research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-cyano­phenyl­boronic acid

CROSSMARK_Color_square_no_text.svg

aFacultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, México, bDepartamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Sede Noria Alta, Noria Alta S/N, Col. Noria Alta, CP 36050, Guanajuato, Gto., México, and cCentro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos, México
*Correspondence e-mail: cruzadriana@uas.edu.mx

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 February 2018; accepted 23 February 2018; online 2 March 2018)

In the title compound, C7H6BNO2, the mean plane of the –B(OH)2 group is twisted by 21.28 (6)° relative to the cyano­phenyl ring mean plane. In the crystal, mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds, forming chains propagating along the [101] direction. Offset ππ and B⋯π stacking inter­actions link the chains, forming a three-dimensional network. Hirshfeld surface analysis shows that van der Waals inter­actions constitute a further major contribution to the inter­molecular inter­actions, with H⋯H contacts accounting for 25.8% of the surface.

1. Chemical context

Boron-containing compounds and particularly aryl­boronic acid are an important class of compounds in the fields of organic and medicinal chemistry, and have played a role in the development of modern organic synthesis, macromolecular chemistry, crystal engineering and mol­ecular recognition (Fujita et al., 2008[Fujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076-1091.]; Severin, 2009[Severin, K. (2009). Dalton Trans. pp. 5254-5264.]). As a result of their peculiar dynamic covalent reactivity with alcohols (Jin et al., 2013[Jin, Y., Yu, C., Denman, R. J. & Zhang, W. (2013). Chem. Soc. Rev. 42, 6634-6654.]), aryl­boronic acids and their dehydrated derivatives enable the self-assembly of a large variety of architectures resulting from boronate esterification (Takahagi et al. 2009[Takahagi, H., Fujibe, S. & Iwasawa, N. (2009). Chem. Eur. J. 15, 13327-13330.]) as well as boroxine (Côté et al., 2005[Côté, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J. & Yaghi, O. M. (2005). Science, 310, 1166-1170.]) and spiro­borate formation (Du et al., 2016[Du, Y., Yang, H., Whiteley, J. M., Wan, S., Jin, Y., Lee, S. H. & Zhang, W. (2016). Angew. Chem. Int. Ed. 55, 1737-1741.]).

Boronic acids form neutral and charge-assisted homo- and heterodimeric hydrogen-bonding patterns resembling characteristics similar to those found for carb­oxy­lic acids (see Fig. 1[link]a). However, the –B(OH)2 moiety contains two O—H hydrogen-bond donors and can, thus, form two O—H⋯X hydrogen bonds and adopt different conformations (see Fig. 1[link]b). This enables the generation of hydrogen-bonding networks with increased dimensionality (one to three dimensions) in the solid state (Fournier et al., 2003[Fournier, J. H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc. 125, 1002-1006.]; Madura et al., 2015[Madura, I. D., Adamczyk-Woźniak, A. & Sporzyński, A. (2015). J. Mol. Struct. 1083, 204-211.]; Georgiou et al., 2017[Georgiou, I., Kervyn, S., Rossignon, A., De Leo, F., Wouters, J., Bruylants, G. & Bonifazi, D. (2017). J. Am. Chem. Soc. 139, 2710-2727.]). In recent years, boronic acids have also been explored in the context of forming multicomponent mol­ecular complexes with organic carb­oxy­lic acids (–COOH), amides (–CONH2), alcohols (–OH) and pyridines, which are based on mol­ecular recognition processes (Rodríguez-Cuamatzi et al., 2005[Rodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des. 5, 167-175.]; Madura et al., 2014[Madura, I. D., Czerwińska, K. & Sołdańska, D. (2014). Cryst. Growth Des. 14, 5912-5921.]; Hernández-Paredes et al., 2015[Hernández-Paredes, J., Olvera-Tapia, A. L., Arenas-García, J. I., Höpfl, H., Morales-Rojas, H., Herrera-Ruiz, D., Gonzaga-Morales, A. I. & Rodríguez-Fragoso, L. (2015). CrystEngComm, 17, 5166-5186.]; Campos-Gaxiola et al., 2017[Campos-Gaxiola, J. J., García-Grajeda, B. A., Hernández-Ahuactzi, I. F., Guerrero-Álvarez, J. A., Höpfl, H. & Cruz-Enríquez, A. (2017). CrystEngComm, 19, 3760-3775.]; Pedireddi & Lekshmi, 2004[Pedireddi, V. R. & Lekshmi, N. S. (2004). Tetrahedron Lett. 45, 1903-1906.]; Vega et al., 2010[Vega, A., Zarate, M., Tlahuext, H. & Höpfl, H. (2010). Acta Cryst. C66, o219-o221.]; TalwelkarShimpi et al., 2016[TalwelkarShimpi, M., Öberg, S., Giri, L. & Pedireddi, V. R. (2016). RSC Adv. 6, 43060-43068.]). As part of our ongoing studies in this area, we report herein on the mol­ecular and crystal structures of 3-cyano­phenyl­boronic acid, I[link]. In addition, a Hirshfeld surface analysis was performed to visualize and qu­antify the inter­molecular inter­actions in the crystal structure of compound (I)[link].

[Scheme 1]
[Figure 1]
Figure 1
(a) Neutral and charge-assisted homo- and heterodimeric hydrogen-bonding motifs involving boronic acids. (b) Conformations of the boronic acid moiety.

2. Structural commentary

The mol­ecular structure of the title compound (I)[link] is illustrated in Fig. 2[link]. It can be seen that the –B(OH)2 group adopts the most preferred syn–anti conformation (Lekshmi & Pedireddi, 2007[Lekshmi, N. S. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 944-949.]). As a result of the H⋯H repulsion between the endo-oriented B—OH hydrogen and the C—H hydrogen in position 2 of the aromatic ring, the –B(OH)2 mean plane is twisted by 21.28 (6)° relative to the cyano­phenyl ring mean plane. This torsion disables intra­molecular C—H⋯O hydrogen bonding between the oxygen atom of the exo-oriented B—OH function and weakens the B—C ππ bonding inter­actions (Durka et al., 2012[Durka, K., Jarzembska, K. N., Kamiński, R., Luliński, S., Serwatowski, J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3720-3734.]). The B1—O1, B1—O2 and B1—C1 bond lengths are 1.3455 (17), 1.3661 (18) and 1.5747 (18) Å, respectively. For comparison, in coplanar triphenyl boroxine the B—C bond lengths range from 1.544 (4) to 1.549 (4) Å (Brock et al., 1987[Brock, C. P., Minton, R. P. & Niedenzu, K. (1987). Acta Cryst. C43, 1775-1779.]). The C≡N bond length of 1.1416 (18) Å is typical for a bond with triple-bond character.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound (I)[link], with the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of (I)[link], the boronic acid mol­ecules are in the first instance associated to form chains through two well-known double-bridged homodimeric motifs based on a –BOH⋯O(H)B– [motif A; graph set R22(8)] and C—H⋯N≡C hydrogen bonds [motif B; graph set R22(10)]. This hydrogen-bonding pattern is strengthened further by a –BOH⋯N≡C contact [motif C; graph set R21(7)] (Fig. 3[link]a, Table 1[link]). In comparison to the crystal structure of 4-cyano­phenyl­boronic acid, where the chains are almost linear (TalwelkarShimpi et al., 2017[TalwelkarShimpi, M., Öberg, S., Giri, L. & Pedireddi, V. R. (2017). Cryst. Growth Des. 17, 6247-6254.]), in (I)[link] they have a pronounced zigzag topology. The O1⋯O2i, C2⋯N1ii and O2⋯N1ii separations in motifs A, B and C are 2.796 (1), 3.452 (2) and 2.909 (2) Å, respectively (Table 1[link]), and are similar to distances reported for related systems (Rodríguez-Cuamatzi et al., 2005[Rodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des. 5, 167-175.]; TalwelkarShimpi et al., 2017[TalwelkarShimpi, M., Öberg, S., Giri, L. & Pedireddi, V. R. (2017). Cryst. Growth Des. 17, 6247-6254.]). Within the crystal structure, neighboring tapes are linked through additional C—H⋯O contacts to give an overall two-dimensional network running parallel to ([\overline{1}]01) with macrocyclic motifs D [graph set R66(26)], see Fig. 3[link]b. The C4⋯O1iii distance is 3.469 (2) Å, see Table 1[link]. The resulting 2D networks stack in a parallel fashion to form a layered 3D structure based on offset ππ inter­actions between adjacent 3-cyano­phenyl­boronic acid mol­ecules [CgCgiv = 3.8064 (8) Å; slippage 1.38 Å; symmetry code (iv) = −1 + x, y, z] and η2-type B⋯π contacts with B⋯C distances of 3.595 (2) and 3.673 (2) Å (Fig. 3[link]c). Similar inter­actions are also depicted in mol­ecular crystals formed between 1,4-benzene­diboronic acid and aromatic amine N-oxides (Sarma & Baruah, 2009[Sarma, R. & Baruah, J. B. (2009). J. Mol. Struct. 920, 350-354.]; Sarma et al., 2011[Sarma, R., Bhattacharyya, P. K. & Baruah, J. B. (2011). Comput. Theor. Chem. 963, 141-147.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.98 2.796 (1) 170
O2—H2⋯N1ii 0.82 2.12 2.909 (2) 160
C2—H2A⋯N1ii 0.93 2.71 3.452 (2) 138
C4—H4⋯O1iii 0.93 2.67 3.469 (2) 144
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Hydrogen-bonding motifs and ππ inter­actions found in the crystal structure of (I)[link]. [Symmetry codes: (i) 2 − x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, −z; (iii) −1 + x, [{3\over 2}] − y, −[{1\over 2}] + z; (iv) −1 + x, y, z.]

4. Hirshfeld surface analysis

Hirshfeld surfaces and fingerprint plots were generated for (I)[link] based on the crystallographic information file (CIF) using CrystalExplorer (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by different colors and color intensity, representing short or long contacts and indicating the relative strength of the inter­actions. Fig. 4[link] shows the Hirshfeld surface of the title compound mapped over dnorm (−0.60 to 0.90 Å) and the shape-index (−1.0 to 1.0 Å). In the dnorm map, the vivid red spots in the Hirshfeld surface are due to short normalized O⋯H and N⋯H distances corresponding to O—H⋯O and O—H⋯N inter­actions. The white spots represent the contacts resulting from C—H⋯N hydrogen bonding (Fig. 4[link]a). On the shape-index surface for compound (I)[link], convex blue regions represent hydrogen-donor groups and concave red regions represent hydrogen-acceptor groups. The –B(OH)2 group behaves simultaneously as a donor and an acceptor, meanwhile the –C≡N group is an acceptor only. The occurrence of offset ππ inter­actions is indicated by adjacent red and blue triangles (Fig. 4[link]b).

[Figure 4]
Figure 4
Hirshfeld surfaces for compound (I)[link], mapped with dnorm (top) and shape-index (bottom).

The two-dimensional fingerprint plots qu­antify the contributions of each type of non-covalent inter­action to the Hirshfeld surface (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The major contribution with 25.8% of the surface is due to H⋯H contacts, which represent van der Waals inter­actions, followed by N⋯H and O⋯H inter­actions, which contribute 23.6 and 20.4%, respectively (these contributions are observed as two sharp peaks in the plot of Fig. 5[link]). This behavior is usual for strong hydrogen bonds (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). Finally, the presence of C⋯C (11.4%) and B⋯C (2.3%) contacts corresponds to the ππ and B⋯π inter­actions, respectively, established in the crystal structure analysis section.

[Figure 5]
Figure 5
Two-dimensional fingerprints of compound (I)[link], showing H⋯H, N⋯H, O⋯H, C⋯C and C⋯H close contacts.

5. Experimental

3-Cyano­phenyl­boronic acid and the solvent used in this work are commercially available and were used without further purification. For single-crystal growth, a solution of 3-cyano­phenyl­boronic acid (0.050 g) in 5 ml of ethanol was heated to reflux for 15 min. The solution was left to evaporate slowly at room temperature, giving after one week colorless crystals suitable for single-crystal X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C7H6BNO2
Mr 146.94
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 3.8064 (2), 16.156 (1), 11.4585 (4)
β (°) 93.472 (4)
V3) 703.36 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.48 × 0.25 × 0.20
 
Data collection
Diffractometer Rigaku OD SuperNova Single source at offset EosS2
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.])
Tmin, Tmax 0.992, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 7332, 1434, 1347
Rint 0.023
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.09
No. of reflections 1434
No. of parameters 102
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-Cyanophenylboronic acid top
Crystal data top
C7H6BNO2F(000) = 304
Mr = 146.94Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.8064 (2) ÅCell parameters from 4312 reflections
b = 16.156 (1) Åθ = 4.4–29.1°
c = 11.4585 (4) ŵ = 0.10 mm1
β = 93.472 (4)°T = 293 K
V = 703.36 (6) Å3Block, colourless
Z = 40.48 × 0.25 × 0.20 mm
Data collection top
Rigaku OD SuperNova Single source at offset EosS2
diffractometer
1434 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source1347 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 8.0945 pixels mm-1θmax = 26.4°, θmin = 3.6°
ω scansh = 44
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
k = 2020
Tmin = 0.992, Tmax = 0.996l = 1414
7332 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.1839P]
where P = (Fo2 + 2Fc2)/3
1434 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.8906 (3)0.49351 (6)0.34935 (8)0.0436 (3)
H20.8812710.4824590.2793810.065*
O10.8143 (3)0.60701 (6)0.47187 (8)0.0507 (3)
H10.9003150.5729890.5184070.076*
N10.0762 (4)0.58588 (8)0.12243 (11)0.0485 (4)
C30.3424 (3)0.65006 (8)0.06942 (10)0.0307 (3)
C70.1909 (4)0.61462 (8)0.03743 (11)0.0355 (3)
C10.6246 (3)0.62961 (8)0.26214 (10)0.0302 (3)
C20.4765 (3)0.59744 (8)0.15775 (11)0.0309 (3)
H2A0.4670060.5404280.1468050.037*
C40.3561 (4)0.73542 (8)0.08286 (12)0.0367 (3)
H40.2678430.7701160.0233200.044*
C60.6325 (4)0.71575 (8)0.27423 (11)0.0352 (3)
H60.7276160.7385930.3436300.042*
C50.5031 (4)0.76802 (8)0.18615 (12)0.0400 (3)
H50.5150940.8250730.1964250.048*
B10.7827 (4)0.57324 (9)0.36442 (12)0.0336 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0679 (7)0.0371 (5)0.0242 (5)0.0103 (5)0.0092 (5)0.0004 (4)
O10.0810 (8)0.0414 (6)0.0278 (5)0.0165 (5)0.0120 (5)0.0029 (4)
N10.0625 (9)0.0474 (7)0.0339 (7)0.0077 (6)0.0115 (6)0.0044 (5)
C30.0303 (6)0.0361 (7)0.0254 (6)0.0025 (5)0.0001 (5)0.0001 (5)
C70.0398 (7)0.0365 (7)0.0295 (7)0.0077 (5)0.0031 (5)0.0028 (5)
C10.0304 (6)0.0332 (7)0.0267 (6)0.0014 (5)0.0002 (5)0.0017 (5)
C20.0343 (7)0.0291 (6)0.0290 (6)0.0019 (5)0.0011 (5)0.0005 (5)
C40.0426 (8)0.0353 (7)0.0320 (7)0.0063 (5)0.0004 (5)0.0067 (5)
C60.0397 (7)0.0358 (7)0.0296 (6)0.0019 (5)0.0016 (5)0.0031 (5)
C50.0520 (8)0.0287 (7)0.0390 (8)0.0007 (6)0.0009 (6)0.0001 (5)
B10.0385 (8)0.0347 (8)0.0268 (7)0.0006 (6)0.0038 (6)0.0010 (5)
Geometric parameters (Å, º) top
O2—B11.3661 (18)C1—C21.3917 (17)
O1—B11.3455 (17)C1—C61.3987 (18)
N1—C71.1416 (18)C1—B11.5747 (18)
C3—C71.4401 (18)C4—C51.3825 (19)
C3—C21.3948 (17)C6—C51.3834 (19)
C3—C41.3882 (19)
C2—C3—C7119.00 (12)C1—C2—C3120.50 (12)
C4—C3—C7119.98 (11)C5—C4—C3118.95 (12)
C4—C3—C2121.02 (12)C5—C6—C1122.04 (12)
N1—C7—C3178.81 (15)C4—C5—C6119.98 (12)
C2—C1—C6117.51 (11)O2—B1—C1123.75 (11)
C2—C1—B1122.70 (11)O1—B1—O2119.15 (12)
C6—C1—B1119.79 (11)O1—B1—C1117.10 (12)
C3—C4—C5—C60.2 (2)C2—C1—B1—O1159.37 (13)
C7—C3—C2—C1179.96 (12)C4—C3—C2—C10.64 (19)
C7—C3—C4—C5179.92 (12)C6—C1—C2—C30.00 (18)
C1—C6—C5—C40.9 (2)C6—C1—B1—O2158.17 (13)
C2—C3—C4—C50.5 (2)C6—C1—B1—O121.14 (19)
C2—C1—C6—C50.8 (2)B1—C1—C2—C3179.50 (12)
C2—C1—B1—O221.3 (2)B1—C1—C6—C5178.76 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.982.796 (1)170
O2—H2···N1ii0.822.122.909 (2)160
C2—H2A···N1ii0.932.713.452 (2)138
C4—H4···O1iii0.932.673.469 (2)144
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y+3/2, z1/2.
 

Funding information

This work was supported financially by the Consejo Nacional de Ciencia y Tecnología (CONACYT, Project Nos. 177616 and 229929) and Red Temática de Química Supra­molecular (CONACYT, Project No. 281251). AJCV thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT) for a graduate scholarship (273977).

References

First citationBrock, C. P., Minton, R. P. & Niedenzu, K. (1987). Acta Cryst. C43, 1775–1779.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCampos-Gaxiola, J. J., García-Grajeda, B. A., Hernández-Ahuactzi, I. F., Guerrero-Álvarez, J. A., Höpfl, H. & Cruz-Enríquez, A. (2017). CrystEngComm, 19, 3760–3775.  CAS Google Scholar
First citationCôté, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J. & Yaghi, O. M. (2005). Science, 310, 1166–1170.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, Y., Yang, H., Whiteley, J. M., Wan, S., Jin, Y., Lee, S. H. & Zhang, W. (2016). Angew. Chem. Int. Ed. 55, 1737–1741.  Web of Science CrossRef CAS Google Scholar
First citationDurka, K., Jarzembska, K. N., Kamiński, R., Luliński, S., Serwatowski, J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3720–3734.  Web of Science CSD CrossRef CAS Google Scholar
First citationFournier, J. H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc. 125, 1002–1006.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076–1091.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGeorgiou, I., Kervyn, S., Rossignon, A., De Leo, F., Wouters, J., Bruylants, G. & Bonifazi, D. (2017). J. Am. Chem. Soc. 139, 2710–2727.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHernández-Paredes, J., Olvera-Tapia, A. L., Arenas-García, J. I., Höpfl, H., Morales-Rojas, H., Herrera-Ruiz, D., Gonzaga-Morales, A. I. & Rodríguez-Fragoso, L. (2015). CrystEngComm, 17, 5166–5186.  Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJin, Y., Yu, C., Denman, R. J. & Zhang, W. (2013). Chem. Soc. Rev. 42, 6634–6654.  Web of Science CrossRef CAS Google Scholar
First citationLekshmi, N. S. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 944–949.  Google Scholar
First citationMadura, I. D., Adamczyk-Woźniak, A. & Sporzyński, A. (2015). J. Mol. Struct. 1083, 204–211.  Web of Science CSD CrossRef CAS Google Scholar
First citationMadura, I. D., Czerwińska, K. & Sołdańska, D. (2014). Cryst. Growth Des. 14, 5912–5921.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPedireddi, V. R. & Lekshmi, N. S. (2004). Tetrahedron Lett. 45, 1903–1906.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.  Google Scholar
First citationRodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des. 5, 167–175.  Google Scholar
First citationSarma, R. & Baruah, J. B. (2009). J. Mol. Struct. 920, 350–354.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarma, R., Bhattacharyya, P. K. & Baruah, J. B. (2011). Comput. Theor. Chem. 963, 141–147.  Web of Science CrossRef CAS Google Scholar
First citationSeverin, K. (2009). Dalton Trans. pp. 5254–5264.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTakahagi, H., Fujibe, S. & Iwasawa, N. (2009). Chem. Eur. J. 15, 13327–13330.  Web of Science CSD CrossRef CAS Google Scholar
First citationTalwelkarShimpi, M., Öberg, S., Giri, L. & Pedireddi, V. R. (2016). RSC Adv. 6, 43060–43068.  Web of Science CSD CrossRef CAS Google Scholar
First citationTalwelkarShimpi, M., Öberg, S., Giri, L. & Pedireddi, V. R. (2017). Cryst. Growth Des. 17, 6247–6254.  Web of Science CSD CrossRef CAS Google Scholar
First citationVega, A., Zarate, M., Tlahuext, H. & Höpfl, H. (2010). Acta Cryst. C66, o219–o221.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds