chemistry of manganese complexes is considerable. The involvement of manganese in various important biological processes such as oxidation of water by photosynthetic enzymes (Whittaker & Whittaker, 1997[Whittaker, M. M. & Whittaker, J. W. (1997). Biochemistry, 36, 8923-8931.]), hydrogen peroxide disproportionation by catalase (Meier et al., 1996[Meier, A. E., Whittaker, M. M. & Whittaker, J. W. (1996). Biochemistry, 35, 348-360.]), superoxide dismutase (SOD) (Schwartz et al., 2000[Schwartz, A. L., Yikilmaz, E., Vance, C. K., Vathyam, S., Koder, R. L. & Miller, A.-F. (2000). J. Inorg. Biochem. 80, 247-256.]), ribonucleotide reductase and lipoxygenase (Baffert et al., 2003[Baffert, C., Collomb, M.-N., Deronzier, A., Kjaergaard-Knudsen, S., Latour, J.-M., Lund, K. H., McKenzie, C. J., Mortensen, M., Nielsen, L. P. & Thorup, N. (2003). Dalton Trans. pp. 1765-1772.]) increases the inter­est of scientists in this metal. These examples from nature inspire chemists to search for bio-mimetic catalysts of these metalloenzymes that are highly selective and cause little damage to the environment (Krishnan & Vancheesan, 1999[Krishnan, R. & Vancheesan, S. (1999). J. Mol. Catal. A Chem. 142, 377-382.]). Manganese complexes are also used as catalysts in many processes such as epoxidation of alkene (Castaman et al., 2009[Castaman, S. T., Nakagaki, S., Ribeiro, R. R., Ciuffi, K. J. & Drechsel, S. M. (2009). J. Mol. Catal. A Chem. 300, 89-97.]), oxidation (Wegermann et al., 2014[Wegermann, C. A., Ribeiro, R. R., Ucoski, G. M., Nakagaki, S., Nunes, F. S. & Drechsel, S. M. (2014). Appl. Catal. Gen. 471, 56-62.]) and hydrogenation of ketones (Bruneau-Voisine et al., 2017[Bruneau-Voisine, A., Wang, D., Roisnel, T., Darcel, C. & Sortais, J.-B. (2017). Catal. Commun. 92, 1-4.]). The involvement of the metal center in these processes depends as much on its degree of oxidation as on its coordination number in the complex. The synthetic procedures adopted are essential for yielding complexes with specific properties. In this context, for the synthesis of the hepta­coordinated MnII title complex, we use a one-pot synthesis method, which is an efficient approach to prepare a large variety of coordination compounds (Oyaizu et al., 2000[Oyaizu, K., Nakagawa, T. & Tsuchida, E. (2000). Inorg. Chim. Acta, 305, 184-188.]). Manganese dichloride tetra­hydrate is mixed with the synthesized organic ligand (HL), which provides three soft nitro­gen-binding sites in the presence of nitrate anions that can act with hard oxygen-binding sites to yield a mononuclear hepta­coordinated manganese(II) complex.

[Scheme 1]

2. Structural commentary

The structure of the title complex is shown in Fig. 1[link]. The asymmetric unit comprises a discrete mol­ecule in which the cation MnII is hepta­coordinated. The coordination polyhedron of the MnII center is best described as a distorted penta­gonal bipyramid with an MnN3O3Cl chromophore. The basal plane is occupied by two nitro­gen atoms from the pyridine rings, one nitro­gen atom from the imino function and two oxygen atoms from the chelating bidentate nitrate group. The metal-bound ligand nitro­gen atoms exhibit angles of 69.85 (7)° (N1—Mn1—N2) and 69.62 (7)° (N2—Mn1—N4) which are slightly different from the ideal angle for a regular penta­gon (72°). The sum of the equatorial angles around MnII is 359.72°. The angle formed by the atoms in axial positions around MnII [Cl1—Mn1—O1W = 179.07 (4)°] is very close to the ideal value of 180°. The Mn—O/N bond lengths (Table 1[link]) are longer than those observed in the hepta­dentate manganese complex [Mn(L)(NO3)2] [L is 2,6-bis­(1-butyl-1H-benzo[d]imidazol-2-yl)pyridine; Kose & McKee et al., 2014[Kose, M. & McKee, V. (2014). Polyhedron, 75, 30-39.]]. The apical bond Mn1—Cl1 [2.4999 (6) Å] is the longest and is comparable to those found for the complex [Mn(L)(Cl)2]·MeOH [Mn1—Cl1 = 2.4849 (7), Mn1—Cl2 = 2.5465 (7) Å] {L is 2,6-bis­[(2-hy­droxy­phenyl­imino)­meth­yl]pyridine; Kose et al., 2015[Kose, M., Goring, P., Lucas, P. & Mckee, V. (2015). Inorg. Chim. Acta, 435, 232-238.]}. The second axial bond is the shortest distance in the structure [Mn1—O1W = 2.2239 (14) Å]. The two pyridine rings are connected by a disordered chain C—CH=N—NH—C in which the bond lengths are slightly different from those observed in similar complexes; this may be related to the observed disorder. Two intra­molecular hydrogen bonds, C1—H1⋯O2 and C11—H11⋯O3, are also observed in the structure (Table 2[link], Fig. 1[link]).

Table 1
Selected bond lengths (Å)

Mn1—O1W 2.2239 (14) N2—N3A 1.288 (11)
Mn1—N2 2.2750 (16) N2—C6 1.325 (13)
Mn1—N4 2.3292 (16) N2—C6A 1.465 (10)
Mn1—N1 2.3300 (16) N3—C7 1.566 (9)
Mn1—O2 2.3372 (14) C5—C6 1.398 (15)
Mn1—O3 2.3635 (15) C5—N3A 1.450 (11)
Mn1—Cl1 2.4999 (6) C7—C6A 1.180 (11)
N2—N3 1.217 (7)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯Cl1i 0.91 2.23 3.1225 (15) 170
O1W—H1WB⋯O2ii 0.87 1.92 2.7969 (19) 177
O1W—H1WB⋯N5ii 0.87 2.68 3.506 (2) 157
N3—H3N⋯Cl1iii 0.86 2.71 3.501 (7) 153
C1—H1⋯O2 0.93 2.53 3.140 (3) 124
C6—H6⋯Cl1iii 0.93 2.66 3.489 (11) 149
C8—H8⋯O4iv 0.93 2.54 3.290 (3) 138
C10—H10⋯Cl1v 0.93 2.83 3.669 (3) 152
C11—H11⋯O3 0.93 2.44 3.062 (3) 125
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) x, y, z-1; (v) -x+1, -y, -z+1.
[Figure 1]
Figure 1
An ORTEP view of the title compound, showing the atom-numbering scheme and intra­molecular hydrogen bonds as dashed lines. Displacement ellipsoids are plotted at the 50% probability level.

3. Supra­molecular features

In the crystal, the complex mol­ecules are linked by hydrogen bonds, giving rise to a three-dimensional network (Fig. 2[link], Table 2[link]). The structure is built up from penta­gonal bipyramids around the MnII atom, which are assembled in layers parallel to the bc plane. These layers are inter­connected by hydrogen bonds. The coordinating axial water mol­ecule points into the inter­layer space and act as a hydrogen-bond donor towards oxygen atom O2-NO2 and chlorine atom Cl1 (Fig. 2[link]) via the hydrogen bonds O1W—H1WB⋯O2ii and O1W—H1WA⋯Cl1i, [symmetry codes: (i) x + 1, y, z; (ii) −x + 2, −y + 1, −z + 2]. The axial Cl1 atom points also in the inter­layer space and acts as a hydrogen-bond acceptor toward N3—H3N⋯Cl1iii and C6—H6⋯Cl1iii [symmetry code: (iii) −x + 1, −y + 1, −z + 1]. The combined hydrogen bonds link the layers into a three-dimensional framework. Within a layer, the mol­ecules are inter­connected by hydrogen bonds of the type C—H⋯ONO2 [C8—H8⋯O4iv—NO2; symmetry code: (iv) x, y, z − 1].

[Figure 2]
Figure 2
Representation of the title compound, showing the inter­molecular hydrogen bonds as dashed lines.

4. Database survey

The ligand 1-(2-pyridyl)-2-(pyridin-2-yl­methyl­idene)hydrazine has been widely used in coordination chemistry. The current release of the CSD (Version 5.39, last update Nov 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) affords 22 hits. Seven examples of complexes with the above ligand with f-block metal ions appear in the literature (Baraniak et al., 1976[Baraniak, E., Bruce, R. S. L., Freeman, H. C., Hair, N. J. & James, J. (1976). Inorg. Chem. 15, 2226-2230.]; Ndiaye-Gueye, Dieng, Thiam, Sow et al., 2017[Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Sow, M. M., Gueye-Sylla, R., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Rev. Roum. Chim. 62, 35-41.]; Ndiaye-Gueye, Dieng, Thiam, Lo et al., 2017[Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8-15.]; Ndiaye-Gueye, Dieng, Lo et al., 2017[Ndiaye-Gueye, M., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137-143.]; Gueye et al., 2017[Gueye, N. D. M., Moussa, D., Thiam, E. I., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Acta Cryst. E73, 1121-1124.]). The other entries are for complexes with p- and d-block metal ions. Structures are available for CaII (Vantomme et al., 2014[Vantomme, G., Jiang, S. & Lehn, J.-M. (2014). J. Am. Chem. Soc. 136, 9509-9518.][Vantomme, G., Hafezi, N. & Lehn, J.-M. (2014). Chem. Sci. 5, 1475-1483.]), CuII (Mesa et al., 1988[Mesa, J. L., Arriortua, M. I., Lezama, L., Pizarro, J. L., Rojo, T. & Beltran, D. (1988). Polyhedron, 7, 1383-1388.], 1989[Mesa, J. L., Rojo, T., Arriortua, M. L., Villeneuve, G., Folgado, J. V., Beltrán-Porter, A. & Beltrán-Porter, D. (1989). J. Chem. Soc. Dalton Trans. pp. 53-56.]; Rojo et al., 1988[Rojo, T., Mesa, J. L., Arriortua, M. I., Savariault, J. M., Galy, J., Villeneuve, G. & Beltran, D. (1988). Inorg. Chem. 27, 3904-3911.]; Ainscough et al., 1996[Ainscough, E. W., Brodie, A. M., Ingham, S. L. & waters, J. M. (1996). Inorg. Chim. Acta, 249, 47-55.]; Chowdhury et al., 2009[Chowdhury, S., Mal, P., Basu, C., Stoeckli-Evans, H. & Mukherjee, S. (2009). Polyhedron, 28, 3863-3871.]; Mukherjee et al., 2010[Mukherjee, S., Chowdhury, S., Chattopadhyay, A. P. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1182-1188.]; Chang et al., 2011[Chang, M., Kobayashi, A., Chang, H.-C., Nakajima, K. & Kato, M. (2011). Chem. Lett. 40, 1335-1337.]), CoII (Gerloch et al., 1966[Gerloch, M. (1966). J. Chem. Soc. A, pp. 1317-1325.]), NiII (Chiumia et al., 1999[Chiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297-300.]) and ZnII (Dumitru et al., 2005[Dumitru, F., Petit, E., van der Lee, A. & Barboiu, M. (2005). Eur. J. Inorg. Chem. 00. 4255-4262.]; Vantomme et al., 2014[Vantomme, G., Jiang, S. & Lehn, J.-M. (2014). J. Am. Chem. Soc. 136, 9509-9518.][Vantomme, G., Hafezi, N. & Lehn, J.-M. (2014). Chem. Sci. 5, 1475-1483.]). In all cases, the ligand behaves as a tridentate ligand acting through the soft nitro­gen donor atoms from the two pyridine rings and the imino function. The hard protonated nitro­gen atom remains uncoordinated in all complexes.

5. Synthesis and crystallization

A mixture of 2-hydrazino­pyridine (1 mmol) and 2-pyridine­carbaldehyde (1 mmol) in ethanol (10 mL) was stirred under reflux for 30 min. A mixture of ammonium nitrate (3 mmol) and MnCl2·4H2O (1 mmol) in ethanol (10 mL) was added to the solution. The mixture was stirred for 30 min and the resulting yellow solution was filtered and the filtrate was kept at 298 K. A yellow powder appeared after one day and was collected by filtration, yield 65%. Analysis calculated for [C11H12ClMnN5O4] C, 32.41; H, 3.26; N, 22.67. Found: C, 32.37; H, 3.19; N, 22.60%. μeff(μB): 5.98 ΛM (S cm2 mol−1): 14. IR (cm−1): 3233, 1609, 1560, 1521, 1465, 1422, 1289, 1148, 776, 673.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms (=CH, NH and OH2 groups) were optimized geometrically (C—H = 0.93, N—H = 0.86 and O—H = 0.87–0.91 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The chain bridging the two pyridine rings is disordered. This disorder may be explained by the fact that the sequence of atoms C(Py)—CH=N—NH—C(py) overlaps with the sequence C(py)—NH—N=CH—C(py), meaning two orientations of the ligand. In such a case, for the refinement it was assumed that the C atom of the CH group from one chain and the NH atoms from the second chain occupy the same position. The same relates inversely. The occupancy factor refined to 0.53 (2):0.47 (2).

Table 3
Experimental details

Crystal data
Chemical formula [MnCl(NO3)(C11H10N4)(H2O)]
Mr 368.65
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.9698 (1), 10.6055 (2), 10.8476 (2)
α, β, γ (°) 98.784 (2), 97.636 (2), 108.308 (2)
V3) 738.21 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.10
Crystal size (mm) 0.09 × 0.08 × 0.06
 
Data collection
Diffractometer Bruker KappaCCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 22026, 3571, 2905
Rint 0.038
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.06
No. of reflections 3571
No. of parameters 209
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.46
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Aquachlorido(nitrato-κ2O,O')[1-(pyridin-2-yl-κN)-2-(pyridin-2-ylmethylidene-κN)hydrazine-κN2]manganase(II) top
Crystal data top
[MnCl(NO3)(C11H10N4)(H2O)]Z = 2
Mr = 368.65F(000) = 374
Triclinic, P1Dx = 1.658 Mg m3
a = 6.9698 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6055 (2) ÅCell parameters from 9920 reflections
c = 10.8476 (2) Åθ = 2.4–28.6°
α = 98.784 (2)°µ = 1.10 mm1
β = 97.636 (2)°T = 293 K
γ = 108.308 (2)°Prismatic, yellow
V = 738.21 (2) Å30.09 × 0.08 × 0.06 mm
Data collection top
Bruker KappaCCD
diffractometer
2905 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Detector resolution: 9 pixels mm-1θmax = 29.1°, θmin = 3.6°
CCD scansh = 99
22026 measured reflectionsk = 1414
3571 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.091H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.1976P]
where P = (Fo2 + 2Fc2)/3
3571 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.71914 (4)0.39182 (3)0.74637 (2)0.04153 (11)
Cl10.33417 (8)0.30415 (5)0.69679 (5)0.05511 (14)
O1W1.0615 (2)0.46771 (14)0.79278 (13)0.0541 (3)
H1WA1.1408920.4167650.7744020.081*
H1WB1.1181390.5167480.8691340.081*
O20.7483 (2)0.38248 (13)0.96166 (13)0.0529 (3)
O30.7175 (3)0.19991 (15)0.83256 (13)0.0631 (4)
O40.7546 (3)0.20477 (18)1.03568 (15)0.0728 (5)
N10.7321 (3)0.61349 (16)0.81806 (18)0.0528 (4)
N20.7448 (2)0.50621 (19)0.58471 (17)0.0519 (4)
N30.7437 (8)0.4569 (8)0.4755 (5)0.0484 (13)0.53 (2)
H3N0.7427060.4996350.4143040.058*0.53 (2)
N40.7511 (3)0.25742 (19)0.56463 (15)0.0550 (4)
N50.7400 (3)0.25956 (16)0.94508 (15)0.0474 (4)
C10.7239 (4)0.6682 (2)0.9358 (2)0.0651 (6)
H10.7064170.6130210.9952780.078*
C20.7400 (4)0.8019 (2)0.9744 (3)0.0810 (8)
H20.7351260.8358871.0577670.097*
C30.7630 (5)0.8828 (3)0.8875 (4)0.0962 (11)
H30.7734640.9732190.9107580.115*
C40.7707 (4)0.8300 (3)0.7648 (4)0.0840 (9)
H40.7870190.8841130.7043320.101*
C50.7536 (3)0.6938 (2)0.7329 (3)0.0593 (6)
C60.757 (2)0.6350 (13)0.6090 (13)0.072 (6)0.53 (2)
H60.7667050.6849930.5453120.087*0.53 (2)
C70.7444 (3)0.3077 (3)0.45798 (19)0.0605 (6)
C80.7378 (4)0.2313 (4)0.3399 (2)0.0898 (10)
H80.7322750.2679810.2674370.108*
C90.7394 (5)0.1032 (4)0.3320 (3)0.1050 (13)
H90.7325560.0502550.2537350.126*
C100.7511 (5)0.0521 (3)0.4395 (3)0.0934 (10)
H100.7547500.0352800.4357220.112*
C110.7575 (4)0.1323 (3)0.5545 (2)0.0744 (7)
H110.7667780.0972280.6277180.089*
C6A0.7462 (14)0.4203 (12)0.4658 (9)0.051 (2)*0.47 (2)
H6A0.7486860.4562330.3927380.061*0.47 (2)
N3A0.755 (2)0.6312 (11)0.6045 (10)0.057 (4)*0.47 (2)
H3NA0.7615140.6755580.5441920.069*0.47 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.05255 (18)0.03866 (16)0.03561 (16)0.02057 (12)0.00415 (12)0.00731 (11)
Cl10.0516 (3)0.0560 (3)0.0593 (3)0.0232 (2)0.0087 (2)0.0079 (2)
O1W0.0570 (8)0.0574 (8)0.0463 (7)0.0285 (7)0.0016 (6)0.0033 (6)
O20.0720 (9)0.0401 (7)0.0464 (7)0.0235 (6)0.0058 (7)0.0038 (6)
O30.0995 (12)0.0490 (8)0.0421 (8)0.0330 (8)0.0078 (8)0.0023 (6)
O40.1101 (13)0.0758 (10)0.0518 (9)0.0480 (10)0.0203 (9)0.0308 (8)
N10.0537 (9)0.0395 (8)0.0670 (11)0.0204 (7)0.0041 (8)0.0132 (8)
N20.0423 (8)0.0652 (11)0.0491 (10)0.0171 (8)0.0027 (7)0.0224 (8)
N30.069 (3)0.046 (3)0.034 (2)0.026 (2)0.0046 (15)0.014 (2)
N40.0540 (9)0.0652 (11)0.0392 (9)0.0180 (8)0.0063 (7)0.0017 (7)
N50.0609 (10)0.0437 (8)0.0407 (8)0.0230 (7)0.0073 (7)0.0091 (7)
C10.0751 (15)0.0483 (11)0.0736 (15)0.0301 (11)0.0082 (12)0.0037 (10)
C20.0791 (16)0.0505 (13)0.111 (2)0.0316 (12)0.0110 (15)0.0054 (14)
C30.0790 (18)0.0406 (12)0.170 (3)0.0292 (12)0.019 (2)0.0101 (17)
C40.0739 (16)0.0532 (13)0.139 (3)0.0303 (12)0.0211 (17)0.0425 (17)
C50.0462 (11)0.0481 (11)0.0895 (18)0.0194 (9)0.0080 (11)0.0286 (11)
C60.067 (5)0.071 (6)0.095 (9)0.028 (3)0.003 (3)0.067 (7)
C70.0391 (10)0.0915 (18)0.0366 (10)0.0094 (10)0.0041 (8)0.0010 (10)
C80.0651 (15)0.134 (3)0.0410 (13)0.0061 (17)0.0118 (11)0.0108 (15)
C90.0724 (18)0.132 (3)0.0646 (19)0.0014 (18)0.0206 (14)0.0446 (19)
C100.091 (2)0.0782 (18)0.091 (2)0.0175 (15)0.0285 (17)0.0271 (16)
C110.0906 (18)0.0643 (14)0.0637 (15)0.0286 (13)0.0194 (13)0.0085 (11)
Geometric parameters (Å, º) top
Mn1—O1W2.2239 (14)C1—C21.380 (3)
Mn1—N22.2750 (16)C1—H10.9300
Mn1—N42.3292 (16)C2—C31.361 (5)
Mn1—N12.3300 (16)C2—H20.9300
Mn1—O22.3372 (14)C3—C41.378 (5)
Mn1—O32.3635 (15)C3—H30.9300
Mn1—Cl12.4999 (6)C4—C51.396 (3)
O1W—H1WA0.9067C4—H40.9300
O1W—H1WB0.8745C5—C61.398 (15)
O2—N51.270 (2)C5—N3A1.450 (11)
O3—N51.251 (2)C6—H60.9300
O4—N51.224 (2)C7—C6A1.180 (11)
N1—C11.337 (3)C7—C81.394 (3)
N1—C51.341 (3)C8—C91.352 (5)
N2—N31.217 (7)C8—H80.9300
N2—N3A1.288 (11)C9—C101.362 (5)
N2—C61.325 (13)C9—H90.9300
N2—C6A1.465 (10)C10—C111.386 (3)
N3—C71.566 (9)C10—H100.9300
N3—H3N0.8600C11—H110.9300
N4—C111.330 (3)C6A—H6A0.9300
N4—C71.347 (3)N3A—H3NA0.8600
O1W—Mn1—N287.38 (6)N1—C1—C2123.8 (3)
O1W—Mn1—N485.96 (6)N1—C1—H1118.1
N2—Mn1—N469.62 (7)C2—C1—H1118.1
O1W—Mn1—N187.94 (5)C3—C2—C1118.4 (3)
N2—Mn1—N169.85 (7)C3—C2—H2120.8
N4—Mn1—N1139.23 (7)C1—C2—H2120.8
O1W—Mn1—O283.70 (5)C2—C3—C4119.6 (2)
N2—Mn1—O2152.55 (6)C2—C3—H3120.2
N4—Mn1—O2135.11 (6)C4—C3—H3120.2
N1—Mn1—O283.90 (6)C3—C4—C5118.7 (3)
O1W—Mn1—O389.13 (6)C3—C4—H4120.6
N2—Mn1—O3151.72 (6)C5—C4—H4120.6
N4—Mn1—O382.14 (6)N1—C5—C4122.1 (3)
N1—Mn1—O3138.06 (6)N1—C5—C6117.1 (4)
O2—Mn1—O354.21 (5)C4—C5—C6120.8 (5)
O1W—Mn1—Cl1179.07 (4)N1—C5—N3A116.5 (5)
N2—Mn1—Cl193.54 (4)C4—C5—N3A121.4 (5)
N4—Mn1—Cl194.25 (5)N2—C6—C5118.3 (7)
N1—Mn1—Cl192.48 (4)N2—C6—H6120.9
O2—Mn1—Cl195.52 (4)C5—C6—H6120.9
O3—Mn1—Cl190.00 (5)C6A—C7—N4118.6 (5)
Mn1—O1W—H1WA124.5C6A—C7—C8119.5 (5)
Mn1—O1W—H1WB116.1N4—C7—C8122.0 (3)
H1WA—O1W—H1WB105.9N4—C7—N3115.6 (2)
N5—O2—Mn195.09 (10)C8—C7—N3122.4 (3)
N5—O3—Mn194.39 (10)C9—C8—C7119.1 (3)
C1—N1—C5117.34 (19)C9—C8—H8120.4
C1—N1—Mn1126.26 (14)C7—C8—H8120.4
C5—N1—Mn1116.38 (16)C8—C9—C10119.5 (3)
N3—N2—C6116.9 (6)C8—C9—H9120.2
N3A—N2—C6A128.2 (6)C10—C9—H9120.2
N3—N2—Mn1124.8 (4)C9—C10—C11119.0 (3)
N3A—N2—Mn1120.1 (5)C9—C10—H10120.5
C6—N2—Mn1118.4 (6)C11—C10—H10120.5
C6A—N2—Mn1111.7 (5)N4—C11—C10122.7 (3)
N2—N3—C7113.2 (4)N4—C11—H11118.6
N2—N3—H3N123.4C10—C11—H11118.6
C7—N3—H3N123.4C7—C6A—N2123.3 (8)
C11—N4—C7117.6 (2)C7—C6A—H6A118.4
C11—N4—Mn1126.03 (15)N2—C6A—H6A118.4
C7—N4—Mn1116.15 (16)N2—N3A—C5117.1 (8)
O4—N5—O3122.94 (16)N2—N3A—H3NA121.5
O4—N5—O2120.77 (16)C5—N3A—H3NA121.5
O3—N5—O2116.29 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl1i0.912.233.1225 (15)170
O1W—H1WB···O2ii0.871.922.7969 (19)177
O1W—H1WB···N5ii0.872.683.506 (2)157
N3—H3N···Cl1iii0.862.713.501 (7)153
C1—H1···O20.932.533.140 (3)124
C6—H6···Cl1iii0.932.663.489 (11)149
C8—H8···O4iv0.932.543.290 (3)138
C10—H10···Cl1v0.932.833.669 (3)152
C11—H11···O30.932.443.062 (3)125
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y, z1; (v) x+1, y, z+1.
 

Funding information

The authors are grateful to the Sonatel Foundation for financial support.

References

First citationAinscough, E. W., Brodie, A. M., Ingham, S. L. & waters, J. M. (1996). Inorg. Chim. Acta, 249, 47–55.  CSD CrossRef CAS Web of Science Google Scholar
First citationBaffert, C., Collomb, M.-N., Deronzier, A., Kjaergaard-Knudsen, S., Latour, J.-M., Lund, K. H., McKenzie, C. J., Mortensen, M., Nielsen, L. P. & Thorup, N. (2003). Dalton Trans. pp. 1765–1772.  Web of Science CSD CrossRef Google Scholar
First citationBaldeau, S. M., Slinn, C. H., Krebs, B. & Rompel, A. (2004). Inorg. Chim. Acta, 357, 3295–3303.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaraniak, E., Bruce, R. S. L., Freeman, H. C., Hair, N. J. & James, J. (1976). Inorg. Chem. 15, 2226–2230.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruneau-Voisine, A., Wang, D., Roisnel, T., Darcel, C. & Sortais, J.-B. (2017). Catal. Commun. 92, 1–4.  CAS Google Scholar
First citationCastaman, S. T., Nakagaki, S., Ribeiro, R. R., Ciuffi, K. J. & Drechsel, S. M. (2009). J. Mol. Catal. A Chem. 300, 89–97.  Web of Science CrossRef CAS Google Scholar
First citationChang, M., Kobayashi, A., Chang, H.-C., Nakajima, K. & Kato, M. (2011). Chem. Lett. 40, 1335–1337.  Web of Science CSD CrossRef CAS Google Scholar
First citationChiswell, B., McKenzie, E. D. & Lindoy, L. F. (1987). Comprehensive Coordination Chemistry, Vol. 4, ch. 41, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, pp. 1–122. New York: Pergamon.  Google Scholar
First citationChiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297–300.  Web of Science CSD CrossRef CAS Google Scholar
First citationChowdhury, S., Mal, P., Basu, C., Stoeckli–Evans, H. & Mukherjee, S. (2009). Polyhedron, 28, 3863–3871.  Web of Science CSD CrossRef CAS Google Scholar
First citationDumitru, F., Petit, E., van der Lee, A. & Barboiu, M. (2005). Eur. J. Inorg. Chem. 00. 4255–4262.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGerloch, M. (1966). J. Chem. Soc. A, pp. 1317–1325.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGueye, N. D. M., Moussa, D., Thiam, E. I., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Acta Cryst. E73, 1121–1124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKose, M., Goring, P., Lucas, P. & Mckee, V. (2015). Inorg. Chim. Acta, 435, 232–238.  Web of Science CSD CrossRef CAS Google Scholar
First citationKose, M. & McKee, V. (2014). Polyhedron, 75, 30–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrishnan, R. & Vancheesan, S. (1999). J. Mol. Catal. A Chem. 142, 377–382.  Web of Science CrossRef CAS Google Scholar
First citationLouloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun. 2, 479–483.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeier, A. E., Whittaker, M. M. & Whittaker, J. W. (1996). Biochemistry, 35, 348–360.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMesa, J. L., Arriortua, M. I., Lezama, L., Pizarro, J. L., Rojo, T. & Beltran, D. (1988). Polyhedron, 7, 1383–1388.  CSD CrossRef CAS Web of Science Google Scholar
First citationMesa, J. L., Rojo, T., Arriortua, M. L., Villeneuve, G., Folgado, J. V., Beltrán-Porter, A. & Beltrán-Porter, D. (1989). J. Chem. Soc. Dalton Trans. pp. 53–56.  CSD CrossRef Web of Science Google Scholar
First citationMikuriya, M., Hatano, Y. & Asato, E. (1997). Bull. Chem. Soc. Jpn, 70, 2495–2507.  CSD CrossRef CAS Web of Science Google Scholar
First citationMukherjee, S., Chowdhury, S., Chattopadhyay, A. P. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1182–1188.  Web of Science CSD CrossRef CAS Google Scholar
First citationNdiaye-Gueye, M., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137–143.  Google Scholar
First citationNdiaye-Gueye, M., Dieng, M., Thiam, I. E., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8–15.  Google Scholar
First citationNdiaye-Gueye, M., Dieng, M., Thiam, I. E., Sow, M. M., Gueye-Sylla, R., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Rev. Roum. Chim. 62, 35–41.  Google Scholar
First citationOyaizu, K., Nakagawa, T. & Tsuchida, E. (2000). Inorg. Chim. Acta, 305, 184–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationRojo, T., Mesa, J. L., Arriortua, M. I., Savariault, J. M., Galy, J., Villeneuve, G. & Beltran, D. (1988). Inorg. Chem. 27, 3904–3911.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchwartz, A. L., Yikilmaz, E., Vance, C. K., Vathyam, S., Koder, R. L. & Miller, A.-F. (2000). J. Inorg. Biochem. 80, 247–256.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVantomme, G., Hafezi, N. & Lehn, J.-M. (2014). Chem. Sci. 5, 1475–1483.  Web of Science CSD CrossRef CAS Google Scholar
First citationVantomme, G., Jiang, S. & Lehn, J.-M. (2014). J. Am. Chem. Soc. 136, 9509–9518.  Web of Science CSD CrossRef CAS Google Scholar
First citationWegermann, C. A., Ribeiro, R. R., Ucoski, G. M., Nakagaki, S., Nunes, F. S. & Drechsel, S. M. (2014). Appl. Catal. Gen. 471, 56–62.  Web of Science CrossRef CAS Google Scholar
First citationWhittaker, M. M. & Whittaker, J. W. (1997). Biochemistry, 36, 8923–8931.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds